
Propositional Resolution
Introduction

(Nilsson Book Handout)

Professor Anita Wasilewska
CSE 352 Artificial Intelligence

Propositional Resolution
Part 1

SYNTAX “dictionary”

Literal – any propositional VARIABLE a or
negation of a variable ¬ a, for a ∈ VAR
Example: variables: a, b, c …. negation of
variables: ¬a, ¬b, -d …
Positive Literal: any variable a ∈ VAR
Clause – any finite set of literals
Example: C1, C2, C3 are clauses where
C1 = {a, b} , C2 = {a, ¬ c} , C3 = { a, ¬a, ……,ak }

Syntax “Dictionary”

Empty Clause: {} is an empty set i.e. a clause
without elements

Finite set of clauses
CL = { C1, …., Cn}

Example

CL = {{a}, { }, { b, ¬a} , {c, ¬ d}}

Semantics – Interpretation of Clauses
• Think semantically of a clause
• C = { a1, ……., an} as disjunction, i.e.

C is logically equivalent to
a1 U a2 U …… U an ai∈ Literal

• Formally – given a truth assignment v : VAR -> {0, 1}
we extended it to set of all CLAUSES CL as follows:

v* : CL -> {0, 1}
v*(C) = v*(a1) U ….. U v*(an)

for any clause C in CL, where
0 – False, 1 – True

Shorthand : v* = v

Satisfability, Model, Tautology

Example: let v : VAR -> {0, 1} be such that
• v(a) = 1, v(b) = 1 , v(c)= 0 and let

C = { a, ¬ b, c, ¬a}
We evaluate :

v(C) = v(a) U ¬v(b) U v(c) U ¬v(a) =
1 U 0 U 0 U 1 = 1
OBSERVE that v(C) =1 for all v, i.e. the clause

C = { a, ¬ b, c, ¬a} is a Tautology

Satisfability, Model, Tautology
Definitions
1. For any clause C, and any truth assignment v
we write v I= C and say that v satisfies C iff

v(C) =1
2. Any v such that v I= C is called a MODE L for

C
3. A clause C is satisfiable iff it has a MODEL,

i.e.
C is satisfiable iff there is a v such that v I= C

4. A clause C is a tautology iff v I= C for all v,
i.e all truth assignments v are models for C

Notations

• a, a, a is a finite sequence of 3 elements
• {a, a, a} = {a} is a finite set
• a, b, c ≠ b, a, c are different sequences
• {a, b, c} = {b, a, c} are the same sets
• {a, a, b, c} is a multi – set (if needed)

Sets of Clauses CL
DEFINITIONS
1. A clause C is unsatisfiable iff it has no MODEL

i.e. v(C) =0 for all truth assignments v

Remark: the empty clause {} is the only unsatisfiable clause

Let CL = { C1, ….,Cn) be a finite set of clauses.

2. We extended v : VAR -> {0, 1} to any set of clauses CL

v (CL) = v(C1) ∧ ……. ∧ V(Cn)

A finite set of clauses CL is semantically equivalent to a
conjunction of all clauses in the set CL

Unsatisfiability
Definitions
1. A set of clauses CL is satisfiable
iff it has a model, i.e. iff ∃v v(CL)= 1

2. A set of clauses CL is unsatisfiable
iff it does not have a model, i.e. iff

∀v v(CL) =0.

Remark:
If {} ∈ CL then CL is unsatisfiable

Unsatisfability

Consider a set of clauses
CL = {{a}, {a,b}, {¬ b}}

CL is satisfiable because any v, such that
v(a) =1, v(b) =0 is a model for CL

Check: v(CL) = 1 ∧ (1 U 0) ∧ 1 = 1

FACT: When {a} and {¬ a} are in CL,
then the set CL is unstisfiable

Remember: (a ∧ ¬ a) is a contradiction

Syntax and Semantics

• Example:
• C1 = { a, b, ¬c}, C2 ={c , a} - syntax
• C1 = a U b U ¬c - semantics
• C2 = c U a - semantics

• CL = {C1, C2} = {{a , b, ¬c} , {c , a}} – syntax

CL = (a U b U ¬c) ∧ (c U a) - semantics

Syntax and Semantics

Definitions:

CL is satisfiable iff there is v, such that v(CL) = 1

CL is unsatisfiable iff for all v, v(CL) = 0

• CL = { C1,C2,…… ,Cn} - synatx
• CL = C1 ∧ …… ∧ Cn - semantics

Semantical Decidability

• A statement:
• “ A finite set CL of clauses is/ is not satisfiable”

is a decidable statement.
• CL has n propositional variables, hence we have

2∧n possible truth assignments v to examine
and evaluate whether v(CL) = 1 or v(CL) = 0

• This is called Semantical Decidability
• Problem: Exponential complexity

Syntactical Decidability Method:
Resolution Deduction

• Goal : We want to show that a finite set CL of
clauses is unsatisfiable

• Method : Resolution deduction :
• Start with CL; apply a transformation rule called

Resolution as long as it is possible.
• If you get {}, then answer is Yes, i.e.

CL is unsatisfiable
• If you never get {} , then answer is NO, i.e CL is

satisfiable

Resolution Completeness Theorem 1

Completeness of the Resolution:
CL is unsatisfiable iff we obtain the empty

clause {} by a multiple use of the Resolution
Rule
• Symbolically: CL ⊢ {}
• It means we deduce the empty clause {}

from CL by use of the resolution rule;
• We prove {} from CL by resolution

Resolution Completeness Theorem 1

|= CL denotes CL is a tautology
=| CL denotes CL is unsatisfiable (contradiction)

• We write symbolically:

Resolution Completeness Theorem 1
=| CL iff CL ⊢ {}

Refutation

• Refutation: proving the contradiction

In classical logic we have that:

A formula A is a tautology iff ¬A is a contradiction

Symbolically: |= A iff =|¬A

Observe:

|= (A1 ∧ …… ∧ An => B) iff =| (A1 ∧ …… ∧ An ∧ ¬B)

Because ¬ (A => B) ≡ (A ∧ ¬B)

Refutation
By Resolution Completeness Theorem this is almost
equivalent to

|= (A1 ∧ …… ∧ An => B) iff (A1 ∧ …… ∧ An ∧ ¬B) ⊢ {}

Almost- means not YET Resolution works for clauses not
formulas!
The IDEA is the following:
to prove B from A1, ….,An we keep A1,….., An , ADD

¬B to it and use the Resolution Rule
If we get {}, we have proved (A1 ∧ …… ∧ An => B)

It is called a proof by REFUTATION; to prove C we start with
¬C and if we get a contradiction {}, we have proved C

Formulas – Clauses
Resolution works only for clauses

To use Resolution Deduction we need to transform our
formulas into clauses i.e. we need to prove the following

Theorem
For any formula A ∈ F, there is a set of clauses CLA

such that A is logically equivalent to the set of
clauses CLA

CLA is called a clausal form of the formula A

We have good set of rules for automatic transformation of
A into its clausal form and we will study it as next step

Completeness

• Resolution Completeness 2
For any propositional formula A

|= A iff CL¬A ⊢{}
where CL ¬A is the clausal form of ¬A

• Resolution Proof of A definition:
⊢R A iff CL¬A ⊢ {}

Resolution Completeness 2:
|= A iff ⊢R A

Resolution Rule R

• C1(a) means: clause C1 contains a positive literal a
• C2(¬a) means: clause C2 contains a negative literal ¬a

• Resolution Rule R (two Premises)
C1(a) : C2(¬ a) Resolve on a

(C1-{a} U C2-{¬a}) <- Resolvent

Clauses C1(a) and C2(¬a) are called a complementary pair

Resolution Rule
• Resolution Rule takes 2 clauses and returns one.

