
Association Analysis

 cse352
 Artificial Intelligence

Professor Anita Wasilewska
Computer Science Department
Stony Brook University

 Association Rules Mining
 An Introduction

•  This is an intuitive (more or less) introduction
•  It contains explanation of the main ideas:
•  Frequent item sets, association rules, how we

construct the association rules
•  How we judge the goodness of the rules
•  Example of an intuitive “run” of the Appriori

Algorithm and association rules generation
•  Discussion of the relationship between the

Association and Correlation analysis

What Is Association Mining?

Association rule mining:
Finding frequent patterns called
associations, among sets of items or
objects in transaction databases,
relational databases, and other
information repositories

•  Applications:
–  Basket data analysis, cross-marketing, catalog design,

loss-leader analysis, clustering, classification, etc.

 Association Rules

•  Rule general form:
 “Body → Ηead [support, confidence]”
Rule Predicate form:
buys(x, “diapers”) → buys(x, “beer”)
 [0.5%, 60%]
major(x, “CS”) ^ takes(x, “DB”) → grade(x,
“A”) [1%, 75%]

Rule Attribute form:
Diapers → beer [1%, 75%]

Association Analysis: Basic Concepts

•  Given: a database of transactions, where
each transaction is a list of items

•  Find: all rules that associate the presence

of one set of items with that of another set of
items

•  Example
 98% of people who purchase tires and auto

accessories also get automotive services done

Association Model

•  I ={i1, i2,, in} a set of items
•  J = P(I) set of all subsets of the set of items,

elements of J are called itemsets
•  Transaction T: T is subset of set I of items
•  Data Base: set of transactions
•  An association rule is an implication of the

form : X-> Y, where X, Y are disjoint
subsets of items I (elements of J)

•  Problem: Find rules that have support and
confidence greater that user-specified
minimum support and minimun confidence

 Apriori Algorithm

•  Apriori Algorithm:
•  First Step: we find all frequent item-sets
•  An item-set is frequent if it has a

support greater or equal a fixed
minimum support

•  We fix minimum support usually low
•  Rules generation from the frequent item-

sets is a separate problem and we will
cover it as a part of Association Process

Apriori Algorithm

•  In order to calculate efficiently frequent item-
sets:

•  1-item-sets (one element item-sets)
•  2-item-sets (two elements item-sets)
•  3-item-sets (three elements item-sets), etc..
•  we use a principle, called an Apriori Principle

(hence the name: Apriori Algorithm):
•  Apriori Principle
•  ANY SUBSET OF A FREQUENT ITEMSET IS

A FREQUENT ITEMSET

The Apriori Algorithm (Han Book)

•  Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin
 Ck+1 = candidates generated from Lk;
 for each transaction t in database do

 increment the count of all candidates in Ck+1
that are contained in t

 Lk+1 = candidates in Ck+1 with min_support
 end
return ∪k Lk;

Appriori Process:
Rules Generation

•  Appriori Algorithm stops after the First Step
•  Second Step in the Appriori Proces (item-sets

generation AND rules generation) is the rules
generation:

•  We calculate, from the frequent item-sets a set
of the strong rules

•  Strong rules: rules with at least minimum
support (low) and minimum confidence (high)

•  Apriori Process is then finished .

Apriori Process
Rules Generation

•  The Apriori Process problem is:
•  How do we form the association rules
 (A =>B) from the frequent item sets?

•  Remember: A, B are disjoint subsets of

the set I of items in general, and of the set
2- frequent, 3-frequent item sets ….. etc,
… as generated by the Apriori Algorithm

 How we find the rules?

•  1-frequent item set: {i1}- no rule
•  2-frequent item set {i1, i2}: there are two rules:
•  {i1} => {i2} and {i2} => {i2}
•  We write them also as
•  i1 => i2 and i2 => i2
•  We decide which rule we accept by calculating

its support (greater= minimum support) and
confidence (greater= minimum confidence)

 How we find the rules?

•  3-frequent item set: {i1, i2, i3}
•  The rules, by definition are of the form (A =>B) where

A and B are disjoint subsets of {i1, i2, i3}, i.e.
•  we have to find all subsets A,B of {i1, i2, i3} such that

A∪B = {i1, i2, i3} and A∩ B = Φ
•  For example,
•  let A= {i1, i2} and B= {i3}
•  The rule is
•  {i1, i2} => {i3}
•  and we write it in a form:
 i1 ∩ i2 => i3 or milk ∩ bread => vodka
 if item i1 is milk, item i2 is bread and item i3 is vodka

 How we find the rules?

