The Apriori Algorithm: Basics

The Apriori Algorithm
It is an influential algorithm for mining frequent itemsets and using them for creating association rules.

Key Concepts:
- Frequent Itemsets
- Apriori Property
The Apriori Algorithm: Basics

Key Concepts:

Frequent Itemset

is the set of itemset which has minimum support

which also has the following

Apriori Property:

“all subsets of frequent itemset must be frequent”

• Join Operation

• To find C_k, a set of candidate k-itemsets is generated by joining L_{k-1} with itself.
The Apriori Algorithm in a Nutshell

- Apriori Algorithm **finds** the frequent itemsets i.e. sets of items that have **minimum support** and follows the Apriori Principle:

 all subsets of a frequent itemset must be frequent itemsets

 i.e. \(\{A, B\} \) is a frequent itemset only if both \(\{A\} \) and \(\{B\} \) are frequent itemsets
The Apriori Algorithm in a Nutshell

• Apriori Algorithm

The algorithm Iteratively finds frequent itemsets with cardinality from 1 to k (k-itemset)

• As the next step in the Apriori Process we use the frequent itemsets to generate association rules
The Apriori Algorithm: Pseudo code

- **Join Step:** C_k is generated by joining L_{k-1} with itself
- **Prune Step:** Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset

Pseudo-code:

- C_k: Candidate itemset of size k
- L_k: frequent itemset of size k

$L_1 = \{\text{frequent items}\};$

for $(k = 1; L_k \neq \emptyset; k++)$ do begin
 $C_{k+1} =$ candidates generated from L_k;
 for each transaction t in database do
 increment the count of all candidates in C_{k+1} that are contained in t
 end
 $L_{k+1} =$ candidates in C_{k+1} with min_support
end
return $\bigcup_k L_k$;
The Apriori Algorithm: Example

Consider a database, \(D \), consisting of 9 transactions.

Suppose min. support count required is 2 (i.e. \(\text{min_sup} = \frac{2}{9} = 22\% \))

Let minimum confidence required is 70%.

We have to first find out the frequent itemset using Apriori algorithm.

Then, Association rules will be generated using min. support & min. confidence.

<table>
<thead>
<tr>
<th>TID</th>
<th>List of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>T100</td>
<td>I1, I2, I5</td>
</tr>
<tr>
<td>T100</td>
<td>I2, I4</td>
</tr>
<tr>
<td>T100</td>
<td>I2, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I2, I4</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I2, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I2, I3, I5</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I2, I3</td>
</tr>
</tbody>
</table>
Step 1: Generating 1-itemset Frequent Pattern

Scan D for count of each candidate

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup.Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{I1}</td>
<td>6</td>
</tr>
<tr>
<td>{I2}</td>
<td>7</td>
</tr>
<tr>
<td>{I3}</td>
<td>6</td>
</tr>
<tr>
<td>{I4}</td>
<td>2</td>
</tr>
<tr>
<td>{I5}</td>
<td>2</td>
</tr>
</tbody>
</table>

C1

Compare candidate support count with minimum support count

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup.Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{I1}</td>
<td>6</td>
</tr>
<tr>
<td>{I2}</td>
<td>7</td>
</tr>
<tr>
<td>{I3}</td>
<td>6</td>
</tr>
<tr>
<td>{I4}</td>
<td>2</td>
</tr>
<tr>
<td>{I5}</td>
<td>2</td>
</tr>
</tbody>
</table>

L1

- The set of frequent 1-itemsets, L1, consists of the candidate 1-itemsets satisfying minimum support.
- In the first iteration of the algorithm, each item is a member of the set of candidates.
Step 2: Generating 2-itemset Frequent Pattern

- To **discover** the set of frequent 2-itemsets, L_2, the algorithm uses L_1 Join L_1 to generate a candidate set of 2-itemsets, C_2

- **Next**, the transactions in D are scanned and the support count for each candidate itemset in C_2 is accumulated (as shown in the middle table)
Step 2: Generating 2-itemset Frequent Pattern

2-itemsets, \(L_2 \), is then determined, consisting of those candidate 2-itemsets in \(C_2 \) having minimum support.