We usually write it in a form of a graph:
• Definition: C1(a), C1(¬a) is called a complementary

pair

• C1(a) C1(¬a)
Resolve on a

(C1-{a}) U (C2-{¬a}) <- Resolvent on a

Resolution Rule R

• Clauses are SETS!
• {C1, C2} Complementary Pair
C1 = {a ,b ,c , ¬d} C2= {¬ a ,¬b ,d}

Resolve
on a

{ b, c, ¬d, ¬b, d} Resolvent on a

Example
C1 = {a ,b ,c , ¬d} C2= {¬ a ,¬b ,d}

{ a ,c , ¬d, ¬ a d}

• Resolution Rule: R (Two Premises)

C1(b) : C2(¬ b) Resolve on b
(C1-{b} U C2-{¬b }) <- Resolvent

Exercise
• CL - set of clauses
Find all resolvents of CL

It means locate all clauses in CL that are
Complementary Pairs and Resolve them

C1 = {a ,b ,c , ¬d} C2= {¬ a ,¬b ,d}
CL = {C1, C2} has 3 Complementary Pairs

C1(a), C2(¬a) – P1
C1(b), C2(¬b) – P2
C2(d), C1(¬d) – P3

Example
• CL ={C1 , C2} ={C2 , C1}
C1={a, b, c, ¬ d} C2= {¬ a ,¬b ,d}

Remember:
Resolution Rule uses one literal at the time!

C1(a); C2(¬a) Resolve on a : we get {b , c, ¬d, ¬ b, d}
C1(b); C2(¬b) Resolve on b : we get { a, c, ¬d, ¬ a, d}
C1(d); C2(¬d) Resolve on d : we get {a, b, c, ¬ a, ¬ b}

Example

C1(b) : C2(¬b) Pair {C1 C2}
(C1-{b}) U (C2-{¬b})

{a, b, c, ¬ d} {¬ a ,¬b ,d}
Resolve on b

{a, c, ¬d, ¬a, d} <- Resolvent on b

Example

C1(d) : C2(¬d) on {C1 C2}
(C1-{d}) U (C2-{¬d})

{a, b, c, ¬ d} ;{¬ a ,¬b ,d}
Resolve on d

{a, b , c, ¬a, ¬ b}

Example

C1 ={a, b, c, ¬ d} ; C2 ={¬ a ,¬b ,c ,d}
Resolve on b

{a, c, ¬d, ¬a, d}

Two clauses (one complementary pair) can
have more than one resolvent – you can also
resolve the complementary pair C1 C2 on a

Example

• We can also resolve {C1 , C2} on a
{a, b, c, ¬ d} , {¬ a ,¬b ,d} {C1 , C2}

Resolve on a
{b , c, ¬d, ¬ b, d}

These are all resolvent of pair {C1 C2}:
{b , c, ¬d, ¬ b, d}, { a, c, ¬d, ¬ a, d}
{a, b, c, ¬ a, ¬ b}

Resolution Deduction
• CL - set of clauses
Procedure: Deduce a clause C from CL: CL ⊢R {C}
Start with CL , apply the resolution rule R to CL

Add resolvent to CL and
Repeat adding resolvents to already obtained set o fresolvents

until you get C

Example
CL = {{ a, b}, { ¬ a, c}, { ¬ b, c}}

R on a {b ,c}

R on b CL ⊢R {c }
{c }

Example

• CL = {{ a, b},{ ¬ a, c}, { ¬ b, c}}

Resolve on b
{a, c}

Resolve on a

{c}

We have 2 possible deduction of { c } from CL

CL ⊢R { c }

Example
• CL = {{ a, b},{ ¬ a, c},{ ¬ b, c}, {¬ c}}

{b,c}
{c}

{} CL ⊢R {}
CL is unsatisfiable by Completeness Theorem

=|CL iff CL ⊢R {}
Resolution deduction is not unique!
Next: Strategies for Resolution

Example
• CL= {{ a, b},{ ¬ a, c},{ ¬ b, c}, {¬ c}}

{¬a}
{b}

{c}
{}

Another deduction of {} from CL

Exercise
• Let CL = {{ a, b},{ ¬ a, c},{ ¬ b, c}}
Find all possible deduction from CL
Remember:
1. If you get {}, it means CL is unsatisfiable.
2. If you never get {}, it means CL is satisfiable.
1 and 2 is true by Completeness Theorem:

=| CL iff CL ⊢ {}
CL is unsatisfiable iff there is a deduction of {}

from CL
CL is satisfiable iff there is NO deduction of {}

from CL

Exercise
• CL = {{ a, b},{ ¬ a, c},{ ¬ b, c}}
Derivation 1: {{ a, b},{ ¬ a, c},{ ¬ b, c}}

R on a {b, c}
{c} R on b STOP

Derivation 2: {{ a, b},{ ¬ a, c},{ ¬ b, c}}
R on b {a, c}

{c} R on a STOP
No more (possible) Derivations, i.e. by

Completeness Theorem we have that
CL is satisfiable

Exercise
• CL is unsatisfiable iff there is deduction of {} from it, i.e.

