
cse352
ARTIFICIAL INTELLIGENCE

Professor Anita Wasilewska

LANGUAGES LECTURE

From Chapter 2 from the book

LOGICS FOR COMPUTER SCIENCE:

Classical and Non-Classical

Anita Wasilewska

Springer 2018

Propositional and Predicate Languages

PART 1: Propositional Languages

PART 2: Predicate Languages

PART 3: Translations to Predicate Languages

PART 1: Propositional Languages

Propositional Language

Definition

A propositional language is a pair

L = (A,F)

where A,F are called an alphabet and a set of formulas,
respectively

Definition

Alphabet is a set

A = VAR ∪ CON ∪ PAR

VAR, CON, PAR are all disjoint sets of propositional
variables, connectives and parenthesis, respectively

The sets VAR, CON are non-empty

Alphabet Components

VAR is a countably infinite set of propositional variables

We denote elements of VAR by a, b, c,d, ... with indices if
necessary

CON , ∅ is a finite set of logical connectives

We assume that the set CON of logical connectives is
non-empty, i.e. that a propositional language always has at
least one logical connective

Notation

We denote the language L with the set of connectives CON
by LCON

Observe that propositional languages differ only on the
choice of the logical connectives hence our notation

Alphabet Components

PAR is a set of auxiliary symbols
This set may be empty; for example in case of Polish notation
Assumptions
We assume here that PAR contains only 2 parenthesis and

PAR = {(,)}

We also assume that the set CON of logical connectives
contains only unary and binary connectives, i.e.

CON = C1 ∪ C2

where C1 is the set of all unary connectives, and C2 is the
set of all binary connectives
It is possible to create connectives with more then one or two
arguments
We consider here only one or two argument connectives

General Principles

Propositional connectives have well established names
and the way we read them, even if their semantics may differ

We use names negation, conjunction, disjunction and
implication for ¬, ∩, ∪, ⇒, respectively

The connective ↑ is called alternative negation and

A ↑ B reads: not both A and B

The connective ↓ is called joint negation

and A ↓ B reads: neither A nor B

Some Non-Classical Propositional Connectives

Other most common propositional connectives are modal
connectives of possibility and necessity

Standard modal symbols are:

� for necessity and ♦ for possibility.

The formula ♦A reads:

it is possible that A or A is possible

The formula �A reads:

it is necessary that A or A is necessary

Some Artificial Intelligence Non-Classical Connectives

Knowledge logics also extend the classical logic by adding
new one argument knowledge connectives

The knowledge connective is often denoted by K

A formula KA reads: it is known that A or A is known

A language of a knowledge logic is for example

L{ K , ¬, ∩, ∪, ⇒}

More Artificial Intelligence Non-Classical Connectives

Autoepistemic logics extend classical logic by adding one
argument believe connectives, often denoted by B

A formula BA reads: it is believed that A

A language of an autoepistemic logic is for example

L{ B , ¬, ∩, ∪, ⇒}

Some Computer Science Non-Classical Connectives

Temporal logics also extend classical logic by adding one
argument temporal connectives

Some of temporal connectives are: F, P, G, H.

Their intuitive meanings are:

FA reads A is true at some future time,

PA reads A was true at some past time,

GA reads A will be true at all future times,

HA reads A has always been true in the past

Formulas Definition

Definition

The set F of all formulas of a propositional language LCON

is build recursively from the elements of the alphabet A as
follows.

F ⊆ A∗ and F is the smallest set for which the following
conditions are satisfied

(1) VAR ⊆ F
(2) If A ∈ F , 5 ∈ C1, then 5A ∈ F
(3) If A ,B ∈ F , ◦ ∈ C2 i.e ◦ is a two argument

connective, then
(A ◦ B) ∈ F

By (1) propositional variables are formulas and they are
called atomic formulas

The set F is also called a set of all well formed formulas
(wff) of the language LCON

Set of Formulas

Observe that the the alphabet A is countably infinite

Hence the set A∗ of all finite sequences of elements ofA is
also countably infinite

By definition F ⊆ A∗ and hence we get that the set of all
formulas F is also countably infinite

We state as separate fact

Fact

For any propositional language L = (A,F), its sets of
formulas F is always a countably infinite set

We hence consider here only infinitely countable languages

Exercise 1

Exercise 1
Consider a language

L = L{¬, ♦, �, ∪, ∩, ⇒}

and a set S ⊆ A∗ such that

S = {♦¬a ⇒ (a ∪ b), (♦(¬a ⇒ (a ∪ b))),

♦¬(a ⇒ (a ∪ b))}

1. Determine which of the elements of S are, and which are
not well formed formulas (wff) of L
2. If a formula A is a well formed formula, i.e. A ∈ F ,
determine its its main connective.
3. If A < F write the correct formula and then determine its
main connective

Exercise 1 Solution

Solution
The formula ♦¬a ⇒ (a ∪ b) is not a well formed formula
The correct formula is

