Propositional Resolution
Introduction

(Nilsson Book Handout)

Professor Anita Wasilewska
CSE 352 Artificial Intelligence
Propositional Resolution
Part 1
SYNTAX “dictionary”

Literal – any propositional VARIABLE \(a \) or negation of a variable \(\neg a \), for \(a \in \text{VAR} \)

Example: variables: \(a, b, c \) negation of variables: \(\neg a, \neg b, \neg d \) ...

Positive Literal: any variable \(a \in \text{VAR} \)

Clause – any finite set of literals

Example: \(C_1, C_2, C_3 \) are clauses where

\[
C_1 = \{ a, b \} , \quad C_2 = \{ a, \neg c \} , \quad C_3 = \{ a, \neg a, \ldots, a_k \}
\]
Syntax “Dictionary”

Empty Clause: {} is an empty set i.e. a clause without elements

Finite set of clauses

\[\text{CL} = \{ C_1, \ldots, C_n \} \]

Example

\[\text{CL} = \{\{a\}, \{\}, \{b, \neg a\}, \{c, \neg d\}\} \]
Semantics – Interpretation of Clauses

- Think semantically of a clause
- \(C = \{ a_1, \ldots, a_n \} \) as disjunction, i.e. \(C \) is logically equivalent to
 \[a_1 \lor a_2 \lor \ldots \lor a_n \quad \text{where} \quad a_i \in \text{Literal} \]
- Formally – given a truth assignment \(v : \text{VAR} \rightarrow \{0, 1\} \) we extended it to set of all CLAUSES \(\text{CL} \) as follows:
 \[
 v^* : \text{CL} \rightarrow \{0, 1\}
 \]
 \[
 v^*(C) = v^*(a_1) \lor \ldots \lor v^*(a_n)
 \]
 for any clause \(C \) in \(\text{CL} \), where
 \[0 – \text{False}, \quad 1 – \text{True} \]
 Shorthand : \(v^* = v \)
Example: let $v : \text{VAR} \rightarrow \{0, 1\}$ be such that

- $v(a) = 1$, $v(b) = 1$, $v(c) = 0$ and let

 $C = \{ a, \neg b, c, \neg a \}$

We evaluate:

$v(C) = v(a) \lor \neg v(b) \lor v(c) \lor \neg v(a) = 1 \lor 0 \lor 0 \lor 1 = 1$

\text{OBSERVE} that $v(C) = 1$ for all v, i.e. the clause

$C = \{ a, \neg b, c, \neg a \}$ is a \textbf{Tautology}
Satisfiability, Model, Tautology

Definitions

1. For any clause \(C \), and any truth assignment \(v \) we write \(v \models C \) and say that \(v \) satisfies \(C \) iff \(v(C) = 1 \)

2. Any \(v \) such that \(v \models C \) is called \(\text{a model for } C \)

3. A clause \(C \) is \textit{satisfiable} iff it has a \textit{model}, i.e.

\(C \) is \textit{satisfiable} iff there is a \(v \) such that \(v \models C \)

4. A clause \(C \) is \textit{a tautology} iff \(v \models C \) for all \(v \), i.e. all truth assignments \(v \) are \textit{models for } \(C \)
Notations

• a, a, a is a finite sequence of 3 elements

• $\{a, a, a\} = \{a\}$ is a finite set

• $a, b, c \neq b, a, c$ are different sequences

• $\{a, b, c\} = \{b, a, c\}$ are the same sets

• $\{a, a, b, c\}$ is a multi-sequence (if needed)
Sets of Clauses CL

DEFINITIONS

1. A clause C is unsatisfiable iff it has no MODEL i.e. $v(C) = 0$ for all truth assignments v

 Remark: the empty clause $\{\}$ is the only unsatisfiable clause

Let $CL = \{C_1, \ldots, C_n\}$ be a finite set of clauses.

2. We extended $v : VAR \rightarrow \{0, 1\}$ to any set of clauses CL

 $$v(\text{CL}) = v(C_1) \land \ldots \land v(C_n)$$

A finite set of clauses CL is semantically equivalent to a conjunction of all clauses in the set CL
Unsatisfiability

Definitions

1. A set of clauses CL is **satisfiable** iff it **has a model**, i.e. iff $\exists v \ v(\ CL) = 1$

2. A set of clauses CL is **unsatisfiable** iff it **does not have a model**, i.e. iff $\forall v \ v(\ CL) = 0$.

Remark:

If $\{\} \in CL$ then CL is unsatisfiable
Unsatisfiability

Consider a set of clauses

\[\text{CL} = \{\{a\}, \{a,b\}, \{\neg b\}\} \]