•  Another choice for A and B is, for example:
•  A= {i1} and B= {12, i3}.
•  The rule is
•  {i1} => {i2, i3} and we write it in a form:
 i1 => i2∩ i3 or milk => bread ∩ vodka
 if item i1 is milk, item i2 is bread and item i3 is vodka
•  REMEMBER:
•  We have to cover all the choices for A and B!
•  Which rule we accept is being decided by

calculating its support (greater = minimum
support) and confidence (greater = minimum
confidence)

 Rules Confidence and Support

•  Confidence:
•  the rule X->Y holds in the database D

with confidence c if the c% of the
transactions in D that contain X also
contain Y

•  Support: The rule X->Y has support s
in D if s% of the transaction contain
XUY

Support and Confidence

•  Find all the rules X & Y ⇒ Z with
minimum confidence and support
–  Support s: probability that a

transaction contains {X, Y, Z}
–  confidence c: conditional

probability that a transaction
containing {X, Y} also contains Z

Customer
buys diaper

Customer
buys both

Customer
buys beer

 Support Definition

•  Support of a rule A=>B in the database D of
transactions is given by formula (where
sc=support count)

•  Support(A => B) = P(A U B) =

sc(A U B)
#D

Frequent Item sets: sets of items with a support
support >= MINIMAL support
We (user) fix MIN support usually low and
 Min Confidence high

 Confidence Definition

•  Confidence of a rule A=>B in the
database D of transactions is given by
formula (where sc=support count)

•  Conf(A => B) = P(B|A) =

• 
 =
 =

P(A U B)
P(A)

sc(AUB)
 #D

 divided by
scA
#D

sc(AUB)
 scA

Example
•  Let consider a data base D ={ T1, T2, …. T9}, where
•  T1={ 1,2,5} (we write k for item ik)
•  T2= {2, 4}, T3={2, 3}, T4={1, 2, 4}, T5={1, 3}
•  T6={2, 3}, T7={1, 3}, T8={1, 2, 3,5}, T9={1,2,3}
•  To find association rules we follow the following

steps
•  STEP 1: Count occurrences of items in D
•  STEP2: Fix Minimum support (usually low)
•  STEP 3: Calculate frequent 1-item sets
•  STEP 4: Calculate frequent 2-item sets
•  STEP 5: Calculate frequent 3-item sets
•  STOP when there is no more frequent item sets
•  This is the end of Apriori Algorithm phase

 Example

•  How to generate all frequent 3-item sets (in
Step 5)

•  FIRST: use the frequent 2-item sets to
generate all 3-item set candidates

•  SECOND: use Apriori Principle to prune the
candidates set

•  THIRD: Evaluate the count of the pruned set
•  FOUR: list the frequent 3-item sets
•  STEP 6: repeat the procedure for 4-item sets

etc (if any)

Example- Apriori Pocess

•  Apriori Process Steps:

•  STEP 7: Fix the minimum confidence (usually
high)

•  STEP 8: Generate strong rules (support >min
support and confidence> min confidence)

•  END of rules generation phase
•  END of the Apriori Process

Example- Apriori Pocess

•  Lets now calculate all steps of our Apriori
Process for a data base

•  D ={ T1, T2, …. T9}, where
•  T1={ 1,2,5} (we write k for item ik)
•  T2= {2, 4}, T3={2, 3}, T4={1, 2, 4}, T5={1, 3}
•  T6={2, 3}, T7={1, 3}, T8={1, 2, 3,5}, T9={1,2,3}

•  Here is our Step 1
•  We represent our transactional data base as

relational data base (a table) and put the
occurrences of items as an extra row, on the
bottom

 Example: Step 1
STEP 1: items occurrences=sc

its 1 2 3 4 5
T1 + + 0 0 +
T2 0 + 0 + 0
T3 0 + + 0 0
T4 + + 0 + 0
T5 + 0 + 0 0
T6 0 + + 0 0
T7 + 0 + 0 0
T8 + + + 0 +
T9 + + + 0 0
 sc 6 7 6 2 2

 Example; Step 2

•  STEP 2: Fix minimal support count, for example
•  msc = 2
•  Minimal support = msc/#D= 2/9=22%
•  ms=22%

•  Observe: minimal support of an item set is
determined uniquely by the minimal support
count (msc) and we are going to use only msc
to choose our frequent k-itemsets

Example: steps 3, 4
•  STEP 3: calculate frequent 1-item sets: look at

the sc count – we get that all 1-item sets are
frequent

•  STEP 4: calculate frequent 2-item sets
•  First we calculate 2-item sets candidates

from frequent 1-item sets.