(♦¬a ⇒ (a ∪ b))

The main connective is ⇒

The correct formula says:

If negation of a is possible, then we have a or b

Another correct formula in is

♦(¬a ⇒ (a ∪ b))

The main connective is ♦

The corrected formula says:

It is possible that not a implies a or b

Exercise 1 Solution

The formula (♦(¬a ⇒ (a ∪ b))) is not correct

The correct formula is

♦(¬a ⇒ (a ∪ b))

The main connective is ♦

The correct formula says:

It is possible that not a implies a or b

♦¬(a ⇒ (a ∪ b)) is a correct formula

The main connective is ♦

The formula says:

It is possible that it is not true that a implies a or b

Language Defined by a set S

Definition
Given a set S of formulas of a language LCON

Let CS ⊆ CON be the set of all connectives that appear in
formulas of S
A language

LCS

is called the language defined by the set of formulas S
Example
Let S be a set
S = {((a ⇒ ¬b)⇒ ¬a), �(¬♦a ⇒ ¬a)}
All connectives appearing in the formulas in S are:

⇒, ¬, �, ♦

The language defined by the set S is

L{¬, ⇒, �, ♦}

Exercise 2

Exercise 2

Write the following natural language statement:

From the fact that it is possible that Anne is not a boy we
deduce that it is not possible that Anne is not a boy or, if it is
possible that Anne is not a boy, then it is not necessary that
Anne is pretty

in the following two ways

1. As a formula
A1 ∈ F1 of a language L{¬, �, ♦, ∩, ∪, ⇒}

2. As a formula
A2 ∈ F2 of a language L{¬, ∩, ∪, ⇒}

Exercise 2 Solution

1.We translate our statement into a formula
A1 ∈ F1 of the language L{¬, �, ♦, ∩, ∪, ⇒} as follows

Propositional Variables: a,b

a denotes statement: Anne is a boy,

b denotes a statement: Anne is pretty

Propositional Modal Connectives: �, ♦

♦ denotes statement: it is possible that

� denotes statement: it is necessary that

Translation 1: the formula A1 is

(♦¬a ⇒ (¬♦¬a ∪ (♦¬a ⇒ ¬�b)))

Exercise 2 Solution

2. We translate our statement into a formula
A2 ∈ F2 of the language L{¬, ∩, ∪, ⇒} as follows

Propositional Variables: a,b

a denotes statement: it is possible that Anne is not a boy

b denotes a statement: it is necessary that Anne is pretty

Translation 2: the formula A2 is

(a ⇒ (¬a ∪ (a ⇒ ¬b)))

Exercise 3

Exercise 3

Write the following natural language statement:

For all natural numbers n ∈ N the following implication holds:
if n < 0, then there is a natural number m, such that it is
possible that n + m < 0, OR it is not possible that there is a
natural number m, such that m > 0

in the following two ways

1. As a formula
A1 ∈ F1 of a language L{¬, ∩, ∪, ⇒}

2. As a formula
A2 ∈ F2 of a language L{¬, �, ♦, ∩, ∪, ⇒}

Exercise 3 Solution

1. We translate our statement into a formula
A1 ∈ F1 of the language L{¬, ∩, ∪, ⇒} as follows

Propositional Variables: a, b

a denotes statement: For all natural numbers n ∈ N the
following implication holds: if n < 0, then there is a natural
number m, such that it is possible that n + m < 0

b denotes a statement: it is possible that there is a natural
number m, such that m > 0

Translation: the formula A1 is

(a ∪ ¬b)

Exercise 3 Solution

2. We translate our statement into a formula A2 ∈ F2 of a
language L{¬, �, ♦, ∩, ∪, ⇒} as follows

Propositional Variables: a, b

a denotes statement: For all natural numbers n ∈ N the
following implication holds: if n < 0, then there is a natural
number m, such that it is possible that n + m < 0

b denotes a statement: there is a natural number m, such
that m > 0

Translation: the formula A2 is

(a ∪ ¬♦b)

Exercise 4

Exercise 4

Write the following natural language statement:

The following statement holds for all natural numbers n ∈ N:

if n < 0, then there is a natural number m, such that it is
possible that n + m < 0, OR it is not possible that there is a
natural number m, such that m > 0

in the following two ways

1. As a formula
A1 ∈ F1 of a language L{¬, ∩, ∪, ⇒}

2. As a formula
A2 ∈ F2 of a language L{¬, �, ♦, ∩, ∪, ⇒}

Exercise 5

Exercise 5

Write the following natural language statement:

From the fact that each natural number is greater than zero
we deduce that it is not possible that Anne is a boy or, if it is
possible that Anne is not a boy, then it is necessary that it is
not true that each natural number is greater than zero

in the following two ways

1. As a formula
A1 ∈ F1 of a language L{¬, �, ♦, ∩, ∪, ⇒}

2. As a formula
A2 ∈ F2 of a language L{¬, ∩, ∪, ⇒}

PART 2: Predicate Languages

Predicate Languages

Predicate Languages are also called First Order Languages

The same applies to the use of terms for Propositional and
Predicate Logic

Propositional and Predicate Logics called Zero Order and
First Order Logics, respectively and we will use both terms
equally