\(\text{CL} \) is satisfiable because any \(v \), such that \(v(a) = 1, v(b) = 0 \) is a model for \(\text{CL} \)

Check: \(v(\text{CL}) = 1 \land (1 \lor 0) \land 1 = 1 \)

FACT: When \(\{a\} \) and \(\{\neg a\} \) are in \(\text{CL} \), then the set \(\text{CL} \) is unsatisfiable

Remember: \((a \land \neg a) \) is a contradiction
Syntax and Semantics

• **Example:**

 • $C_1 = \{ a, b, \neg c \}$, $C_2 = \{ c, a \}$ - syntax

 • $C_1 = a \cup b \cup \neg c$ - semantics

 • $C_2 = c \cup a$ - semantics

 • $CL = \{ C_1, C_2 \} = \{ \{ a, b, \neg c \}, \{ c, a \} \}$ - syntax

 $CL = (a \cup b \cup \neg c) \land (c \cup a)$ - semantics
Syntax and Semantics

Definitions:

CL is **satisfiable** iff there is a v, such that \(v(\text{CL}) = 1 \)

CL is **unsatisfiable** iff for all v, \(v(\text{CL}) = 0 \)

- \(\text{CL} = \{ C_1, C_2, \ldots, C_n \} \) - syntax
- \(\text{CL} = C_1 \land \ldots \land C_n \) - semantics
Semantical Decidability

• A statement:
 “A finite set \(\text{CL}\) of clauses is/ is not satisfiable” is a decidable statement.
• \(\text{CL}\) has \(n\) propositional variables, hence we have \(2^n\) possible truth assignments \(v\) to examine and evaluate whether \(v(\text{CL}) = 1\) or \(v(\text{CL}) = 0\)
• This is called Semantical Decidability
• **Problem:** Exponential complexity
Syntactical Decidability Method: Resolution Deduction

• **Goal**: We want to show that a finite set CL of clauses is **unsatisfiable**

• **Method**: Resolution deduction:
 - **Start** with CL; apply a transformation rule called **Resolution** as long as it is possible.
 - **If** you **get** \emptyset, then answer is **Yes**, i.e., CL is unsatisfiable
 - **If** you **never get** \emptyset, then answer is **NO**, i.e., CL is satisfiable
Resolution Completeness Theorem 1

Completeness of the Resolution:

CL is unsatisfiable iff we obtain the empty clause {} by a multiple use of the Resolution Rule

• Symbolically: CL ⊢ {}
• It means we deduce the empty clause {} from CL by use of the resolution rule;
• We prove {} from CL by resolution
Resolution Completeness Theorem 1

|= CL denotes CL is a tautology

=|= CL denotes CL is unsatisfiable (contradiction)

• We write symbolically:

Resolution Completeness Theorem 1

|=| CL iff CL ⊢ {}
Refutation

• **Refutation**: proving the contradiction

In classical logic we have that:

A formula A is a tautology iff $\neg A$ is a contradiction

Symbolically: $|= A$ iff $|= \neg A$

Observe:

$|= (A_1 \land \ldots \land A_n \Rightarrow B)$ iff $|= (A_1 \land \ldots \land A_n \land \neg B)$

Because $\neg (A \Rightarrow B) \equiv (A \land \neg B)$
Refutation

By **Resolution Completeness Theorem** this is almost equivalent to

\[\vdash (A_1 \land \ldots \land A_n \Rightarrow B) \text{ iff } (A_1 \land \ldots \land A_n \land \neg B) \vdash \emptyset \]

Almost- means not YET Resolution works for **clauses** not formulas!

The **IDEA** is the following:

to prove \(B \) **from** \(A_1, \ldots, A_n \) **we keep** \(A_1, \ldots, A_n \), **ADD** \(\neg B \) **to it** and use **the** Resolution Rule

If we get \(\emptyset \), **we have proved** \((A_1 \land \ldots \land A_n \Rightarrow B) \)

It is called a proof by REFUTATION; to prove \(C \) we start with \(\neg C \) and if we get a contradiction \(\emptyset \), **we have proved** \(C \)
Formulas – Clauses

Resolution works only for clauses

To use Resolution Deduction we need to transform our formulas into clauses i.e. we need to prove the following Theorem

For any formula $A \in F$, there is a set of clauses CL_A such that A is logically equivalent to the set of clauses CL_A

CL_A is called a clausal form of the formula A

We have good set of rules for automatic transformation of A into its clausal form and we will study it as next step.
Completeness

- **Resolution Completeness 2**
 For any propositional formula A
 \[\models A \iff \text{CL}_{\neg A} \vdash \{\}\]
 where $\text{CL}_{\neg A}$ is the clausal form of $\neg A$

- **Resolution Proof of A definition:**
 \[\vdash_R A \iff \text{CL}_{\neg A} \vdash \{\}\]