•  As our all 1-item sets are frequent so all
subsets of any 2-item set are frequent and we
have to find counts of all 2-item sets

Observation

•  If for example we set our msc=6, i.e we would have
only {1}, {2} and {3} as frequent item sets

•  Then by Apriori Principle:
•  “if A is a frequent item set, then each of its subsets

is a frequent item set”

•  we would be examining only those 2-item sets that
have {1}, {2}, {3} as subsets

•  Apriori Principle reduces the complexity of the
algorithm

Example: Step 4
•  STEP 4 : All 2-item sets are all 2-element subsets of

{1,2,3,4,5}. They are called are candidates and we
evaluate their sc=support counts (in red). They are
called 2-item set candidates:

•  { 1,2}, {1, 3}, {1, 4}, {1, 5},
•  {2, 3}, {2, 4}, {2, 5}, {3,4}, {3,5}, {4,5}
•  WE calculate their SUPPORT COUNT from SC TABLE
•  {1,2,} (4), {1,3} (4), {1,4} (1), {1,5} (2),
•  {2,3} (4), {2,4} (2), {2,5} (2) ,
•  {3,4} (0), {3,5} (1),
•  {4,5} (0)

•  msc=2 and we choose candidates with sc >= 2 and
get the following

•  Frequent 2- item sets:
•  {1,2}, {1,3}, {1,5}, {2,3}, {2,4}, {2,5}

Support Count TABLE

STEP 1: items occurrences=sc
its 1 2 3 4 5
T1 + + 0 0 +
T2 0 + 0 + 0
T3 0 + + 0 0
T4 + + 0 + 0
T5 + 0 + 0 0
T6 0 + + 0 0
T7 + 0 + 0 0
T8 + + + 0 +
T9 + + + 0 0
 sc 6 7 6 2 2

Example: Step 5
•  STEP 5 : generate all frequent 3-item sets
•  We use frequent 2- item sets:
•  {1,2}, {1,3}, {1,5}, {2,3}, {2,4}, {2,5}
•  and proceed as follows
•  FIRST: we calculate from the frequent 2- item sets a

set of all 3-item set candidates:
•  {1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {2,3,4}, {2,3,5},

{2,4,5}
•  Observe that the candidates
•  {1,3,4}, {1,3,5}, {2,3,4}, {2,3,5}, {2,4,5}
•  do not follow Apriori Principle:
•  “if A is a frequent item set, then each of its subsets is a

frequent item set”

Example: Step 5
•  Frequent 2- item sets are:
•  {1,2}, {1,3}, {1,5}, {2,3}, {2,4}, {2,5}
•  We reject {1,3,4} as its subset {3,4} is not a frequent 2- item set

We reject {1,3,5} as its subset {3,5} is not a frequent 2- item set
 We reject {2,3, 4} as its subset {3,4} is not a frequent 2- item set
 We reject {2,3, 5} as its subset {3,5} is not a frequent 2- item set
 We reject {2, 4, 5} as its subset {4,5} is not a frequent 2- item set

 This rejection process is called pruning
 The following form of the Apriori Algorithm is called

•  Prune Step: Any (k-1)-item set that is not frequent
cannot be a subset of a frequent k-item set

Example: Step 5
•  SECOND: we perform the Prune Step and write the

pruned frequent 3-item set candidates:
•  {1,2,3}, {1,2,5}, {1,2, 4}
•  THIRD: we calculate the sc=support count for the

pruned frequent 3-item candidates
•  {1,2,3} (2), {1,2,5} (2), {1,2, 4} (1)

•  FOUR:
•  msc=2 and we choose the 3-item candidates with

sc >= 2 and get the following list of
•  Frequent 3-item sets:
•  {1,2,3}, {1,2,5}

Support Count TABLE

STEP 1: items occurrences=sc
its 1 2 3 4 5
T1 + + 0 0 +
T2 0 + 0 + 0
T3 0 + + 0 0
T4 + + 0 + 0
T5 + 0 + 0 0
T6 0 + + 0 0
T7 + 0 + 0 0
T8 + + + 0 +
T9 + + + 0 0
 sc 6 7 6 2 2

Example: Steps 6, 7

•  STEP 6: there is no 4-item sets
•  We STOP when there is no more frequent item sets