We usually work with different predicate languages,
depending on what applications we have in mind

All predicate languages have some common features, and
we begin with these

Predicate Languages Components

Propositional Connectives

Predicate Languages extend a notion of the propositional
languages so we define the set CON of their propositional
connectives as follows

The set CON of propositional connectives is a finite and
non-empty and

CON = C1 ∪ C2

where C1,C2 are the sets of one and two arguments
connectives, respectively

Parenthesis

As in the propositional case, we adopt the signs (and) for
our parenthesis., i.e. we define a set PAR as

PAR = { (,) }

Predicate Languages Components

Quantifiers

We adopt two quantifiers; the universal quantifier denoted
by ∀ and the existential quantifier denoted by ∃, i.e. we
have the following set Q of quantifiers

Q = {∀, ∃}

In a case of the classical logic and the logics that extend it, it
is possible to adopt only one quantifier and to define the
other in terms of it and propositional connectives

Such definability is impossible in a case of some non-classical
logics, for example the intuitionistic logic

But even in the case of classical logic the two quantifiers
express better the common intuition, so we adopt the both of
them

Predicate Languages Components

Variables

We assume that we always have a countably infinite set
VAR of variables, i.e. we assume that

cardVAR = ℵ0

We denote variables by x, y, z, ..., with indices, if necessary.

we often express it by writing

VAR = {x1, x2,}

Note

Predicate Languages Components

The set CON of propositional connectives defines a
propositional part of the predicate logic language

Observe that what really differ one predicate language from
the other is the choice of additional symbols added to the
symbols just described

These additional symbols are: predicate symbols, function
symbols, and constant symbols

A particular predicate language is determined by specifying
these additional sets of symbols

They are defined as follows

Predicate Languages Components

Predicate symbols
Predicate symbols represent relations
Any predicate language must have at least one predicate
symbol
Hence we assume that any predicate language contains a
non empty, finite or countably infinite set

P

of predicate symbols, i.e. we assume that

0 < card P ≤ ℵ0

We denote predicate symbols by P,Q ,R , ... , with indices, if
necessary
Each predicate symbol P ∈ P has a positive integer #P
assigned to it; when #P = n we call P an n-ary (n - place)
predicate (relation) symbol

Predicate Languages Components

Function symbols

We assume that any predicate language contains a finite (may
be empty) or countably infinite set F of function symbols

I.e. we assume that

0 ≤ card F ≤ ℵ0

When the set F is empty we say that we deal with a
language without functional symbols

We denote functional symbols by f , g, h, ... with indices, if
necessary

Similarly, as in the case of predicate symbols, each function
symbol f ∈ F has a positive integer #f assigned to it; if
#f = n then f is called an n-ary (n - place) function
symbol

Predicate Languages Components

Constant symbols
We also assume that we have a finite (may be empty) or
countably infinite set

C

of constant symbols
I.e. we assume that

0 ≤ card C ≤ ℵ0

The elements of C are denoted by c, d, e..., with indices, if
necessary
We often express it by putting

C = {c1, c2, ...}

When the set C is empty we say that we deal with a
language without constant symbols

Alphabet of Predicate Languages

Sometimes the constant symbols are defined as 0-ary
function symbols, i.e. we have that

C ⊆ F

We single them out as a separate set for our convenience

We assume that all of the above sets of symbols are disjoint

Alphabet

The union of all of above disjoint sets of symbols is called the
alphabet A of the predicate language, i.e. we define

A = VAR ∪ CON ∪ PAR ∪ Q ∪ P ∪ F ∪ C

Predicate Languages Notation

Observe, that once the set of propositional connectives is
fixed, the predicate language is determined by the sets P, F
and C

We use the notation
L(P,F,C)

for the predicate language L determined by P, F, C

If there is no danger of confusion, we may abbreviate
L(P,F,C) to just L

If the set of propositional connectives involved is not fixed, we
also use the notation

LCON(P,F,C)

to denote the predicate language L determined by P, F, C
and the set of propositional connectives CON

Predicate Languages Notation

We sometimes allow the same symbol to be used as an
n-place relation symbol, and also as an m-place one; no
confusion should arise because the different uses can be told
apart easily

Example

If we write P(x, y) , the symbol P denotes 2-argument
predicate symbol

If we write P(x, y, z), the symbol P denotes 3-argument
predicate symbol

Similarly for function symbols

Two more Predicate Language Components

Having defined the alphabet we now complete the formal
definition of the predicate language by defining two more
components:

the set T of all terms and

the set F of all well formed formulas

of the language L(P,F,C)

Set of Terms

Terms

The set T of terms of the predicate language L(P,F,C)
is the smallest set

T ⊆ A∗

meeting the conditions:
1. any variable is a term, i.e. VAR ⊆ T
2. any constant symbol is a term, i.e. C ⊆ T
3. if f is an n-place function symbol, i.e. f ∈ F and #f = n

and t1, t2, ..., tn ∈ T , then f(t1, t2, ..., tn) ∈ T

Terms Examples

Example 1

Let f ∈ F,#f = 1 , i.e. f is a 1-place function symbol

Let x, y be variables, c, d be constants, i.e.
x, y ∈ VAR , c, d ∈ C

Then the following expressions are terms:

x, y, f(x), f(y), f(c), f(d), f(f(x)), f(f(y)), f(f(c)), f(f(d)), ...