Resolution Completeness 2:
\[\models A \iff \vdash_R A\]
Resolution Rule R

- $C_1(a)$ means: clause C_1 contains a positive literal a
- $C_2(\neg a)$ means: clause C_2 contains a negative literal $\neg a$

Resolution Rule R (two Premises)

$C_1(a) : C_2(\neg a)$ Resolve on a

$(C_1-\{a\} \cup C_2-\{\neg a\}) \leftarrow$ Resolvent

Clauses $C_1(a)$ and $C_2(\neg a)$ are called a complementary pair
Resolution Rule

- **Resolution Rule** takes 2 clauses and returns one. We usually write it in a form of a graph:

- **Definition:** $C_1(a), C_1(\neg a)$ is called a complementary pair

- $C_1(a) \quad C_1(\neg a)$

 Resolve on a

 $(C_1-\{a\}) \cup (C_2-\{\neg a\}) \leftarrow \text{Resolvent on a}$
Resolution Rule R

• Clauses are SETS!
• \{C_1, C_2\} Complementary Pair

\begin{align*}
C_1 &= \{a, b, c, \neg d\} \\
C_2 &= \{\neg a, \neg b, d\}
\end{align*}

Resolve on a

\{b, c, \neg d, \neg b, d\} Resolvent on a
Example

\[C_1 = \{a, b, c, \neg d\} \quad C_2 = \{\neg a, \neg b, d\}\]

\[
\{ a, c, \neg d, \neg a, d \}
\]

- Resolution Rule: \(R \) (Two Premises)

\[
\underbrace{C_1(b) : C_2(\neg b)} \quad \text{Resolve on } b
\]

\[
(C_1 - \{b\} \cup C_2 - \{\neg b\}) \leftarrow \text{Resolvent}
\]
Exercise

- **CL** - set of clauses

Find all resolvents of **CL**

It means locate all clauses in **CL** that are Complementary Pairs and Resolve them

\[
C_1 = \{a, b, c, \neg d\} \quad C_2 = \{\neg a, \neg b, d\}
\]

\[
\text{CL} = \{C_1, C_2\} \quad \text{has 3 Complementary Pairs}
\]

\[
C_1(a), C_2(\neg a) \quad P1
\]

\[
C_1(b), C_2(\neg b) \quad P2
\]

\[
C_2(d), C_1(\neg d) \quad P3
\]
Example

- \(CL = \{C_1, C_2\} = \{C_2, C_1\} \)

\(C_1 = \{a, b, c, \neg d\} \quad C_2 = \{\neg a, \neg b, d\} \)

Remember:

Resolution Rule uses one literal at the time!

- \(C_1(a); C_2(\neg a) \) Resolve on \(a \) : we get \(\{b, c, \neg d, \neg b, d\} \)
- \(C_1(b); C_2(\neg b) \) Resolve on \(b \) : we get \(\{a, c, \neg d, \neg a, d\} \)
- \(C_1(d); C_2(\neg d) \) Resolve on \(d \) : we get \(\{a, b, c, \neg a, \neg b\} \)
Example

C₁(b) : C₂(¬b) Pair \{C₁, C₂\}

(C₁-{b}) U (C₂-{¬b})

{a, b, c, ¬d} \{¬a, ¬b, d\}

Resolve on b

{a, c, ¬d, ¬a, d} <- Resolvent on b
Example

$C_1(d) : C_2(\neg d)$ on $\{C_1,C_2\}$

$(C_1-\{d\}) \cup (C_2-\{\neg d\})$

$\{a, b, c, \neg d\} ; \{\neg a, \neg b, d\}$

Resolve on d

$\{a, b, c, \neg a, \neg b\}$
Example

\[C_1 = \{a, b, c, \neg d\} \; ; \; C_2 = \{\neg a, \neg b, c, d\} \]

Resolve on \(b\)

\[\{a, c, \neg d, \neg a, d\} \]

Two clauses (one complementary pair) can have more than one resolvent – you can also resolve the complementary pair \(C_1 \; C_2\) on \(a\)
Example

• We can also resolve \{C_1, C_2\} on a
\{a, b, c, \neg d\}, \{\neg a, \neg b, d\}

Resolve on a
\{b, c, \neg d, \neg b, d\}

These are all resolvent of pair \{C_1, C_2\}:
\{b, c, \neg d, \neg b, d\}, \{a, c, \neg d, \neg a, d\}
\{a, b, c, \neg a, \neg b\}
Resolution Deduction

- **CL** - set of clauses

Procedure: Deduce a clause \(C\) from \(CL\): \(CL \vdash_R \{C\}\)