•  This is the end of Apriori Algorithm phase

•  STEP 7:
•  We fix minimum confidence (usually high) as

•  min conf = 70%

•  We use the confidence to generate Apriori Rules

Example: Step 8
 Association Rules Generation

•  Step 8: Strong Rules Generation
•  We will generate, as an example rules only from one

frequent 2-item set: {1,2}
•  Rule generation for other 2-item sets is similar
•  Reminder: conf(A=>B) =

•  We split {1,2} into disjoint subsets A and B as follows:
A={1} and B={2} or A={2} and B={1} and get two
possible rules:

•  {1}=>{2} or {2}=>{1}

sc(AUB)
 scA

Example: Association Rules Generation

•  Conf(1=>2)=
 = 4/6 = 66%
The rule is not accepted (min conf= 70%)

•  Conf(2=>1) =
 = 4/7= 57%

The rule is not accepted

 sc{1,2}
sc {1}

sc{1,2}
sc{2}

Example: Step 8

•  Now we use one frequent 3-item set
•  {1,2,5} to show how to generate strong rules

•  First we evaluate all possibilities how to split the set
{1,2,5} into to disjoint subsets A,B to obtain all possible
rules A=>B

•  For each rule we evaluate its confidence and choose
only those with conf ≥ 70% (our minimal confidence)

•  The minimal support condition is fulfilled as we deal
only with frequent items

•  The rules such obtained are strong rules

Example: Association Rules Generation

•  The rules for {1,2,5} are the following:
•  R1: {1,2}=>{5}
•  conf(R1)=sc{1,2,5}/sc{1,2}= 2/4 = ½ = 50%
•  R1 is rejected
•  R2: {1,5} => {2}
•  conf(R2)=sc{1,2,5}/sc{1,5}= 2/2 = 100%
•  R2 is a strong rule (keep)
•  R3: {2,5} => {1}
•  conf(R3)=sc{1,2,5}/sc{2,5}= 2/2 = 100%
•  R3 is a strong rule (keep)
•  R4: {1} => {2,5}
•  conf(R4)=sc{1,2,5}/sc{1}= 2/6 = 33%
•  R4 is rejected

Example: Association Rules Generation

•  The next set of rules for {1,2,5} are the following:
•  R5: {2}=>{1,5}
•  conf(R5)=sc{1,2,5}/sc{2}= 2/7 = 27%
•  R5 is rejected
•  R6: {5} => {1,2}
•  conf(R6)=sc{1,2,5}/sc{5}= 2/2 = 100%
•  R6 is a strong rule (keep)
•  As the last step we evaluate the exact support for the

strong rules
•  We know already that it is greater or equal to

minimum support, as rules were obtained from the
frequent item sets

Example: Association Rules Generation

•  Exact support for the strong rules is:

•  Sup({1,5}=>{2})=sc{1,2,5}/#D=2/9= 22%
•  We write:
•  1∩ 5 => 2 [22%, 100%]
•  Sup({2,5}=>{1}) =sc{1,2,5}/#D=2/9= 22%
•  We write:
•  2∩ 5 => 1 [22%, 100%]
•  Sup({5}=>{1,2}) =sc{1,2,5}/#D=2/9= 22%
•  We write:
•  5 => 1 ∩ 2 [22%, 100%]

•  THE END of Apriori Process

 Association and Correlation

•  As we can see the support-confidence
framework can be misleading;

•  it can identify a rule A=>B as interesting (strong)
when, in fact the occurrence of A might not imply
the occurrence of B

•  Correlation Analysis provides an alternative
framework for finding interesting relationships,

•  or to improve understanding of meaning of
some association rules (a lift of an association
rule)

 Correlation and Association

•  Definition: Two item sets A and B are
independent (the occurrence of A is
independent of the occurrence of item set B) iff
probability P fulfills the condition

•  P(A ∪ B) = P(A) ⋅ P(B)
•  Otherwise A and B are dependent or

correlated
•  The measure of correlation, or correlation

between A and B is given by the formula:

•  Corr(A,B)=
P(A ∪ B)
 P(A)P(B)

Correlation and Association

•  corr(A,B) >1 means that A and B are
positively correlated i.e. the occurrence of one
implies the occurrence of the other

•  corr(A,B) < 1 means that the occurrence of A
is negatively correlated with B

•  or discourages the occurrence of B
•  corr(A,B) =1 means that A and B are

independent

 Correlation and Association
•  The correlation formula can be re-written as

•  Corr(A,B) =

•  Supp(A=>B)= P(AUB)
•  Conf(A=>B)= P(B|A), i.e.
•  Conf(A=>B)= corr(A,B) P(B)
•  So correlation, support and confidence are all different,

but the correlation provides an extra information about
the association rule (A=>B)

•  We say that the correlation corr(A,B) provides the LIFT
of the association rule (A=>B), i.e.