Example 2

Let F = ∅,C = ∅

In this case terms consists of variables only, i.e.

T = VAR = {x1, x2, }

Terms Examples

Directly from the Example 2 we get the following

REMARK

For any predicate language L(P,F,C), the set T of its
terms is always non-empty

Example 3

Let f ∈ F,#f = 1, g ∈ F,#g = 2, x, y ∈ VAR , c, d ∈ C

Some of the terms are the following:

f(g(x, y)), f(g(c, x)), g(f(f(c)), g(x, y)),

g(c, g(x, f(c))), g(f(g(x, y)), g(x, f(c)))

Terms Notation

From time to time, the logicians are and we may be informal
about how we write terms

Example

If we denote a 2- place function symbol g by +, we may
write x + y instead +(x, y)

Because in this case we can think of x + y as an unofficial
way of designating the ”real” term g(x, y)

Atomic Formulas

Before we define the set of formulas, we need to define one
more set; the set of atomic, or elementary formulas

Atomic formulas are the simplest formulas as the
propositional variables were in the case of propositional
languages

Atomic Formulas

Definition

An atomic formula of a predicate language L(P,F,C) is
any element of A∗ of the form

R(t1, t2, ..., tn)

where R ∈ P,#R = n and t1, t2, ..., tn ∈ T

I.e. R is n-ary relational symbol and t1, t2, ..., tn are any
terms

The set of all atomic formulas is denoted by AF and is
defined as

AF = {R(t1, t2, ..., tn) ∈ A∗ : R ∈ P, t1, t2, ..., tn ∈ T, n ≥ 1}

Atomic Formulas Examples

Example 1

Consider a language L({P}, ∅, ∅), for #P = 1

Our language
L = L({P}, ∅, ∅)

is a language without neither functional, nor constant
symbols, and with one, 1-place predicate symbol P

The set of atomic formulas contains all formulas of the form
P(x), for x any variable, i.e.

AF = {P(x) : x ∈ VAR}

Atomic Formulas Examples

Example 2

Let now consider a predicate language

L = L({R}, {f , g}, {c, d})

for #f = 1,#g = 2,#R = 2

The language L has two functional symbols: 1-place
symbol f and 2-place symbol g, one 2-place predicate
symbol R, and two constants: c,d

Some of the atomic formulas in this case are the following.

R(c, d), R(x, f(c)), R((g(x, y)), f(g(c, x))),

R(y, g(c, g(x, f(d))))

Set of Formulas Definition

Now we are ready to define the set F of all well formed
formulas of any predicate language L(P,F,C)

Definition

The set F of all well formed formulas, called shortly set of
formulas, of the language L(P,F,C) is the smallest set
meeting the following four conditions:

1. Any atomic formula of L(P,F,C) is a formula , i.e.

AF ⊆ F

2. If A is a formula of L(P,F,C), 5 is an one argument
propositional connective, then 5A is a formula of
L(P,F,C), i.e. the following recursive condition holds

if A ∈ F ,5 ∈ C1 then 5A ∈ F

Set of Formulas Definition

3. If A ,B are formulas of L(P,F,C) and ◦ is a two argument
propositional connective, then (A ◦ B) is a formula of
L(P,F,C), i.e. the following recursive condition holds

If A ∈ F ,5 ∈ C2, then (A ◦ B) ∈ F

4. If A is a formula of L(P,F,C) and x is a variable, ∀,∃ ∈ Q ,
then ∀xA , ∃xA are formulas of L(P,F,C), i.e. the following
recursive condition holds

If A ∈ F , x ∈ VAR , ∀,∃ ∈ Q, then ∀xA , ∃xA ∈ F

Scope of the Quantifier

Another important notion of the predicate language is the
notion of scope of a quantifier
It is defined as follows
Definition
Given formulas ∀xA , ∃xA , the formula A is said to be in the
scope of the quantifier ∀, ∃, respectively.
Example 3
Let L be a language of the previous Example 2 with the set
of connectives {∩,∪,⇒,¬} , i.e. let’s consider

L = L{∩,∪,⇒,¬}({f , g}, {R}, {c, d})

for #f = 1, #g = 2 , #R = 2
Some of the formulas of L are the following.