Start with \(CL\), apply the **resolution rule** \(R\) to \(CL\)

Add resolvent to \(CL\) and

Repeat adding resolvents to already obtained set of resolvents until you get \(C\)

Example

\(CL = \{\{a, b\}, \{\neg a, c\}, \{\neg b, c\}\}\)

- **R on** \(a\) \(\{b, c\}\)
 - **R on** \(b\) \(\{c\}\)
 - **R on** \(b\) \(\{c\}\)
 - **Add** resolvent to \(CL\): \(CL \vdash_R \{c\}\)
Example

- \(\text{CL} = \{\{a, b\}, \{\neg a, c\}, \{\neg b, c\}\} \)

We have 2 possible deduction of \(\{c\} \) from \(\text{CL} \)

\(\text{CL} \vdash_R \{c\} \)
Example

• CL = {{ a, b}, {¬ a, c}, {¬ b, c}, {¬ c}}
 {b,c}
 {c}
 {}

CL ⊢ \{\}

CL is unsatisfiable by Completeness Theorem

= |CL iff CL ⊢ \{\}

Resolution deduction is not unique!

Next: Strategies for Resolution
Example

- $\text{CL} = \{\{a, b\}, \{-a, c\}, \{-b, c\}, \{-c\}\}$

Another deduction of $\{\}$ from CL
Exercise

Let \(CL = \{ \{ a, b \}, \{ \neg a, c \}, \{ \neg b, c \} \} \)

Find all possible deduction from \(CL \)

Remember:
1. If you get \(\{ \} \), it means \(CL \) is unsatisfiable.
2. If you never get \(\{ \} \), it means \(CL \) is satisfiable.

1 and 2 is true by Completeness Theorem:

\[
= | \quad CL \quad \text{iff} \quad CL \vdash \{ \}
\]

\(CL \) is unsatisfiable iff there is a deduction of \(\{ \} \) from \(CL \)

\(CL \) is satisfiable iff there is NO deduction of \(\{ \} \) from \(CL \)
Exercise

- **CL** = \{\{ a, b\}, \{¬ a, c\}, \{¬ b, c\}\}

Derivation 1: \{\{ a, b\}, \{¬ a, c\}, \{¬ b, c\}\}

 - R on a \{b, c\}
 - \{c\} R on b STOP

Derivation 2: \{\{ a, b\}, \{¬ a, c\}, \{¬ b, c\}\}

 - R on b \{a, c\}
 - \{c\} R on a STOP

No more (possible) Derivations, i.e. by Completeness Theorem we have that **CL** is satisfiable.
Exercise

• **CL** is **unsatisfiable** iff there is deduction of {} from it, i.e.

\[\text{CL} \vdash_R \{\} \]

CL is **satisfiable** iff never \(\text{CL} \vdash_R \{\} \) (must cover all possibilities of deduction)

\[\text{CL} = \{\{a, b\}, \{\neg b\}, \{a, c\}, \{\neg a, d\}\} \]

\[\{a\} \]

\[\{b, d\} \]

\[\{d\} \text{ STOP} \]

This is just **one** derivation.
You must consider **ALL possible** derivations and show that none ends with {} to prove that **CL** is **satisfiable**
Exercise

• Given: \(CL = \{C_1, C_2, C_3, C_4\} \)

\(CL =\{\{a, b, \neg b\}, \{\neg a, \neg b, d\}, \{a, b, \neg c\}, \{\neg a, c, b, e\}\} \)

1. Find all complementary pairs. Here they are:
\(\{C_1, C_2\} \ \{C_1, C_4\} , \)
\(\{C_3, C_2\} \ \{C_2, C_3\} , \)
\(\{C_3, C_4\} , \ \{C_2, C_4\} \)

2. Find all resolvents for your complementary pairs
For example: \(C_1 = \{a, b, \neg b\} , \ C_2 = \{\neg a, \neg b, d\} \) has 2 resolvents.
Resolve on \(a: \ \{\neg b, d, b\} \)
Resolve on \(b; \)
\(\{a, \neg a, d, \neg b\} \)
Exercise

• \(CL = \{C_1, C_2\} \), for \(C_1 = \{a, b, c, \neg d\} \), \(C_2 = \{\neg a, \neg b, d\} \)

\(CL \) has 3 resolvents:

1. \(\{\neg a, \neg b, a, b, c\} \) — resolve on \(d \)
2. \(\{\neg a, c, \neg d, d, a\} \) — resolve on \(b \)
3. \(\{b, c, \neg d, d\} \) — resolve on \(a \)

Let now \(CL = \{C_1, C_2, C_3\} \), for \(C_1 = \{a\} \), \(C_2 = \{b, \neg a\} \), \(C_3 = \{\neg b, \neg a\} \)

