
Short REVIEW for FINAL

Professor Anita Wasilewska
Computer Science Department

Stony Brook University

Cse352
ARTIFICIAL INTELLIGENCE

Part 1: PREDICATE LOGIC CONCEPTUALIZATION

• Translations from Natural Language
• BE CAREFUL!
• YOU MUST ALWAYS DO DIRECT

TRANSLATION
• Never translate some logically EQUIVALENT

FORM like in this case (via de Morgan Laws)
• “All houses are not red”

PREDICATE LOGIC CONCEPTUALIZATION

• Translations from Natural Language
• Translate: “All houses are not red”

• 1. Domain: X ≠ φ
• 2. Predicates: A(x) – x is a house B(x) – x is red
• 3. Functions: (none)
• 4. Connectives: ¬ - “not”
• 5. Quantifiers: ∀A(x) – “All houses” (restricted)
• 6. RESTRICTED FORMULA: ∀A(x) ¬B(x)
• 7. LOGIC FORMULA: ∀x (A(x) ⇒ ¬B(x))

PART 1: PREDICATE LOGIC CONCEPTUALIZATION

• Translations from Natural Language
• Translate: “No house is red”

• 1. Domain: X ≠ φ
• 2. Predicates: A(x) – x is a House B(x) – x is red
• 3. Functions: (none)
• 4. Connectives: ¬ - “not”
• 5. Quantifiers: ∃A(x) – “some houses” (restricted)
• 6. RESTRICTED FORMULA: ¬ ∃A(x) B(x)
• 7. LOGIC FORMULA: ¬ ∃x (A(x) ∧ B(x))

Part 2:
Propositional Resolution

GOAL: Use Resolution to prove/ disapprove |= A

PROCEDURE
Step 1: Write ¬A and transform ¬A info set of

clauses CL{¬A} using Transformation rules
Step 2: Consider CL{¬A} and look at if you can get a

deduction of {} from CL{¬A}

ANSWER
1. CL{¬A} ⊢R {} – Yes, |= A
2. CL{¬A} ⊢ {} (i.e. you never get {}) – No, not|= A

Rules of transformation
• Rules of transformation of a formula A into a

logically equivalent set of clauses CLA

• Rule (U): (AUB) + Information
What “Information” mean?
Example: a, b, (a U ¬(a=> b)), ¬c

a, b, a ,¬(a=> b), ¬c
a,b, ¬c is Information
Rule (U) : I , (AUB), J

I, A, B, J
I,J --- Information around

Implication Rule (=>)

• I, (A=>B), J (A=>B)

I, ¬A, B, J ¬A , B
Example: a, (a U b), (a => ¬a), (a ∧ b), c

(=>)
a, (a U b), ¬ a, ¬ a, (a ∧ b), c
(U)

a, a, b, ¬ a, ¬ a, (a ∧ b), c
next step?

we need (∧) Rule!

Conjunction Rule (∧)

I, (A ∧B), J (A∧B)
(∧) (∧)

I , A, J I , B, J A B
Example:

a, a, b, ¬a, ¬a, (a ∧ b), c
(∧)

a, a, b, ¬a, ¬a, a, c a, a, b, ¬a, ¬a, b, c

STOP when get only literals
Form clauses out of the leaves

Set of Clauses

Procedure: Leaves – to – Clauses
1. make SETS out of each leaf;
each leaf becomes a clause C
2. make a set of clauses CL as a set of all clauses C
obtained in 1.

Leaf 1: {a, a, b, ¬a, ¬a, a, c} = {a, b, ¬a, c}
Leaf 2: {a, a, b, ¬a, ¬a, b, c} = {a, b, ¬a, c}
• Observe that we end-up with only one set of

clauses
• CL ={Leaf 1, Leaf 2} = { {a, b, ¬a, c} }

Negation of Implication Rule (¬ =>)
I, ¬ (A =>B), I ¬ (A => B)

(¬=>) (¬=>)
I , A, I I , ¬B, I A ¬B
Example:

a, b, a, ¬ (a => b), ¬ c
(¬=>)

a, b, a, a, ¬c a, b, a, ¬b, ¬c
Stop – when only literals :
Form clauses out of a, b, a, a, ¬c and
a, b, a, ¬b, ¬c