R(c, d), ∃yR(y, f(c)), ¬R(x, y),

(∃xR(x, f(c))⇒ ¬R(x, y)), (R(c, d) ∩ ∀zR(z, f(c))),

∀yR(y, g(c, g(x, f(c)))), ∀y¬∃xR(x, y)

Scope of Quantifiers

The formula R(x, f(c)) is in scope of the quantifier ∃ in the
formula

∃xR(x, f(c))

The formula (∃x R(x, f(c))⇒ ¬R(x, y)) is not in scope
of any quantifier

The formula (∃xR(x, f(c))⇒ ¬R(x, y)) is in scope of
quantifier ∀ in the formula

∀y(∃xR(x, f(c))⇒ ¬R(x, y))

Predicate Language Definition

Now we are ready to define formally a predicate language

Let A,T ,F be the alphabet , the set of terms and the set of
formulas as already defined

Definition

A predicate language L is a triple

L = (A,T,F)

As we have said before, the language L is determined by the
choice of the symbols of its alphabet, namely of the choice
of connectives, predicates, functions , and constants
symbols

If we want specifically mention these choices, we write

L = LCON(P,F,C) or L = L(P,F,C)

Free and Bound Variables

Given a predicate language L = (A,T ,F), we must
distinguish between formulas like

P(x, y), ∀xP(x, y) and ∀x∃yP(x, y)

This is done by introducing the notion of free and bound
variables, and open and closed formulas

Closed formulas are also called sentences

Informally, in the formula

P(x, y)

both variables x and y are called free variables

They are not in the scope of any quantifier

The formula of that type, i.e. formula without quantifiers is
an open formula

Free and Bound Variables

In the formula
∀yP(x, y)

the variable x is free, the variable y is bounded by the the
quantifier ∀

In the formula
∀zP(x, y)

both x and y are free

In the formulas
∀zP(z, y), ∀xP(x, y)

only the variable y is free

Free and Bound Variables

In the formula
∀x(P(x)⇒ ∃yQ(x, y))

there is no free variables

In the formula
(∀xP(x)⇒ ∃yQ(x, y))

the variable x (in Q(x, y)) is free

Sometimes in order to distinguish more easily which variable
is free and which is bound in the formula we might use the
bold face type for the quantifier bound variables, i.e. to write
the last formulas as

(∀xP(x)⇒ ∃yQ(x, y))

Bound Variables, Sentence, Open Formula

Bound variables: a variable is called bound if it is not free

Sentence: a formula with no free variables is called a
sentence

Open formula: a formula with no bound variables is called
an open formula

Example

The formulas

∃xQ(c, g(x, d)), ¬∀x(P(x)⇒ ∃y(R(f(x), y) ∩ ¬P(c)))

are sentences

The formulas

Q(c, g(x, d)), ¬(P(x)⇒ (R(f(x), y) ∩ ¬P(c)))

are open formulas

Examples

Example

The formulas

∃xQ(c, g(x, y)), ¬(P(x)⇒ ∃y(R(f(x), y) ∩ ¬P(c)))

are neither sentences nor open formulas

They contain some free and some bound variables;

the variable y is free in ∃xQ(c, g(x, y))

the variable x is free in ¬(P(x)⇒ ∃y(R(f(x), y) ∩ ¬P(c)))

Notations

Notation: It is common practice to use the notation

A(x1, x2, ..., xn)

to indicate that

FreeVariables(A) ⊆ {x1, x2, ..., xn}

without implying that all of x1, x2, ..., xn are actually free in A

This is similar to the practice in algebra of writing
w(a0, a1, ..., an) = a0 + a1x ++ anxn for a polynomial w
without implying that all of the coefficients a0, a1, ..., an are
nonzero

Mathematical Statements

We often use logic symbols, while writing mathematical
statements in a more symbolic way.
For example, mathematicians to say ”all natural numbers are
greater then zero and some integers are equal 1” often write

x ≥ 0, ∀x∈N and ∃y∈Z , y = 1.

Some of them who are more ”logic oriented” would write it as

∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1,

or even as
(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1).

Observe that none of the above symbolic statement are
formulas of the predicate language.
These are mathematical statements written with mathematical
and logic symbols. They are written with different degree of
”logical precision”, the last being, from a logician point of view
the most precise.

Mathematical Statements Translations

Our goal now is to ”translate ” mathematical and natural
language statement into correct formulas of the predicate
language L.

Let’s start with some observations.

O1 The quantifiers in ∀x∈N , ∃y∈Z are not the one used in
logic.

O2 The predicate language L admits only quantifiers
∀x, ∃y, for any variables x, y ∈ VAR.

O3 The quantifiers ∀x∈N , ∃y∈Z are called quantifiers with
restricted domain.

The restriction of the quantifier domain can, and often is
given by more complicated statements.

Quantifiers with Restricted Domain

Quantifiers with Restricted Domain

The quantifiers ∀A(x) and ∃A(x) are called quantifiers with
restricted domain , or restricted quantifiers , where
A(x) ∈ F is any formula with a free variable x ∈ VAR.