•  A is said to increase or to LIFT the likelihood of B by
the factor of the value returned by the formula for
corr(A,B)

P(B|A)
P(B)

Correlation Rule (HAN Book)

•  A correlation rule is a set of items
•  {i1, i2, ….in}, where the items occurrences are

correlated
•  The correlation value is given by the correlation

formula and we use Χ square test to determine if
correlation is statistically significant

•  The Χ square test can also determine the negative
correlation

•  We can also form minimal correlated item sets, etc…
•  Limitations: Χ square test is less accurate on the data

tables that are sparse and can be misleading for the
contingency tables larger then 2x2

Criticism to Support and Confidence
(Han book)

•  Example 1: (Aggarwal & Yu, PODS98)
–  Among 5000 students

•  3000 play basketball
•  3750 eat cereal
•  2000 both play basket ball and eat cereal

RULE: play basketball ⇒ eat cereal [40%, 66.7%] is misleading
because the overall percentage of students eating cereal is 75%
which is higher than 66.7%.

RULE: play basketball ⇒ not eat cereal [20%, 33.3%] is far more
accurate, although with lower support and confidence

basketball not basketball sum(row)
cereal 2000 1750 3750
not cereal 1000 250 1250
sum(col.) 3000 2000 5000

EXTRTA Slides

•  ADDITIONAL MATERIAL
•  Read, explore; much of it I already

covered in our slides

Mining Association Rules in
Large Databases

Slightly modified HAN Book
slides follow from now

Mining Association Rules in Large Databases

•  Association rule mining
•  Mining single-dimensional Boolean association rules

from transactional databases
•  Mining multilevel association rules from transactional

databases
•  Mining multidimensional association rules from

transactional databases and data warehouse
•  From association mining to correlation analysis
•  Constraint-based association mining
•  Summary

Association Rule Mining: A Road Map

•  Boolean (Qualitative) vs. quantitative
associations (Based on the types of values handled)

buys(x, “SQLServer”) ^ income(x, “DMBook”) => buys(x, “DBMiner”)

[0.2%, 60%] (Boolean/Qualitative)

age(x, “30..39”) ^ income(x, “42..48K”) => buys(x, “PC”) [1%, 75%]

(quantitative)

•  Single dimension (one predicate) vs. multiple dimensional
associations (multiple predicates)

Association Rule Road Map (c.d)

•  Single level vs. multiple-level analysis
–  What brands of beers are associated with what brands

of diapers – single level
–  Various extensions
1. Correlation analysis (just discussed)
2. Association does not necessarily imply correlation or

causality
3. Constraints enforced

Example:

 smallsales (sum < 100) implies bigbuys (sum >1,000)?

Chapter 5: Mining Association Rules

•  Association rule mining
•  Mining single-dimensional Boolean association rules

from transactional databases
•  Mining multilevel association rules from transactional

databases
•  Mining multidimensional association rules from

transactional databases and data warehouse
•  From association mining to correlation analysis
•  Constraint-based association mining
•  Summary

An Example

For rule A ⇒ C:
support = support({A, C}) = 50%
confidence = sc({A, C})/sc({A}) = 66.6%

The Apriori principle:
Any subset of a frequent itemset must be frequent

Transaction ID Items Bought
2000 A,B,C
1000 A,C
4000 A,D
5000 B,E,F

Frequent Itemset Support
{A} 75%
{B} 50%
{C} 50%
{A,C} 50%

Min. support 50%
Min. confidence 50%

Mining Frequent Itemsets: the Key Step

•  Find the frequent item sets: the sets of
items that have minimum support
–  A subset of a frequent item set must also be a

frequent item set
•  i.e., if {A, B} is a frequent item set, both {A} and {B}

should be a frequent item set

–  Iteratively find frequent item sets with cardinality
from 1 to k (k-item set)

•  Use the frequent item sets to generate
association rules.