Exercise:

Find all Complementary Pairs + find all their resolvents
Propositional Resolution
Part 2
GOAL: Use Resolution to prove/ disapprove \(\models A \)

PROCEDURE

Step 1: Write \(\neg A \) and transform \(\neg A \) info set of clauses \(\text{CL}\{\neg A\} \) using Transformation rules

Step 2: Consider \(\text{CL}\{\neg A\} \) and look at if you can get a deduction of \(\emptyset \) from \(\text{CL}\{\neg A\} \)

ANSWER

1. \(\text{CL}\{\neg A\} \vdash R \emptyset \) — Yes, \(\models A \)

2. \(\text{CL}\{\neg A\} \vdash \emptyset \) (i.e. you never get \(\emptyset \)) — No, not \(\models A \)
Rules of transformation

- **Rules of transformation** of a formula A into a logically equivalent set of clauses CL_A

- **Rule (U):** $(A \cup B) + \text{Information}$

What "Information" mean?

Example: $a, b, (a \cup \neg(a \rightarrow b)), \neg c$

$\begin{align*}
a, b, a, \neg(a \rightarrow b), \neg c
\end{align*}$

a, b and $\neg c$ is Information

Rule (U): $I, (A \cup B), J$

I, A, B, J

$I, J \quad \text{--- Information around}$
Implication Rule (\Rightarrow)

- I, $(A\Rightarrow B)$, J
 - I, $\neg A$, B, J

Example: a, $(a \lor b)$, $(a \Rightarrow \neg a)$, $(a \land b)$, c

Next step? we need (\land) Rule!
Conjunction Rule \((\land)\)

\[I, (A \land B), J \]

\[(\land) \]

\[I, A, J \]
\[I, B, J \]

\[(A \land B) \]

\[(\land) \]

\[A \]
\[B \]

Example:

\[a, a, b, \neg a, \neg a, (a \land b), c \]

\[(\land) \]

\[a, a, b, \neg a, \neg a, a, c \]
\[a, a, b, \neg a, \neg a, b, c \]

STOP when get only literals – called leaves

Form clauses out of the leaves
Set of Clauses

Procedure: Leaves – to – Clauses

1. make **SETS** out of each leaf; each leaf becomes a clause **C**
2. make a set of clauses **CL** as a set of all clauses **C** obtained in 1.

 Leaf 1: \{a, a, b, \neg a, \neg a, a, c\} = \{a, b, \neg a, c\}

 Leaf 2: \{a, a, b, \neg a, \neg a, b, c\} = \{a, b, \neg a, c\}

• Observe that we end-up with only one set of clauses

• \[\text{CL } = \{ \text{Leaf 1, Leaf 2} \} = \{ \{a, b, \neg a, c\} \} \]
Negation of Implication Rule ($\neg = \Rightarrow$)

I, $\neg (A \Rightarrow B)$, J

Example:

$a, b, a, \neg (a \Rightarrow b), \neg c$

$a, b, a, a, \neg c$

$a, b, a, a, \neg b, \neg c$

Stop – when only literals:
Form clauses out of leaves $a, b, a, a, \neg c$ and $a, b, a, \neg b, \neg c$
Clauses

• Leaf1: $a, b, a, a, \neg c$ makes clause $\{a, b, \neg c\}$
• Leaf 2: $a, b, a, \neg b, \neg c$ makes clause $\{a, b, \neg b, c\}$

$\text{CL} = \{\{a, b, \neg c\}, \{a, b, \neg b, c\}\}$

• CL is set of clauses corresponding to $a, b, a, \neg (a \Rightarrow b), \neg c$
Negation of Disjunction Rule (¬ U)

I, ¬(A UB), J

¬(A UB)

I, ¬A, J

I, ¬B, J

¬A

¬B

Rule (¬ U) corresponds to DeMorgan Law:

¬(A UB) ≡ (¬A ∧ ¬B)
Negation of Conjunction Rule \((\neg \land)\)

\[
\begin{align*}
\text{I, } \neg(A \land B), & \quad \neg(A \land B) \\
\text{J, } (\neg \land) & \quad (\neg \land) \\
\text{I, } \neg A, \neg B, & \quad \neg A, \neg B \\
\text{J, } (\neg \land) & \quad (\neg \land)
\end{align*}
\]

Rule \((\neg \land)\) corresponds to DeMorgan Law

\[
\neg(A \land B) \equiv (\neg A \cup \neg B)
\]
Negation Rule (¬¬)

I, ¬¬A, J

(¬¬)

I, A, J

¬¬A

(¬¬)

A

Negation Rule (¬¬) Corresponds to

¬¬A ≡ A

Transformation Rules :