Clauses

• Leaf1: a, b, a, a, ¬c makes clause {a, b, ¬c}
• Leaf 2: a, b, a, ¬b, ¬c makes clause {a, b, ¬b, c}

• CL = {{a, b, ¬c}, {a, b, ¬b, c}}

• CL is set of clauses corresponding to
a, b, a, ¬ (a => b), ¬ c

Negation of Conjunction Rule (¬∧)

I, ¬(A ∧B), J ¬(A ∧ B)
(¬∧) (¬∧)

I , ¬A, ¬B, J ¬A, ¬B

Coresponds to DeMorgan Law
¬(A ∧ B) ≡ (¬A U ¬B)

Negation of Disjunction Rule (¬ U)

I, ¬(A UB), J ¬(A U B)
(¬U) (¬U)

I , ¬A, J I , ¬B, J ¬A ¬B

• Coresponds to DeMorgan Law:
¬(AUB) ≡ (¬A ∧ ¬B)

Negation of Negation Rule (¬¬)

I, ¬¬ (A), J ¬¬(A)
(¬¬) (¬¬)

I , A, J A

Coresponds to
¬¬ (A) ≡ A
Transformation Rules :

(∧), (U), (=>), (¬∧), (¬U), (¬=>)

Transformation Rules Shorthand Form

(AUB) (U) ¬(A U B) (¬U)
A, B ¬A ¬B

(A ∧B) (∧) ¬(A ∧ B) (¬∧)
A B ¬A, ¬B
(A=>B) (=>) ¬(A => B) (¬=>)

¬A, B A ¬B
¬¬A (¬¬) + Keep all Information

A End when all leaves are literals

ARGUMENTS (rules of inference)
• From (premises) A1,……., An we conclude B

A1 ,……., An

B

Definition:
Argument A1 ,……., An is VALID iff

B
|= ((A1 ∧ ……. ∧ An) => B)

ARGUMENTS

• Otherwise
Argument is NOT VALID

Valid Arguments ≡ Tautologically Valid
A1,……., An, C
are formulas of Propositional or Predicate

Language

Validity of Arguments
Remember: |= A iff =| ¬A
Tautology (always true), Contradiction (always false)
This means that if we want to decide |= A we decide =|¬A

and use Resolution for that
STEPS
Step 1: Negate A; i.e. take ¬A and find the set of clauses

corresponding to ¬A i.e. find CL{¬A}

Step 2: Use Completeness of Resolution
|= A iff CL {¬A} ⊢R {} i.e.

1. Look for a deduction of {}
2. if YES – we have |= A
3. If there is no deduction of {} we have: |= A

Exercise

• Prove By Propositional Resolution
• |= (¬(a=>b) => (a ∧¬ b))
Remember: |= A iff =| ¬A + use Resolution

Steps
Step 1: Find set of clauses corresponding to ¬A

i.e. CL{¬A}

Step 2: Find deduction of {} from . CL{¬A}

i.e. show that CL{¬A} ⊢R {}
DO IT!

Exercise Solution
• Step 1: Negate A and find the set of clauses for ¬A

i.e. CL{¬A}

• ¬(¬(a=>b) => (a∧¬b))
¬(a=>b) ¬(a∧¬b)

a ¬b ¬a, ¬¬b
{a} {¬b} {¬a, b}

CL {¬A} ={{a}, {¬b}, {¬a, b}}
{b} Step 2: Check if CL{¬A} ⊢R {} – YES!