 Apriori Algorithm — Book Example of frequents items
sets generation

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C2 C2
Scan D

C3 L3 itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

Generating Candidates: Ck

•  Join Step: Ck is generated by
joining Lk-with itself

• Prune Step: Any (k-1)-item set

that is not frequent cannot be a
subset of a frequent k-item set

Example of Generating Candidates

•  L3={abc, abd, acd, ace, bcd}

•  We write abc for {a,b,c}, etc…

•  Self-joining: L3*L3
–  abcd from abc and abd

–  acde from acd and ace

•  Pruning:
–  acde is removed because ade is not frequent: is not in L3

•  C4={abcd}

Appriori Performance Bottlenecks

•  The core of the Apriori algorithm:
–  Use frequent (k – 1)-item sets to generate
 candidate frequent k-item sets
–  Use database scan and pattern matching to collect counts for the

candidate item sets

•  The bottleneck of Apriori: candidate generation
–  Huge candidate sets:

•  104 frequent 1-itemset will generate 107 candidate 2-itemsets
•  To discover a frequent pattern of size 100, e.g.,
•  {a1, a2, …, a100}, one needs to generate 2100 ≈ 1030

candidates
–  Multiple scans of database:

•  Needs (n +1) scans, n is the length of the longest pattern

How to Count Supports of Candidates?

•  Why counting supports of candidates is a problem?
–  The total number of candidates can be very huge
–  One transaction may contain many candidates

•  Method:
–  Candidate itemsets are stored in a hash-tree
–  Leaf node of hash-tree contains a list of itemsets and counts
–  Interior node contains a hash table
–  Subset function: finds all the candidates contained in a

transaction

Methods to Improve Apriori’s Efficiency

•  Hash-based itemset counting: A k-itemset whose corresponding
hashing bucket count is below the threshold cannot be frequent

•  Transaction reduction: A transaction that does not contain any
frequent k-itemset is useless in subsequent scans

•  Partitioning: Any itemset that is potentially frequent in DB must be
frequent in at least one of the partitions of DB

•  Sampling: mining on a subset of given data, lower support
threshold + a method to determine the completeness

•  Dynamic itemset counting: add new candidate itemsets only when
all of their subsets are estimated to be frequent

An Alternative: Mining Frequent Patterns Without
Candidate Generation

•  Compress a large database into a compact,
•  Frequent-Pattern tree (FP-tree) structure

–  highly condensed, but complete for frequent pattern mining
–  avoid costly database scans

•  Develop an efficient, FP-tree-based frequent pattern
mining method
–  A divide-and-conquer methodology: decompose

mining tasks into smaller ones
–  Avoid candidate generation: sub-database test only!

Why Is Frequent Pattern Growth Fast?

•  Performance study shows
–  FP-growth is an order of magnitude faster than

Apriori, and is also faster than tree-projection

•  Reasoning
–  No candidate generation, no candidate test

–  Use compact data structure

–  Eliminate repeated database scan

–  Basic operation is counting and FP-tree building

FP-growth vs. Apriori: Scalability With the
Support Threshold

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3
Support threshold(%)

Ru
n

tim
e(

se
c.

)

D1 FP-grow th runtime

D1 Apriori runtime

Data set T25I20D10K

FP-growth vs. Tree-Projection: Scalability
with Support Threshold

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2

Support threshold (%)

Ru
nt

im
e

(s
ec

.)

D2 FP-growth
D2 TreeProjection

Data set T25I20D100K

Presentation of Association Rules
(Table Form)

Visualization of Association Rule Using Plane Graph

Visualization of Association Rule Using Rule Graph

Iceberg Queries

•  Iceberg query: Compute aggregates over one or
a set of attributes only for those whose aggregate
values is above certain threshold

•  Example:
select P.custID, P.itemID, sum(P.qty)
from purchase P
group by P.custID, P.itemID
having sum(P.qty) >= 10

•  Compute iceberg queries efficiently by Apriori:
–  First compute lower dimensions
–  Then compute higher dimensions only when all the

lower ones are above the threshold

Chapter 6: Mining Association Rules in Large
Databases

•  Association rule mining
•  Mining single-dimensional Boolean association

rules from transactional databases
•  Mining multilevel association rules from

transactional databases
•  Mining multidimensional association rules from

transactional databases and data warehouse
•  From association mining to correlation analysis
•  Constraint-based association mining
•  Summary

Multiple-Level Association Rules

•  Items often form hierarchy
•  Items at the lower level are

expected to have lower
support.