CL ⊢R {}

CL is satisfifable iff never CL ⊢R {} (must cover all possibilities of
deduction)

CL = {{ a, b},{¬b},{a, c},{ ¬a, d}}
{a}

{b, d}
{d} STOP

This is just one derivation.
You must consider ALL possible derivations and show that
none ends with {} to prove that CL is satisfiable

Exercise
• Given: CL = {C1, C2, C3, C4}
CL ={{a ,b ,¬ b}, {¬ a ,¬ b, d},{a ,b , ¬c}, {¬ a ,c ,b ,e}}
1. Find all complementary pairs . Here they are:
{C1, C2} {C1, C4} ,
{C3, C2} {C2, C3} ,
{C3, C4} , {C2, C4}
2. Find all resolvents for your complementary pairs
For example: C1 = {a ,b ,¬ b} , C2 = {¬a , ¬b , d} has 2

resolvents.
Resolve on a: {¬b, d, b}
Resolve on b;

{a, ¬a, d ,¬b }

Exercise
• CL = {C1, C2}, for C1 ={a ,b ,c ,¬d}, C2 = {¬ a ,¬ b, d}

CL has 3 resolvents :-
1. {¬a ,¬b , a, b, c} – resolve on d
2. {¬a ,c ,¬d , d, a} – resolve on b
3. {b, c ,¬d ,d} – resolve on a

Let now CL = {C1, C2, C3}, for C1={a}, C2={b, ¬a},
C3={¬b, ¬a}
Exercise:

Find all Complementary Pairs + find all their
resolvents

Propositional Resolution
Part 2

GOAL: Use Resolution to prove/ disapprove |= A

PROCEDURE
Step 1: Write ¬A and transform ¬A info set of

clauses CL{¬A} using Transformation rules
Step 2: Consider CL{¬A} and look at if you can get a

deduction of {} from CL{¬A}

ANSWER
1. CL{¬A} ⊢R {} – Yes, |= A
2. CL{¬A} ⊢ {} (i.e. you never get {}) – No, not|= A

Rules of transformation
• Rules of transformation of a formula A into a

logically equivalent set of clauses CLA

• Rule (U): (AUB) + Information
What “Information” mean?
Example: a, b, (a U ¬(a=> b)), ¬c

a, b, a ,¬(a=> b), ¬c
a,b and ¬c is Information
Rule (U) : I , (AUB), J

I, A, B, J
I,J --- Information around

Implication Rule (=>)

• I, (A=>B), J (A=>B)

I, ¬A, B, J ¬A , B
Example: a, (a U b), (a => ¬a), (a ∧ b), c

(=>)
a, (a U b), ¬ a, ¬ a, (a ∧ b), c

(U)
a, a, b, ¬ a, ¬ a, (a ∧ b), c

next step?
we need (∧) Rule!

Conjunction Rule (∧)

I, (A ∧B), J (A∧B)
(∧) (∧)

I , A, J I, B, J A B
Example:

a, a, b, ¬a, ¬a, (a ∧ b), c
(∧)

a, a, b, ¬a, ¬a, a, c a, a, b, ¬a, ¬a, b, c

STOP when get only literals – called leaves
Form clauses out of the leaves

Set of Clauses

Procedure: Leaves – to – Clauses
1. make SETS out of each leaf;
each leaf becomes a clause C
2. make a set of clauses CL as a set of all clauses C
obtained in 1.