Definition

∀A(x)B(x) stands for a formula ∀x(A(x)⇒ B(x)) ∈ F .

∃A(x)B(x) stands for a formula ∃x(A(x) ∩ B(x)) ∈ F .

We write it as the following transformations rules for
restricted quantifiers

∀A(x) B(x) ≡ ∀x(A(x)⇒ B(x))

∃A(x) B(x) ≡ ∃x(A(x) ∩ B(x))

Translations to Formulas of L

Translations to Formulas of L

Given a mathematical statement S written with logical
symbols.

We obtain a formula A ∈ F that is a translation of S into L by
conducting a following sequence of steps.

Step 1 We identify basic statements in S, i.e. mathematical
statements that involve only relations. They are to be
translated into atomic formulas.

We identify the relations in the basic statements and choose
the predicate symbols as their names.

We identify all functions and constants (if any) in the basic
statements and choose the function symbols and constant
symbols as their names.

Step 2 We write the basic statements as atomic formulas
of L.

Translations to Formulas of L

Remember that in the predicate language L we write a
function symbol in front of the function arguments not
between them as we write in mathematics.

The same applies to relation symbols.

For example we re-write a basic mathematical statement
x + 2 > y as > (+(x, 2), y), and then we write it as an atomic
formula P(f(x, c), y)

P ∈ P stands for two argument relation >,

f ∈ F stands for two argument function +, and c ∈ C stands
for the number 2.

Translations to Formulas of L

Step 3 We write the statement S a formula with restricted
quantifiers (if needed)

Step 4. We apply the transformations rules for restricted
quantifiers to the formula from Step 3 and obtain a proper
formula A of L as a result, i.e. as a transtlation of the given
mathematical statement S

In case of a translation from mathematical statement written
without logical symbols we add a following step.

Step 0 We identify propositional connectives and quantifiers
and use them to re-write the statement in a form that is as
close to the structure of a logical formula as possible

Translations Examples

Exercise

Given a mathematical statement S written with logical
symbols

(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1)

1. Translate it into a proper logical formula with restricted
quantifiers i.e. into a formula of L that uses the restricted
domain quantifiers.

2. Translate your restricted quantifiers formula into a correct
formula without restricted domain quantifiers, i.e. into a
proper formula of L

A long and detailed solution is given in Chapter 2, page 28.

A short statement of the exercise and a short solution follows

Translations Examples

Exercise
Given a mathematical statement S written with logical symbols

(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1)

Translate it into a proper formula of L.
Short Solution
The basic statements in S are: x ∈ N, x ≥ 0, y ∈ Z , y = 1
The corresponding atomic formulas of L are:
N(x), G(x, c1), Z(y), E(y, c2), for
n ∈ N, x ≥ 0, y ∈ Z , y = 1, respectively.
The statement S becomes restricted quantifiers formula

(∀N(x)G(x, c1) ∩ ∃Z(y) E(y, c2))

By the transformation rules we get A ∈ F :

(∀x(N(x)⇒ G(x, c1)) ∩ ∃y(Z(y) ∩ E(y, c2)))

Translations Examples

Exercise

Here is a mathematical statement S:

”For all real numbers x the following holds: If x < 0, then
there is a natural number n, such that x + n < 0.”

1. Re-write S as a symbolic mathematical statement SF that
only uses mathematical and logical symbols.

2. Translate the symbolic statement SF into to a
corresponding formula A ∈ F of the predicate language L

Translations Examples

Solution

The statement S is:

”For all real numbers x the following holds: If x < 0, then
there is a natural number n, such that x + n < 0.”

S becomes a symbolic mathematical statement SF

∀x∈R(x < 0⇒ ∃n∈N x + n < 0)

We write R(x) for x ∈ R, N(y) for n ∈ N, a constant c for the
number 0. We use L ∈ P to denote the relation <We use
f ∈ F to denote the function +

The statement x < 0 becomes an atomic formula L(x, c).
The statement x + n < 0 becomes L(f(x,y), c)

Translations Examples

Solution c.d.

The symbolic mathematical statement SF

∀x∈R(x < 0⇒ ∃n∈N x + n < 0)

becomes a restricted quantifiers formula

∀R(x)(L(x, c)⇒ ∃N(y)L(f(x, y), c))

We apply now the transformation rules and get a
corresponding formula A ∈ F :

∀x(N(x)⇒ (L(x, c)⇒ ∃y(N(y) ∩ L(f(x, y), c)))

PART 3: Translations to Predicate Languages

Translations Exercises

Exercise 1

Given a Mathematical Statement written with logical symbols

∀x∈R ∃n∈N(x + n > 0⇒ ∃m∈N(m = x + n))

1. Translate it into a proper logical formula with restricted
domain quantifiers

2. Translate your restricted domain quantifiers logical formula
into a correct logical formula without restricted domain
quantifiers