(∧), (U), (⇒), (¬∧), (¬U), (¬⇒)
Transformation Rules Shorthand Form

\[(A \cup B)\] (\(U\))
\[A, B\]

\[(A \land B)\] (\(\land\))
\[A \quad B\]

\[(A \Rightarrow B)\] (\(\Rightarrow\))
\[\neg A, B\]

\[\neg
\neg A\] (\(\neg\neg\))
\[A\]

End when all leaves are literals

\[\neg (A \cup B)\] (\(\neg U\))
\[\neg A \quad \neg B\]

\[\neg (A \land B)\] (\(\neg \land\))
\[\neg A, \neg B\]

\[\neg (A \Rightarrow B)\] (\(\neg \Rightarrow\))
\[A \quad \neg B\]

+ Keep all Information
Example

Let A be a Formula $(((a \Rightarrow \neg b) \lor c) \land (\neg a \lor \neg b))$

Find CL_A

$(((a \Rightarrow \neg b) \lor c) \land (\neg a \lor \neg b))$

$((a \Rightarrow \neg b) \lor c) \land (\neg a \lor \neg b)$

$(a \Rightarrow \neg b), c \land (\neg a \lor \neg b)$

$\neg a, \neg b$ STOP

$\neg a, \neg b, c$ STOP

$\text{CL}_A = \{\{\neg a, \neg b, c\} \land \{\neg a, b\}\}$

$A \equiv \text{CL}_A$
ARGUMENTS

• From (premises) A_1, \ldots, A_n we conclude B

 \[
 \overline{A_1, \ldots, A_n} \quad B
 \]

Definition:

Argument A_1, \ldots, A_n is VALID iff

\[
| = ((A_1 \land \ldots \land A_n) \Rightarrow B)
\]

• Otherwise Argument is NOT VALID
ARGUMENTS

Valid Arguments \equiv Tautologically Valid

A_1, \ldots, A_n, C

can be formulas of Propositional or Predicate Language
Validity of Arguments

Remember: \(|= A \iff =| \neg A \)

Tautology (always true), Contradiction (always false)

This means that if we want to decide \(|= A \) we decide \(=| \neg A \) and use Resolution to do that

STEPS

Step 1: Negate \(A \), i.e. take \(\neg A \) and find the set of clauses corresponding to \(\neg A \), i.e. find \(\text{CL}\{\neg A\} \)

Step 2: Use Completeness of Resolution

\(|= A \iff \text{CL}\{\neg A\} \vdash_R \{\} \) i.e.

1. Look for a resolution deduction of \(\{\} \) from \(\text{CL}\{\neg A\} \)
2. if YES – we have \(|= A \)
3. If there is no deduction of \(\{\} \) we have: NOT \(|= A \)
Basic Theorems

T1. \(| \text{CL} | \) iff \(\text{CL} \vdash_{\text{R}} \{ \} \)

CL is inconsistent iff there is a resolution deduction of \(\{ \} \) from **CL**

T2. For any formula \(A \), there is a set of clauses \(\text{CL}_A \) such that \(A \equiv \text{CL}_A \)

T3. \(|= A \) iff \(| \neg A \)

By T2 we get that

\(|= A \) iff \(| \neg A \)

And by T1 and T3 we get

T4. \(|= A \) iff \(\text{CL}_{\neg A} \vdash_{\text{R}} \{ \} \)
Exercise

• Prove By Propositional Resolution

\[\models (\neg (a \implies b) \implies (a \land \neg b)) \]

Remember: \[\models A \iff \models \neg A \] + use Resolution

Steps

Step 1: Find set of clauses corresponding to \neg A i.e.
find \[CL_{\neg A} \]

Step 2: Find deduction of \{\} from \[CL_{\neg A} \]
i.e. show that \[CL_{\neg A} \vdash_R \{\} \]

DO IT!
Exercise Solution

• **Step 1:** Negate A and find the set of clauses for $\neg A$ i.e. find $\text{CL}_{\neg A}$

• $\neg (\neg (a \Rightarrow b) \Rightarrow (a \land \neg b))$

\[
\neg (a \Rightarrow b) \quad \neg (a \land \neg b)
\]

$\neg (a \Rightarrow b)$

a \quad $\neg b$

$\neg (a \land \neg b)$

$\neg a$, $\neg \neg b$

$\neg a$, b

Clauses: $\{a\} \quad \{\neg b\} \quad \{\neg a, b\}$

$\text{CL}_{\neg A} = \{\{a\}, \{\neg b\}, \{\neg a, b\}\}$

Step 2: Check if $\text{CL}_{\neg A} \vdash \{\}$ – **YES!**

Remark: \(\not |= A\) iff there is **no** deduction of $\{\}$ from $\text{CL}_{\neg A}$
• Use **resolution** to show that from A_1, \ldots, A_n we can deduce B