Leaf 1: {a, a, b, ¬a, ¬a, a, c} = {a, b, ¬a, c}
Leaf 2: {a, a, b, ¬a, ¬a, b, c} = {a, b, ¬a, c}
• Observe that we end-up with only one set of

clauses
• CL ={Leaf 1, Leaf 2} = { {a, b, ¬a, c} }

Negation of Implication Rule (¬ =>)
I, ¬ (A =>B), J ¬ (A => B)

(¬=>)
I , A, J I , ¬B, J A ¬B
Example:

a, b, a, ¬ (a => b), ¬ c

a, b, a, a, ¬c a, b, a, ¬b, ¬c
Stop – when only literals :
Form clauses out of leaves a, b, a, a, ¬c and
a, b, a, ¬b, ¬c

Clauses

• Leaf1: a, b, a, a, ¬c makes clause {a, b, ¬c}
• Leaf 2: a, b, a, ¬b, ¬c makes clause {a, b, ¬b, c}

• CL = {{a, b, ¬c}, {a, b, ¬b, c}}

• CL is set of clauses corresponding to
a, b, a, ¬ (a => b), ¬ c

Negation of Disjunction Rule (¬ U)

I, ¬(A UB), J ¬(A U B)
(¬U)

I , ¬A, J I , ¬B, J ¬A ¬B

• Rule (¬ U) coresponds to DeMorgan Law:
¬(AUB) ≡ (¬A ∧ ¬B)

Negation of Conjunction Rule (¬∧)

I, ¬(A ∧B), J ¬(A ∧ B)
(¬∧) (¬∧)

I , ¬A, ¬B, J ¬A, ¬B

Rule (¬∧) corresponds to DeMorgan Law
¬(A ∧ B) ≡ (¬A U ¬B)

Negation Rule (¬¬)

I, ¬¬ A, J ¬¬A
(¬¬) (¬¬)

I , A, J A

Negation Rule (¬¬) coresponds to
¬¬ A ≡ A

Transformation Rules :
(∧), (U), (=>), (¬∧), (¬U), (¬=>)

Transformation Rules Shorthand Form

(AUB) (U) ¬(A U B) (¬U)
A, B ¬A ¬B

(A ∧B) (∧) ¬(A ∧ B) (¬∧)
A B ¬A, ¬B
(A=>B) (=>) ¬(A => B) (¬=>)

¬A, B A ¬B
¬¬A (¬¬) + Keep all Information

A End when all leaves are literals

Example
• Let A be a Formula (((a=> ¬b)U c) ∧ (¬a U ¬b))
• Find CLA

• (((a=> ¬b)U c) ∧ (¬a U ¬b))
((a=> ¬b)U c) (¬a U ¬b)

(a=> ¬b), c ¬a , b STOP
¬ a, ¬b, c STOP

CLA = {{¬ a, ¬b, c} , { ¬a , b } }

A ≡ CL A

ARGUMENTS

• From (premises) A1,……., An we conclude B
A1 ,……., An

B
Definition:
Argument A1 ,……., An is VALID iff

B
|= ((A1 ∧ ……. ∧ An) => B)

• Otherwise Argument is NOT VALID

ARGUMENTS

Valid Arguments ≡ Tautologically Valid

A1,……., An, C
can be formulas of Propositional or
Predicate Language

Validity of Arguments
Remember: |= A iff =| ¬A
Tautology (always true), Contradiction (always false)
This means that if we want to decide |= A we decide =|¬A

and use Resolution to do that
STEPS
Step 1: Negate A, i.e. take ¬A and find the set of clauses

corresponding to ¬A, i.e. find CL{¬A}

Step 2: Use Completeness of Resolution
|= A iff CL {¬A} ⊢R {} i.e.

1. Look for a resolution deduction of {} from CL{¬A}

2. if YES – we have |= A
3. If there is no deduction of {} we have: NOT |= A

Basic Theorems
T1. =| CL iff CL ⊢R {}

CL is inconsistent iff there is a resolution
deduction of {} from CL

T2. For any formula A, there is a set of clauses CLA

such that A ≡ CL A

T3. |= A iff =| ¬A
By T2 we get that

|= A iff =| CL{¬A}

And by T1 and T3 we get
T4. |= A iff CL{¬A} ⊢R {}

Exercise

• Prove By Propositional Resolution
|= (¬(a=>b) => (a ∧¬ b))

Remember: |= A iff =| ¬A + use Resolution
Steps
Step 1: Find set of clauses corresponding to ¬A i.e.

find CL{¬A}

Step 2: Find deduction of {} from CL{¬A}

i.e. show that CL{¬A} ⊢R {}

DO IT!