Exercise 1 Solution

1. We translate the Mathematical Statement

∀x∈R ∃n∈N(x + n > 0⇒ ∃m∈N(m = x + n))

into a proper logical formula with restricted domain
quantifiers as follows

Step 1

We identify all predicates and use their symbolic
representation as follows:

R(x) for x ∈ R

N(x) for n ∈ N

G(x,y) for relation >, E(x,y) for relation =

Exercise 1 Solution

Step 2

We identify all functions and constants and their symbolic
representation as follows:

f(x,y) for the function + , c for the constant 0

Step 3

We write mathematical expressions in as symbolic logic
formulas as follows:

G(f(x,y), c) for x + n > 0 and E(z, f(x,y)) for m = x + n

Step 4

We identify logical connectives and quantifiers and write
the logical formula with restricted domain quantifiers as
follows

∀R(x) ∃N(y)(G(f(x, y), c)⇒ ∃N(z)E(z, f(x, y)))

Exercise 1 Solution

2. We translate the logical formula with restricted domain
quantifiers

∀R(x) ∃N(y)(G(f(x, y), c)⇒ ∃N(z)E(z, f(x, y)))

into a correct logical formula without restricted domain
quantifiers as follows

∀x(R(x)⇒ ∃N(y)(G(f(x, y), c)⇒ ∃N(z)E(z, f(x, y))))

≡ ∀x(R(x)⇒ ∃y(N(y) ∩ (G(f(x, y), c)⇒ ∃N(z)E(z, f(x, y)))))

≡ ∀x(R(x)⇒ ∃y(N(y) ∩ (G(f(x, y), c)⇒ ∃z(N(z) ∩ E(z, f(x, y))))))

Correct logical formula is:

∀x(R(x)⇒ ∃y(N(y) ∩ (G(f(x, y), c)⇒ ∃z(N(z) ∩ E(z, f(x, y))))))

Translations Exercises

Exercise 2

Here is a mathematical statement S:

For all natural numbers n the following holds:

If n < 0, then there is a natural number m, such that
m + n < 0

P1. Re-write S as a Mathematical Statement ”formula” MSF
that only uses mathematical and logical symbols

P2. Translate your Mathematical Statement ”formula” MSF
into to a correct predicate language formula LF

P3. Argue whether the statement S it true of false

P4. Give an interpretattion of the predicate language
formula LF under which it is false

Exercise 2 Solution

P1. We re-write mathematical statement S

For all natural numbers n the following holds:

If n < 0, then there is a natural number m, such that
m + n < 0

as a Mathematical Statement ”formula” MSF that only uses
mathematical and logical symbols as follows

∀n∈N(n < 0⇒ ∃m∈N(m + n < 0))

Exercise 2 Solution

P2. We translate the MSF ”formula”

∀n∈N(n < 0⇒ ∃m∈N(m + n < 0))

into a correct predicate language formula using the
following 5 steps

Step 1

We identify predicates and write their symbolic
representation as follows

We write N(x) for x ∈ N and L(x,y) for relation <

Step 2

We identify functions and constants and write their
symbolic representation as follows

f(x,y) for the function + and c for the constant 0

Exercise 2 Solution

Step 3

We write the mathematical expressions in S as atomic
formulas as follows:

L(f(y,c), c) for m + n < 0

Step 4

We identify logical connectives and quantifiers and write
the logical formula with restricted domain quantifiers as
follows

∀N(x)(L(x, c)⇒ ∃N(y)L(f(y, c), c))

Exercise 2 Solution

Step 5

We translate the above into a correct logical formula

∀x(N(x)⇒ (L(x, c)⇒ ∃y(N(y) ∩ L(f(y, c), c)))

P3 Argue whether the statement S it true of false

Statement ∀n∈N(n < 0⇒ ∃m∈N(m + n < 0)) is TRUE as the
statement n < 0 is FALSE for all n ∈ N and the classical
implication FALSE⇒ Anyvalue is always TRUE

Exercise 2 Solution

P4. Here is an interpretation in a non-empty set X under
which the predicate language formula

∀x(N(x)⇒ (L(x, c)⇒ ∃y(N(y) ∩ L(f(y, c), c)))

is false
Take a set X = {1, 2}
We interpret N(x) as x ∈ {1, 2}, L(x, y) as x > y, and
constant c as 1
We interpret f as a two argument function fI defined on the
set X by a formula fI(y, x) = 1 for all y, x ∈ {1, 2}
The mathematical statement

∀x∈{1,2}(x > 1⇒ ∃y∈{1,2}(fI(y, x) > 1))

is a false statement when x = 2
In this case we have 2 > 1 is true and as fI(y, 2) = 1 for all
y ∈ {1, 2} we get that ∃y∈{1,2}(fI(y, 2) > 1)) is false as 1 > 1
is false

Translations from Natural Language

S: ”Any friend of Mary is a friend of John and Peter is not
John’s friend. Hence Peter is not May’s friend”

We use constants m, j, p for Mary, John, and Peter,
respectively

We hence have the following atomic formulas:

F(x, m), F(x, j), F(p, j), where

F(x, m) stands for ”x is a friend of Mary”,

F(x, j) stands for ”x is a friend of John”, and

F(p, j) stands for ”Peter is a friend of John”

Translations from Natural Language

2. Statement ”Any friend of Mary is a friend of John”
translates into a restricted quantifier formula ∀F(x,m) F(x, j)

”Peter is not John’s friend” translates into ¬F(p, j), and

”Peter is not May’s friend” translates into ¬F(p,m)
3. Restricted quantifiers formula for S is

((∀F(x,m)F(x, j) ∩ ¬F(p, j))⇒ ¬F(p,m))

and the formula A ∈ F of L is

((∀x(F(x,m)⇒ F(x, j)) ∩ ¬F(p, j))⇒ ¬F(p,m))

Rules of Translations

Rules of translation from natural language to the predicate
language L

1. Identify the basic relations and functions (if any) and
translate them into atomic formulas

2. Identify propositional connectives and use symbols
¬,∪,∩,⇒,⇔ for them

3. Identify quantifiers: restricted ∀A(x), ∃A(x), and
non-restricted ∀x, ∃x

4. Use the symbols from 1. - 3. and restricted quantifiers
transformation rules to write A ∈ F of the predicate
language L

Translation Example

Exercise

Given a natural language statement

S: ”For any bird one can find some birds that white”

Show that the translation of S into a formula of the predicate
language L is ∀x(B(x)⇒ ∃x(B(x) ∩W(x)))

Solution

We follow the rules of translation to verify the correctness of
the translation

1. Atomic formulas: B(x), W(x)

B(x) stands for ” x is a bird” and W(x) stands for ” x is white”

2. There is no propositional connectives in S

Translation Example

3. Restricted quantifiers:

∀B(x) for ”any bird ” and

∃B(x) for ”one can find some birds”.

Restricted quantifiers formula for S is

∀B(x)∃B(x) W(x)

4. By the transformation rules we get a required formula of
the predicate language L:

∀x(B(x)⇒ ∃x(B(x) ∩W(x)))

Translation Example

Exercise

Translate into L a natural language statement
S: ” Some patients like all doctors.”

Solution

1. Atomic formulas: P(x), D(x), L(x, y).

P(x) stands for ” x is a patient”,

D(x) stands for ” x is a doctor”, and

L(x,y) stands for ” x likes y”

2. There is no propositional connectives in S

Translation Example

3. Restricted quantifiers:

∃P(x) for ”some patients ” and ∀D(x) for ”all doctors”

Observe that we can’t write L(x, D(y)) for ”x likes doctor y”

D(y) is a predicate, not a term, and hence L(x, D(y)) is not a
formula

We have to express the statement ” x likes all doctors y” in
terms of restricted quantifiers and the predicate L(x,y) only

Translation Example

Observe that the statement ” x likes all doctors y” means
also ” all doctors y are liked by x”

We can re- write it as ”for all doctors y, x likes y” what
translates to a formula ∀D(y)L(x, y)

Hence the statement S translates to

∃P(x)∀D(y)L(x, y)

4. By the transformation rules we get the following translation
of S into L

∃x(P(x) ∩ ∀y(D(y)⇒ L(x, y)))

Translation in Artificial Intelligence

Translation in Artificial Intelligence

In AI we use intended names for relations, functions and
constants

The symbolic language we use is still a symbolic language,
even if the intended names are used.

In the AI we write, for example

Like(John, Mary)

instead of a formula L(c1, c2) in logic.

We write
greater(x, y) or > (x, y)

instead of R(x, y) in logic.

Example

AI intended interpretation formulas corresponding to a
statement

S: ”For every student there is a student that is an elephant”

are as follows

Restricted quantifiers AI formula:

∀Student(x)∃Student(x) Elephant(x)

Non-restricted quantifiers AI formula:

∀x(Student(x)⇒ ∃x(Student(x) ∩ Elephant(x)))

Translation in Artificial Intelligence

Observe that a proper formulas of the LOGIC language
corresponding the statement

”For every student there is a student that is an elephant” are
the same as the formulas corresponding to the natural
language statement

For any bird one can find some birds that white”, namely

Restricted quantifiers logic formula:

∀P(x)∃P(x) R(x)

Non-restricted quantifiers logic formula:

∀x(P(x)⇒ ∃x(P(x) ∩ R(x)))

Translation in Artificial Intelligence

Statement

S: ”Any friend of Mary is a friend of John and Peter is not
John’s friend. Hence Peter is not May’s friend”

translates as

Restricted quantifier AI formula:

((∀Friend(x,Mary) Friend(x, John) ∩ ¬Friend(Peter , John))

(⇒ ¬Friend(Peter ,Mary))

Non-restricted AI formula:

((∀x(Friend(x,Mary)⇒ Friend(x, John)) ∩ ¬Friend(Peter , John))

⇒ ¬Friend(Peter ,Mary))