Note: We haven’t used Apriori Property because all 1-itemsets were frequent.
Step 2: Generating 2-itemset Frequent Pattern

Generate C_2 candidates from L_1

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup. Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{I1, I2}</td>
<td>4</td>
</tr>
<tr>
<td>{I1, I3}</td>
<td>4</td>
</tr>
<tr>
<td>{I1, I4}</td>
<td>1</td>
</tr>
<tr>
<td>{I1, I5}</td>
<td>2</td>
</tr>
<tr>
<td>{I2, I3}</td>
<td>4</td>
</tr>
<tr>
<td>{I2, I4}</td>
<td>2</td>
</tr>
<tr>
<td>{I2, I5}</td>
<td>2</td>
</tr>
<tr>
<td>{I3, I4}</td>
<td>0</td>
</tr>
<tr>
<td>{I3, I5}</td>
<td>1</td>
</tr>
<tr>
<td>{I4, I5}</td>
<td>0</td>
</tr>
</tbody>
</table>

Scan D for count of each candidate

Compare candidate support count with minimum support count

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup. Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{I1, I2}</td>
<td>4</td>
</tr>
<tr>
<td>{I1, I3}</td>
<td>4</td>
</tr>
<tr>
<td>{I1, I5}</td>
<td>2</td>
</tr>
<tr>
<td>{I2, I3}</td>
<td>4</td>
</tr>
<tr>
<td>{I2, I4}</td>
<td>2</td>
</tr>
<tr>
<td>{I2, I5}</td>
<td>2</td>
</tr>
</tbody>
</table>
Step 3: Generating 3-itemset Frequent Pattern

- In order to find C_3, we first compute $L_2 \Join L_2$
- $C_3 = L_2 \Join L_2 = \{\{I_1, I_2, I_3\}, \{I_1, I_2, I_5\}, \{I_1, I_3, I_5\}, \{I_2, I_3, I_4\}, \{I_2, I_3, I_5\}, \{I_2, I_4, I_5\}\}$.
- Now, Join step is **complete** and **Prune step** will be used to **reduce** the size of C_3.
- **Prune step** uses **Apriori Property** helps to avoid heavy computation due to large C_k.

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup. Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>${I_1, I_2, I_3}$</td>
<td>2</td>
</tr>
<tr>
<td>${I_1, I_2, I_5}$</td>
<td>2</td>
</tr>
</tbody>
</table>

Composition of C_3:

- $L_2 \Join L_2$ and prune to generate C_3 candidates

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup. Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>${I_1, I_2, I_3}$</td>
<td>2</td>
</tr>
<tr>
<td>${I_1, I_2, I_5}$</td>
<td>2</td>
</tr>
</tbody>
</table>

L_3
Step 3: Generating 3-itemset Frequent Pattern

- Apriori property says that all subsets of a frequent itemset must also be frequent

- \(C_3 = L_2 \ Join \ L_2 = \{\{I_1, I_2, I_3\}, \{I_1, I_2, I_5\}, \{I_1, I_3, I_5\}, \{I_2, I_3, I_4\}, \{I_2, I_3, I_5\}, \{I_2, I_4, I_5\}\} \)

- We determine now which of candidates in \(C_3 \) can and which can not possibly be frequent

- Take \(\{I_1, I_2, I_3\} \)

- The 2-item subsets of it are \(\{I_1, I_2\}, \{I_1, I_3\}, \{I_2, I_3\}\)

 All of them are members of \(L_2 \)

 We keep \(\{I_1, I_2, I_3\} \) in \(C_3 \)
Step 3: Generating 3-itemset Frequent Pattern

- Lets take \(\{I_2, I_3, I_5\} \)
- The 2-item subsets are \(\{I_2, I_3\}, \{I_2, I_5\}, \{I_3, I_5\} \)
- But \(\{I_3, I_5\} \) is not a member of \(L_2 \) and hence it is not frequent violating Apriori Property
- Thus we remove \(\{I_2, I_3, I_5\} \) from \(C_3 \)