•  Rules regarding itemsets at
 appropriate levels could be

quite useful.
•  Transaction database can be

encoded based on
dimensions and levels

•  We can explore shared multi-
level mining

Food

bread milk

skim

Sunset Fraser

2% white wheat

TID Items
T1 {111, 121, 211, 221}
T2 {111, 211, 222, 323}
T3 {112, 122, 221, 411}
T4 {111, 121}
T5 {111, 122, 211, 221, 413}

Mining Multi-Level Associations

•  A top_down, progressive deepening approach:
–  First find high-level strong rules:

 milk → bread [20%, 60%]
–  Then find their lower-level “weaker” rules:

 2% milk → wheat bread [6%, 50%]
•  Variations at mining multiple-level

association rules.
–  Level-crossed association rules:

 2% milk → Wonder wheat bread
–  Association rules with multiple, alternative

hierarchies:
 2% milk → Wonder bread

Chapter 6: Mining Association Rules in
Large Databases

•  Association rule mining
•  Mining single-dimensional Boolean association

rules from transactional databases
•  Mining multilevel association rules from

transactional databases
•  Mining multidimensional association rules from

transactional databases and data warehouse
•  From association mining to correlation analysis
•  Constraint-based association mining
•  Summary

Multi-Dimensional Association (1)

•  Single-dimensional rules:

•  buys(X, “milk”) ⇒ buys(X, “bread”)

•  Multi-dimensional rules: Involve 2 or more

dimensions or predicates

–  Inter-dimension association rules (no repeated
predicates)

•  age(X,”19-25”) ∧ occupation(X,“student”) ⇒

buys(X,“coke”)

Multi-Dimensional Association

– Hybrid-dimension association rules
(repeated predicates)

• age(X,”19-25”) ∧ buys(X, “popcorn”)
⇒ buys(X, “coke”)

•  Categorical (qualitative) Attributes

–  finite number of possible values, no
ordering among values

•  Quantitative Attributes
– numeric, implicit ordering among values

Techniques for Mining MD Associations

•  Search for frequent k-predicate set:
–  Example:
–  {age, occupation, buys} is a 3-predicate set.
–  Techniques can be categorized by how age are treated.

1. Using static discretization of quantitative attributes
–  Quantitative attributes are statically discretized by using

predefined concept hierarchies.
2. Quantitative association rules

–  Quantitative attributes are dynamically discretized into “bins”
based on the distribution of the data.

3. Distance-based association rules
–  This is a dynamic discretization process that considers the

distance between data points.

Static Discretization of Quantitative Attributes

•  Discretized prior to mining using concept
hierarchy.

•  Numeric values are replaced by ranges
•  In relational database, finding all frequent k-

predicate sets will require k or k+1 table scans.
•  Data cube is well suited for mining.
•  The cells of an n-dimensional

cuboid correspond to the
predicate sets.

•  Mining from data cubes
can be much faster.

(income) (age)

()

(buys)

(age, income) (age,buys) (income,buys)

(age,income,buys)

Quantitative Association Rules

age(X,”30-34”) ∧
 income(X,”24K - 48K”)
 ⇒ buys(X,”high resolution TV”)

•  Numeric attributes are dynamically discretized
–  Such that the confidence or compactness of the rules mined is

maximized.
•  2-D quantitative association rules: Aquan1 ∧ Aquan2 ⇒ Acat
•  Cluster “adjacent”

association rules
to form general
rules using a 2-D
grid.

•  Example:

ARCS (Association Rule Clustering System)

1. Binning

2. Find frequent

predicateset

3. Clustering

4. Optimize

How does ARCS work?

Limitations of ARCS

•  Only quantitative attributes on LHS of rules.

•  Only 2 attributes on LHS. (2D limitation)

•  An alternative to ARCS
–  Non-grid-based

–  equi-depth binning

–  clustering based on a measure of partial
completeness.

–  “Mining Quantitative Association Rules in Large
Relational Tables” by R. Srikant and R. Agrawal.

•  The diameter, d, assesses the density of a
cluster CX , where

•  Finding clusters and distance-based rules
–  the density threshold, d0 , replaces the notion of support
–  modified version of the BIRCH clustering algorithm

XdCd X 0)(≤

0sCX ≥

Clusters and Distance Measurements

Mining Distance-based Association Rules

•  Binning methods do not capture the semantics of interval
data

•  Distance-based partitioning, more meaningful discretization

considering:
–  density/number of points in an interval
–  “closeness” of points in an interval

Price($)
Equi-width
(width $10)

Equi-depth
(depth 2)

Distance-
based

7 [0,10] [7,20] [7,7]
20 [11,20] [22,50] [20,22]
22 [21,30] [51,53] [50,53]
50 [31,40]
51 [41,50]
53 [51,60]

•  S[X] is a set of N tuples t1, t2, …, tN ,
projected on the attribute set X

•  The diameter of S[X]:

– distx:distance metric, e.g. Euclidean distance or

Manhattan

)1(

])[],[(
])[(1 1

−
=
∑ ∑= =

NN

XtXtdist
XSd

ji
N

i

N

j
X

Clusters and Distance Measurements

Chapter 6: Mining Association Rules in
Large Databases

•  Association rule mining
•  Mining single-dimensional Boolean association

rules from transactional databases
•  Mining multilevel association rules from

transactional databases
•  Mining multidimensional association rules from

transactional databases and data warehouse
•  From association mining to correlation analysis
•  Constraint-based association mining
•  Summary

Interestingness Measurements

•  Objective measures
Two popular measurements:
❶ support; and
❷ confidence

•  Subjective measures (Silberschatz &
Tuzhilin, KDD95)
A rule (pattern) is interesting if
❶ it is unexpected (surprising to the user); and/or
❷ actionable (the user can do something with it)

Criticism to Support and Confidence
•  Example 2:

–  X and Y: positively correlated,
–  X and Z, negatively related
–  support and confidence of
 X=>Z dominates

X 1 1 1 1 0 0 0 0
Y 1 1 0 0 0 0 0 0
Z 0 1 1 1 1 1 1 1

Rule Support Confidence
X=>Y 25% 50%
X=>Z 37.50% 75%

Other Interestingness Measures: Interest

•  Interest

–  taking both P(A) and P(B) in consideration

–  P(A^B)=P(B)*P(A), if A and B are independent events

–  A and B negatively correlated, if the value is less than 1;

otherwise A and B positively correlated.

)()(
)(
BPAP
BAP ∧

X 1 1 1 1 0 0 0 0
Y 1 1 0 0 0 0 0 0
Z 0 1 1 1 1 1 1 1

Itemset Support Interest
X,Y 25% 2
X,Z 37.50% 0.9
Y,Z 12.50% 0.57

Chapter 6: Mining Association Rules in
Large Databases

•  Association rule mining
•  Mining single-dimensional Boolean association rules

from transactional databases
•  Mining multilevel association rules from transactional

databases
•  Mining multidimensional association rules from

transactional databases and data warehouse
•  From association mining to correlation analysis
•  Constraint-based association mining
•  Summary

Constraint-Based Mining

•  Interactive, exploratory mining giga-bytes of data?
–  Could it be real? — Making good use of constraints!

•  What kinds of constraints can be used in mining?
–  Knowledge type constraint: classification, association, etc.
–  Data constraint: SQL-like queries

•  Find product pairs sold together in Vancouver in Dec.’98

–  Dimension/level constraints:
•  in relevance to region, price, brand, customer category
•  small sales (price < $10) triggers big sales (sum > $200).

–  Interestingness constraints:
•  strong rules (min_support ≥ 3%, min_confidence ≥ 60%).

Rule Constraints in Association Mining

•  Two kind of rule constraints:
–  Rule form constraints: meta-rule guided mining.

•  P(x, y) ^ Q(x, w) → takes(x, “database systems”).
–  Rule (content) constraint: constraint-based query

optimization (Ng, et al., SIGMOD’98).
•  sum(LHS) < 100 ^ min(LHS) > 20 ^ count(LHS) > 3 ^ sum(RHS) >

1000

•  1-variable vs. 2-variable constraints (Lakshmanan,
et al. SIGMOD’99):
–  1-var: A constraint confining only one side (L/R) of the

rule, e.g., as shown above.
–  2-var: A constraint confining both sides (L and R).

•  sum(LHS) < min(RHS) ^ max(RHS) < 5* sum(LHS)

Chapter 6: Mining Association Rules in
Large Databases

•  Association rule mining
•  Mining single-dimensional Boolean association rules

from transactional databases
•  Mining multilevel association rules from transactional

databases
•  Mining multidimensional association rules from

transactional databases and data warehouse
•  From association mining to correlation analysis
•  Constraint-based association mining
•  Summary

Why Is the Big Pie Still There?

•  More on constraint-based mining of associations
–  Boolean vs. quantitative associations

•  Association on discrete vs. continuous data
–  From association to correlation and causal structure

analysis.
•  Association does not necessarily imply correlation or causal

relationships
–  From intra-trasanction association to inter-

transaction associations
•  E.g., break the barriers of transactions (Lu, et al. TOIS’99).

–  From association analysis to classification and
clustering analysis

•  E.g, clustering association rules

Summary

•  Association rule mining
–  probably the most significant contribution from the

database community in KDD
–  A large number of papers have been published

•  Many interesting issues have been explored
•  An interesting research direction:

–  Association analysis in other types of data: spatial
data, multimedia data, time series data, etc.