Exercise Solution
• Step 1: Negate A and find the set of clauses for ¬A i.e. find CL{¬A}

• ¬(¬(a=>b) => (a∧¬b))

¬(a=>b) ¬(a∧¬b)
a ¬b ¬a, ¬¬b

¬a, b
Clauses: {a} {¬b} {¬a, b}

CL {¬A} ={{a}, {¬b}, {¬a, b}}
{b} Step 2: Check if CL{¬A} ⊢R {} – YES!

{}

Remark: NOT|=A iff there is no deduction of {} from CL{¬A}

Back To Arguments
• Use resolution to show that from A1,……., An

we can deduce B

We “can” deduce B from A1,……., An means validity of
the argument A1,……., A

B
This means that we have to show that

|= (A1 ∧ ……. ∧ An => B)

We have to use Resolution to prove that
(A1 ∧ ……. ∧ An => B) is a tautology

Arguments
|= (A1 ∧ ……. ∧ An => B) iff

=| ¬ (A1 ∧ ……. ∧ An => B) iff
=| (A1 ∧ ……. ∧ An ∧¬B)

• Step 1: we transform (A1 ∧..∧ An ∧¬B) to clauses
• Take A1,……., An and find

CLA1 , …., CLAn

and also find CL¬B and then form
CLA1 U …. CLAn U CL¬B = CL

Step 2: examine whether CL ⊢R {}

Remember

Argument A1,……., An is valid
B

iff CLA1 U …. U CLAn U CL¬B ⊢R {}

Argument is not valid
iff never CLA1 U …. U CLAn U CL¬B ⊢R {}

We have some Resolution Strategies that allow
us to cut down number of cases to consider

Example
Check if you can deduce
B = (¬(a U ¬ b)=> (¬ a ∧ b))

from A1 = ((a=>¬b)=>a) and A2 = (a=>(b=>a))
Procedure:
1. Find CL{A1} , CL{A2} and CL{¬B}

2. Form CL = CL{A1} U CL {A2} U CL{¬B}

3. Check if CL ⊢R {} or if never CL ⊢R {}

Yes, we can No, we can’t

Example Solution
A1 = ((a => ¬b) => a)

¬(a=>¬b), a

a, a ¬¬b, a

b, a

We get: CLA1 = {{a}, { b, a}}

A2 = ((a=>(b=>a))

¬a , (b=>a)

¬a, ¬b, a

We get: CLA2 = {¬a, ¬b, a}

Example Solution
¬B = ¬(¬(a U ¬ b)=> (¬ a ∧ b))

¬(a U ¬b) ¬ (¬ a ∧ b)

¬a ¬ ¬ b ¬ ¬a, ¬b

b a, ¬b

CL = {{a}, {b, a}, {¬a, ¬b, a}, {¬a}, {b}, {a, ¬b}}

Remove Tautology Strategy gives us the set

CL = {{a}, {b, a}, {¬a}, {b}, {a, ¬b}}

Example Solution

• CL = {{a}, {b, a}, {¬a, ¬b, c}, {¬a}, {b}, {a, ¬b}}
{a} R on b

{}
Yes Argument is Valid

Next : Strategies for Resolution

Propositional Resolution
Part 3

Resolution Strategies

• We present here some Deletion Strategies and
discuss their Completeness.

Deletion Strategies are restriction techniques in
which clauses with specified properties are
eliminated from set of clauses CL before they are
used.

Pure Literals

Definition
A literal is pure in CL iff it has no
complementary literal in any other clause in CL

Example: CL = { {a, b}, {¬ c, d}, {c,b}, {¬ d}}
a, b are pure and c, d, ¬ c, ¬ d are not pure

c has complement literal ¬ c in {¬ c, d} and
¬ c has complement literal c in {c,b}
d has a complement literal ¬d in the clause {¬ d} and
¬d has a complement literal d in {¬ c, d}

S1: Pure Literals Deletion Strategy

S1 Strategy: Remove all clauses that contain
Pure Literals

Clauses that contain pure literals are useless for
retention process.