All 2-item subsets of \(\{I_1, I_2, I_5\} \) members of \(L_2 \)
Therefore \(C_3 = \{\{I_1, I_2, I_3\}, \{I_1, I_2, I_5\}\} \)

- Now, the transactions in \(D \) are scanned in order to determine \(L_3 \), consisting of those candidates 3-itemsets in \(C_3 \) having minimum support and we get that

\[L_3 = \{\{I_1, I_2, I_3\}, \{I_1, I_2, I_5\}\} \]
Step 4: Generating 4-itemset Frequent Pattern

- The algorithm uses L_3 Join L_3 to generate a candidate set of 4-itemsets, C_4
- $C_4 = L_3$ Join $L_3 = \{\{I_1, I_2, I_3, I_5\}\}$
- This itemset $\{\{I_1, I_2, I_3, I_5\}\}$ is pruned since its subset $\{\{I_2, I_3, I_5\}\}$ is not frequent.
- Thus, $C_4 = \emptyset$ and algorithm terminates

What’s Next?

Obtained frequent itemsets are to be used to generate strong association rules
(where strong association rules are rules that satisfy both minimum support and minimum confidence)
Step 5: Generating Association Rules from Frequent Itemsets

• Procedure:
 • For each frequent itemset I, generate the set of all nonempty subsets of I
 • For every nonempty subset S of I,
 • output the rule $S \rightarrow I - S$
 • if $\text{support_count}(I) / \text{support_count}(S) \geq \text{min_conf}$
 • where min_conf is minimum confidence threshold.

• Example
 We obtained the set of all frequent itemsets
 \[L = \{\{I_1\}, \{I_2\}, \{I_3\}, \{I_4\}, \{I_5\}, \{I_1,I_2\}, \{I_1,I_3\}, \{I_1,I_5\}, \{I_2,I_3\}, \{I_2,I_4\}, \{I_2,I_5\}, \{I_1,I_2,I_3\}, \{I_1,I_2,I_5\}\} \]
 • Lets take for example $I = \{I_1,I_2,I_5\}$
Step 5: Generating Association Rules from Frequent Itemsets

- Lets take \(I = \{I_1, I_2, I_5\} \)
 - Its all nonempty subsets are \(\{I_1, I_2\}, \{I_1, I_5\}, \{I_2, I_5\}, \{I_1\}, \{I_2\}, \{I_5\} \)
 Let minimum confidence threshold be, say 70%
- The resulting association rules are shown below, each listed with its confidence.
 - R1: \(I_1 \land I_2 \Rightarrow I_5 \)
 - Confidence = \(\frac{sc\{I_1, I_2, I_5\}}{sc\{I_1, I_2\}} = \frac{2}{4} = 50\% \)
 - R1 is Rejected.
 - R2: \(I_1 \land I_5 \Rightarrow I_2 \)
 - Confidence = \(\frac{sc\{I_1, I_2, I_5\}}{sc\{I_1, I_5\}} = \frac{2}{2} = 100\% \)
 - R2 is Selected.
 - R3: \(I_2 \land I_5 \Rightarrow I_1 \)
 - Confidence = \(\frac{sc\{I_1, I_2, I_5\}}{sc\{I_2, I_5\}} = \frac{2}{2} = 100\% \)
 - R3 is Selected.
Step 5: Generating Association Rules from Frequent Itemsets

- **R4: I1 \(\rightarrow\) I2 \(^\land\) I5**
 - Confidence = \(\frac{\text{sc}\{I1,I2,I5\}}{\text{sc}\{I1\}} = \frac{2}{6} = 33\%\)
 - R4 is rejected.

- **R5: I2 \(\rightarrow\) I1 \(^\land\) I5**
 - Confidence = \(\frac{\text{sc}\{I1,I2,I5\}}{\text{I2}} = \frac{2}{7} = 29\%\)
 - R5 is rejected.

- **R6: I5 \(\rightarrow\) I1 \(^\land\) I2**
 - Confidence = \(\frac{\text{sc}\{I1,I2,I5\}}{\{I5\}} = \frac{2}{2} = 100\%\)
 - R6 is Selected

- We have found three **strong** association rules