{}
Remark: |=A iff there is no deduction of {} from CL{¬A}

Back To Arguments
• Use resolution to show that from A1,……., An we

can deduce B
“We can” deduce B from A1,……., An means validity
of argument A1,……., A

B
iff by definition

|= (A1 ∧ ……. ∧ An => B)

We have to use Resolution to prove that this is a
Tautology

Arguments
|= (A1 ∧ ……. ∧ An => B) iff

=| ¬ (A1 ∧ ……. ∧ An => B) iff
=| (A1 ∧ ……. ∧ An ∧¬B)

• Step 1: we transform (A1 ∧..∧ An ∧¬B) to clauses
• Take A1,……., An and find CLA1 , …., CLAn

and also find CL¬B

and form
CLA1 U …. CLAn U CL¬B = CL

Step 2: examine whether CL ⊢R {}

Remember

• Argument A1,……., An is valid iff
B

CLA1 U …. U CLAn U CL¬B ⊢R {}

Argument is not valid
iff never CLA1 U …. U CLAn U CL¬B ⊢R {}

We have some Resolution Strategies that allow
us to cut down number of cases to consider

Part 3: Classification Learning Process

• Classification process operate in three
stages:

Stage 1: build the basic patterns structure
-training

Stage 2: optimize parameter settings;
can use (N:N) re-substitution
- parameter tuning

Stage 3: use test data to compute
predictive accuracy/error rate

Classifier, Model Terminology

• Books use the words “classifier” and “model”
interchangeably

• Sometimes “classifier” means Stage 1 basic
classifier model (rules, patterns) ready for testing

• Sometimes “classifiers” means classifiers models
(rules, patterns) obtained by training - testing
methods (like k-fold cross validation, repeated
holdout, etc..). i.e. are the results of Stages 1- 3

Classifier, Model Terminilogy

• In some cases the term “learned models”
• or “base classifiers” are used for results of
• Stages 1-3

• It happens when the method is presented
how to combine them in a way that would
the best to return a class prediction for
unknown records, i.e. to build the final

• CLASSIFIER

TESTING

Define a holdout procedure

• Holdout procedure
is a method of splitting original data
into training and test data sets

TESTING

Describe shortly the two main methods
of predictive accuracy evaluations

(1) k-fold cross-validation (N- N/k ; N/k)

(2) Leave-one-out (N- 1 ; 1)

TESTING
(1) k-fold cross-validation (N- N/k ; N/k)
First step:
split data into k disjoint subsets

D1, … Dk,
of equal size, called folds
Second step:
use each subset in turn for testing, the remainder
for training

Training and testing is performed k times

TESTING

• (2) Leave-one-out (N- 1 ; 1)
Leave-one-out is a particular form of
cross-validation

• We set number of folds to number of training
instances, i.e. we put k= N

for N instances

• We repeat the training – testing cycle
N times

Correctly and Not Correctly Classified

• A test data record is correctly classified if and only if the
following conditions hold:

(1) we can classify the record, i.e there is a pattern or a rule
such that its LEFT side matches the record,

(2) classification determined by the pattern or the rule is
correct, i.e. the RIGHT side of the rule matches the value
of the record’s class attribute

OTHERWISE
• the record is not correctly classified

• Words used:
• not correctly = incorrectly = misclassified
• Validation data = Test data or a subset of Test Data

Re-substitution Error Rate

• Re-substitution error rate is obtained from training
data

• Training Data Error: uncertainty of the rules
• The error rate is not always 0%, but usually (and

hopefully) very low!
• Re-substitution error rate indicates only how good

(bad) are our results (rules, patterns, NN) on the
TRAINING data

• It expresses some knowledge about the algorithm
used

Re-substitution Error Rate

• Re-substitution error rate is usually used
as the performance measure:

The training error rate reflects
imprecision of the training results

The lower training error rate the
better

In the case of rules it is called rules
accuracy

Predictive Accuracy

Predictive accuracy reflects how good
are the training results with respect to the
test data

The higher predictive accuracy the better

(N:N) re-substitution does not compute
predictive accuracy

• Re-substitution error rate = training data error
rate

Validation Data
• Proper classification process uses three sets of data:

• training data, validation data and test data

• Validation data is not used for parameter tuning

• Training data is NOT validation data

• Validation data is the test data, or a subset

• of the test data

• The Test data can not be used for the parameter tuning!

Classifier, Model Terminology

• When a book talks about comparison of classifiers,
“classifier” means comparison of classifiers models
(rules, patterns) obtained by train- test methods i.e.
means comparison results of Stages 1- 3

• These comparison methods or other methods are
called “model selection”

• Their goal is to choose the best one to be
• THE CLASSIFIER-
• the final product that would the best classify

unknown records