We "can" deduce B from A_1, \ldots, A_n means **validity** of the argument $\frac{A_1, \ldots, A}{B}$

This means that we have to show that

$$| = (A_1 \land \ldots \land A_n \Rightarrow B)$$

We have to use **Resolution** to prove that $(A_1 \land \ldots \land A_n \Rightarrow B)$ is a **tautology**
Arguments

\[|= (A_1 \land \ldots \land A_n \Rightarrow B) \iff \]
\[= | \neg (A_1 \land \ldots \land A_n \Rightarrow B) \iff \]
\[= | (A_1 \land \ldots \land A_n \land \neg B) \]

- **Step 1:** we transform \((A_1 \land \ldots \land A_n \land \neg B)\) to clauses
- **Take** \(A_1, \ldots, A_n\) and find

 \[\text{CL}_{A_1}, \ldots, \text{CL}_{A_n} \]

 and also **find** \(\text{CL}_{\neg B}\) and then **form**

 \[\text{CL}_{A_1} \cup \ldots \cup \text{CL}_{A_n} \cup \text{CL}_{\neg B} = \text{CL} \]

Step 2: examine whether \(\vdash_R \{\}\)
Remember

Argument A_1, \ldots , A_n is valid B

iff $\text{CL}_{A_1} \cup \ldots \cup \text{CL}_{A_n} \cup \text{CL}_{\neg B} \vdash R \{\}$

\downarrow

Argument is not valid

iff never $\text{CL}_{A_1} \cup \ldots \cup \text{CL}_{A_n} \cup \text{CL}_{\neg B} \vdash R \{\}$

We have some Resolution Strategies that allow us to cut down number of cases to consider
Example

Check if you can deduce

\[B = (\neg(a \cup \neg b) \Rightarrow (\neg a \land b)) \]

from \(A1 = ((a \Rightarrow \neg b) \Rightarrow a) \) and \(A2 = (a \Rightarrow (b \Rightarrow a)) \)

Procedure:

1. Find \(CL\{A1\} \), \(CL\{A2\} \) and \(CL\{\neg B\} \)
2. Form \(CL = CL\{A1\} \cup CL\{A2\} \cup CL\{\neg B\} \)
3. Check if \(CL \not\vdash \{\} \) or if never \(CL \not\vdash \{\} \)

Yes, we can \hspace{5cm} No, we can’t
Example Solution

A1 = ((a => ¬b) => a)

We get: $CL_{A1} = \{\{a\}, \{b, a\}\}$

A2 = ((a => (b=>a))

We get: $CL_{A2} = \{¬a, ¬b, a\}$
Example Solution

\(\neg B = \neg(\neg(a \cup \neg b) => (\neg a \wedge b)) \)

\(\neg(a \cup \neg b) \) \\
\(\neg a \quad \neg \neg b \)

\(\neg (\neg a \wedge b) \)

\(\neg \neg a, \neg b \)

\(a, \neg b \)

\(\textbf{CL} = \{\{a\}, \{b, a\}, \{\neg a, \neg b, a\}, \{\neg a\}, \{b\}, \{a, \neg b\}\} \)

Remove Tautology Strategy gives us the set

\(\textbf{CL} = \{\{a\}, \{b, a\}, \{\neg a\}, \{b\}, \{a, \neg b\}\} \)
Example Solution

• \(\text{CL} = \{\{a\}, \{b, a\}, \{-a, \neg b, c\}, \{-a\}, \{b\}, \{a, \neg b\}\} \)

\[\begin{align*}
\{a\} & \xrightarrow{\text{R on } b} \{\} \\
\{\} &
\end{align*} \]

Yes Argument is Valid

Next : Strategies for Resolution
Propositional Resolution
Part 3
Resolution Strategies

- We present here some Deletion Strategies and discuss their Completeness.

Deletion Strategies are restriction techniques in which clauses with specified properties are eliminated from set of clauses CL before they are used.
Pure Literals

Definition

A literal is pure in CL iff it has no complementary literal in any other clause in CL.

Example: \(CL = \{\{a, b\}, \{\neg c, d\}, \{c, b\}, \{\neg d\}\} \)
a, b are pure and c, d, \neg c, \neg d are not pure.

c has complement literal \(\neg c\) in \(\{\neg c, d\}\) and
\(\neg c\) has complement literal \(c\) in \(\{c, b\}\)
d has a complement literal \(\neg d\) in the clause \(\{\neg d\}\) and
\(\neg d\) has a complement literal \(d\) in \(\{\neg c, d\}\)
S1: Pure Literals Deletion Strategy

S1 Strategy: Remove all clauses that contain Pure Literals

Clauses that contain pure literals are useless for retention process.