One pure literal in a clause is enough for the
clause removal

This Strategy is complete, i.e.
CL ⊢ {} iff CL’ ⊢ {}
where CL’ is obtained from CL by pure literal

clauses deletion

Example

• CL = {{¬a, ¬b, c}, {¬p, d}, {¬b, d}, {a}, {b}, {¬c}}
d, ¬p are pure,

CL’ = {{¬a, ¬b, c}, {a}, {b}, {¬c}}

{¬b, c}

{c}

{}

s2. Tautology Deletion Strategy

• Tautology – a clause containing a pair of
complementary literals (a and ¬a)

• S2: Tautology Deletion:
CL’ = Remove all Tautologies from CL

• Example:
• CL = {{ a, b, ¬a}, {b, ¬b, c}, {a}}

CL’ = {{a}}
• Tautology Deletion Strategy S2 is COMPLETE.
CL is satisfiable ≡ CL‘ is satisfiable
CL unsatisfiable ≡ CL‘ unsatisfiable

Exercise
• Example:
• CL = {{ a, ¬a, b}, {b, ¬b, c}} - remove tautologies- get

CL’ with no elements, i.e. CL‘ = φ
CL is always satisfiable and so is CL‘ as Φ is

always satisfiable!

Exercise
Prove correctness of Tautology Deletion Strategy

S3. Unit Resolution Strategy
• A unit resolvent – resolvent in which at least one of

the parent clauses is a unit clause i.e. is a clause
containing a single literal.

• A unit deduction – all derived clauses are unit
resolvents.

• A unit Refutation – unit deduction of the empty
clause {}.

• Example: {{a, b}, {¬a, c}, {¬b, c}, {¬c}}
{¬a} {¬b}

{b}
{} Efficient but not Complete!

Unit Resolution not complete
Example

• CL = {{a, b}, {¬a, b}, {a, ¬b}, {¬a, ¬b}}
{b}

{a} {¬a}
{}

CL is unsatisfiable, but does not have unit
deduction.

Horn Clause: a clause with at most one positive
literal.

Theorem: Unit Resolution is complete on Horn
Clauses.

Example of Unit Resolution Deduction
• CL = {{¬a, c}, {¬c}, {a, b}, {¬b, c}, {¬c}}

{¬a}
{b}

{c}
{}

CL is not Horn but CL⊢ {} by unit deduction.
Remark: if we get { } by unit deduction we are OK

but if we don’t get { } by unit deduction it does not
mean that CL is satisfiable, because unit strategy
is not a Complete Strategy on non- Horn clauses.

S4. Input Resolution

• Input Resolution- At least one of the two
parent clauses is in the initial database.

• Input Deduction- all derived clauses are input
resolvents

• Input Refutation- Input deduction of {}
THM 1: Unit and Input Resolution are

equivalent.
THM 2: Input Resolution is complete only on

Horn Clauses

Input Resolution Deduction

Example: CL = {{a, b}, {¬a, c}, {¬b, c}, {¬c}}

{b, c}
{c}

{}

NOT Complete!

5. Linear Resolution

• Linear Resolution also called Ancestry-Filtered
resolution is a slight generalization of Input
Resolution.

• A Linear Resolution: At least one of the parents is
either in the initial DB or is in an Ancestor of the
other parent.

• A Linear Deduction: Uses only linear resolvents :
each derived clauses is a linear resolvent

• A Linear Refutation: Linear deduction of { }.
• Linear Resolution is complete

Example
CL = {{a, b}, {¬a, b}, {a, ¬b}, {¬a, ¬ b}}

{b}
{a}

{¬b}
{}

Here :
{a} is a parent of {¬b}
{b} is the ancestor of {¬b} (other parent of {¬b})

Linear Resolution

Linear Resolution is complete
There are also more modifications of the LR that are

complete

Our Strategies work also for Predicate Logic
Resolution

First papers

Kowalski 1974, 1976 “Logic for problem
solving” “Predicate Logic as a programming
language”.

Robinson 1965 “A Machinery Oriented logic
based on the resolution principle” J Assoc. for
Computing Machinery 12(1)