One pure literal in a clause is enough for the clause removal

This Strategy is complete, i.e.

\[CL \vdash \{ \} \quad \text{iff} \quad CL' \vdash \{ \} \]

where \(CL' \) is obtained from \(CL \) by pure literal clauses deletion
Example

- $\text{CL} = \{\{\neg a, \neg b, c\}\}, \{\neg p, d\}, \{\neg b, d\}, \{a\}, \{b\}, \{\neg c\}\}$

 $d, \neg p$ are pure,

$\text{CL}' = \{\{\neg a, \neg b, c\}\}, \{a\}, \{b\}, \{\neg c\}\}$
S2. Tautology Deletion Strategy

- **Tautology** – a clause containing a pair of complementary literals (a and \(\neg a \))
- **S2: Tautology Deletion:**
 - CL’ = Remove all Tautologies from CL
- Example:
 - CL = \{ \{ a, b, \neg a \}, \{ b, \neg b, c \}, \{ a \} \}
 - CL’ = \{ \{ a \} \}
- Tautology Deletion Strategy S2 is **COMPLETE**.
 - CL is satisfiable \(\equiv \) CL’ is satisfiable
 - CL unsatisfiable \(\equiv \) CL’ unsatisfiable
Exercise

• Example:

• $\text{CL} = \{\{a, \neg a, b\}, \{b, \neg b, c\}\}$ - remove tautologies- get CL' with no elements, i.e. $\text{CL'} = \emptyset$

CL is always satisfiable and so is CL' as \emptyset is always satisfiable!

Exercise

Prove correctness of Tautology Deletion Strategy
S3. Unit Resolution Strategy

- A unit resolvent – resolvent in which at least one of the parent clauses is a unit clause i.e. is a clause containing a single literal.

- A unit deduction – all derived clauses are unit resolvents.

- A unit Refutation – unit deduction of the empty clause {}.

- Example: \{\{a, b\}, \{\neg a, c\}, \{\neg b, c\}, \{\neg c\}\} \\
 \{\neg a\} \quad \{\neg b\} \\
 \{b\} \\
 {} \quad \text{Efficient but not Complete!}
Unit Resolution not complete

Example

- \(CL = \{\{a, b\}, \{\neg a, b\}, \{a, \neg b\}, \{\neg a, \neg b\}\} \)

- \{b\}

- \{a\} \quad \{-a\}

- {}\)

\(CL \) is unsatisfiable, but does not have unit deduction.

Horn Clause: a clause with at most one positive literal.

Theorem: Unit Resolution is complete on Horn Clauses.
Example of Unit Resolution Deduction

- $CL = \{\{-a, c\}, \{-c\}, \{a, b\}, \{-b, c\}, \{-c\}\}$

CL is not Horn but $CL \vdash \{\}$ by unit deduction.

Remark: if we get $\{\}$ by unit deduction we are OK but if we don’t get $\{\}$ by unit deduction it does not mean that CL is satisfiable, because unit strategy is not a Complete Strategy on non-Horn clauses.
S4. Input Resolution

- **Input Resolution** - At least one of the two parent clauses is in the initial database.
- **Input Deduction** - all derived clauses are input resolvents
- **Input Refutation** - Input deduction of \{\} is complete only on Horn Clauses

THM 1: Unit and Input Resolution are equivalent.

THM 2: Input Resolution is complete only on Horn Clauses
Input Resolution Deduction

Example: \[\text{CL} = \{\{a, b\}, \{¬a, c\}, \{¬b, c\}, \{¬c\}\} \]
5. Linear Resolution

- **Linear Resolution** also called Ancestry-Filtered resolution is a slight generalization of Input Resolution.

- **A Linear Resolution**: At least one of the parents is either in the initial DB or is in an Ancestor of the other parent.

- **A Linear Deduction**: Uses only linear resolvents: each derived clauses is a linear resolvent

- **A Linear Refutation**: Linear deduction of \{ \}.

- Linear Resolution is complete
Example

\[\text{CL} = \{\{a, b\}, \{\neg a, b\}, \{a, \neg b\}, \{\neg a, \neg b\}\} \]

Here:

\{a\} is a parent of \{\neg b\}

\{b\} is the ancestor of \{\neg b\} (other parent of \{\neg b\})
Linear Resolution

Linear Resolution is complete

There are also more modifications of the LR that are complete

Our Strategies work also for **Predicate Logic Resolution**
First papers

Kowalski 1974, 1976 “Logic for problem solving” “Predicate Logic as a programming language”.

Robinson 1965 “A Machinery Oriented logic based on the resolution principle” J Assoc. for Computing Machinery 12(1)