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   Association Rules Mining 
   An Introduction 

•  This is an intuitive (more or less ) introduction 
•  It contains explanation of the main ideas: 
•  Frequent item sets, association rules, how we 

construct the association rules 
•   How we judge the goodness of the rules 
•  Example of an intuitive “run” of the Appriori 

Algorithm and association rules generation 
•  Discussion of the relationship between the 

Association and Correlation analysis 



What Is Association Mining? 

Association rule mining: 
Finding frequent patterns  called  
associations, among sets of items or 
objects in transaction databases, 
relational databases, and other 
information repositories 

•  Applications: 
–  Basket data analysis, cross-marketing, catalog design, 

loss-leader analysis, clustering, classification, etc. 



     Association Rules 

•  Rule general form: 
  “Body → Ηead  [support, confidence]” 
Rule Predicate form: 
buys(x, “diapers”) →  buys(x, “beer”)  
 [0.5%, 60%] 
major(x, “CS”) ^ takes(x, “DB”) →  grade(x, 
“A”)    [1%, 75%] 

Rule Attribute form: 
Diapers  → beer    [1%, 75%] 



Association Analysis: Basic Concepts 

•  Given: a database of transactions, where  
each transaction is a list of items  

 
•  Find:  all rules that associate the presence 

of one set of items with that of another set of 
items 

•  Example 
 98% of people who purchase tires and auto 

accessories also get automotive services done 



Association Model 
 

•  I ={i1, i2, ...., in}  a set of items  
•  J = P(I ) set of all subsets of the set of items, 

elements of J are called itemsets 
•  Transaction T:  T is subset of set I of items 
•  Data Base: set of transactions 
•  An association rule is an implication of the 

form :  X-> Y, where X, Y are disjoint 
subsets of items  I (elements of J ) 

•  Problem: Find rules that have support and 
confidence greater that user-specified 
minimum support and minimun confidence 



 
        Apriori Algorithm  

•  Apriori Algorithm: 
•  First Step:  we find all frequent item-sets 
•  An item-set is frequent if it has a 

support greater or equal a fixed 
minimum support 

•   We fix minimum support usually low 
•  Rules generation from the frequent item-

sets is a separate problem and we will 
cover it as a part of Association Process 



Apriori Algorithm  

•  In order to  calculate efficiently frequent item-
sets: 

•  1-item-sets (one element item-sets) 
•   2-item-sets (two elements item-sets) 
•   3-item-sets ( three elements item-sets), etc.. 
•  we use a principle, called an Apriori Principle 

(hence the name: Apriori Algorithm): 
•  Apriori Principle  
•  ANY SUBSET OF A FREQUENT ITEMSET IS 

A FREQUENT ITEMSET  



The Apriori Algorithm (Han Book) 

•  Pseudo-code: 
Ck: Candidate itemset of size k 
Lk : frequent itemset of size k 

 
L1 = {frequent items}; 
for (k = 1; Lk !=∅; k++) do begin 
     Ck+1 = candidates generated from Lk; 
    for each transaction t in database do 

       increment the count of all candidates in Ck+1                            
that are contained in t 

    Lk+1  = candidates in Ck+1 with min_support 
    end 
return ∪k Lk; 



Appriori Process:  
Rules Generation 

•  Appriori Algorithm stops after the First Step  
•  Second Step in the Appriori Proces (item-sets 

generation AND rules generation) is the rules 
generation:  

•   We  calculate, from the frequent item-sets  a set 
of the strong rules  

•  Strong rules: rules with at least minimum 
support (low) and minimum confidence (high) 

•  Apriori Process is then finished . 
 



Apriori Process 
Rules Generation 

•  The Apriori Process problem is:  
•  How do we form the  association rules  
   (A =>B) from the frequent item sets? 
 
•  Remember: A, B are disjoint subsets of 

the set  I of items in general, and of the set 
2- frequent, 3-frequent item  sets  ….. etc, 
… as generated by the Apriori Algorithm 



      How we find the rules?  

•  1-frequent item set: {i1}- no rule 
•  2-frequent item set {i1, i2}: there are two rules: 
•   {i1} => {i2} and {i2} => {i2} 
•  We write them also as 
•  i1 => i2  and   i2 => i2 
•  We decide which rule we accept by calculating 

its support (greater= minimum support) and 
confidence (greater= minimum confidence) 



      How we find the rules?  

•  3-frequent item set:   {i1, i2, i3} 
•  The rules, by definition  are of the form (A =>B) where 

A and B are disjoint subsets of  {i1, i2, i3}, i.e. 
•   we have to find all subsets A,B of {i1, i2, i3} such that 

A∪B = {i1, i2, i3}   and     A∩ B = Φ 
•  For example, 
•   let  A= {i1, i2} and B= {i3} 
•   The rule is   
•  {i1, i2} => {i3} 
•   and we write it in a form:  
     i1 ∩ i2 => i3     or    milk ∩ bread => vodka  
   if item i1 is milk, item i2 is bread and item i3 is vodka 
 



      How we find the rules?  

•  Another choice for A and B is, for example: 
•     A= {i1}   and    B= {12, i3}.  
•  The rule is 
•     {i1} => {i2, i3}  and we write it in a form:  
    i1 => i2∩ i3      or       milk => bread ∩ vodka 
   if item i1 is milk, item i2 is bread and item i3 is  vodka 
•  REMEMBER: 
•   We have to cover all the choices for A and B! 
•  Which rule we accept is being decided by 

calculating its support (greater =  minimum 
support) and confidence (greater =  minimum 
confidence) 



      Rules Confidence and Support 

•  Confidence:  
•  the rule X->Y holds in the database D 

with confidence  c if the  c% of the 
transactions in D that contain X also 
contain Y 

•  Support: The rule X->Y has support s 
in D if s% of the transaction contain 
XUY 



Support and  Confidence 

•  Find all the rules X & Y ⇒  Z with 
minimum confidence and support 
–  Support s: probability that a 

transaction contains {X, Y, Z} 
–  confidence c: conditional 

probability that a transaction 
containing {X, Y} also contains Z 

Customer 
buys diaper 

Customer 
buys both 

Customer 
buys beer 



  Support Definition 

•  Support of  a rule A=>B in the database  D of 
transactions is given by formula (where 
sc=support count) 

•  Support( A => B) = P(A U B) =   

sc(A U B) 
#D 

Frequent Item sets: sets of items with a support   
support >= MINIMAL support 
We (user) fix MIN support usually low and 
 Min Confidence high 



 Confidence Definition 

•  Confidence of  a rule A=>B in the 
database  D of transactions is given by 
formula (where sc=support count) 

•  Conf( A => B) = P(B|A) =   

•                              
                  =  
                                              =  
                                                          

P(A U B) 
P(A) 

sc(AUB) 
    #D   

  divided by 
scA  
#D 

sc(AUB) 
 scA 



Example 
•  Let consider a data base D ={ T1, T2, …. T9}, where 
•   T1={ 1,2,5} (we write k for item ik) 
•  T2= {2, 4},  T3={2, 3},  T4={1, 2, 4}, T5={1, 3} 
•  T6={2, 3}, T7={1, 3}, T8={1, 2, 3,5}, T9={1,2,3} 
•  To  find association rules we follow the following 

steps 
•  STEP 1: Count occurrences of items in D 
•  STEP2:   Fix Minimum support (usually low) 
•  STEP 3: Calculate frequent 1-item sets 
•  STEP 4:  Calculate frequent 2-item sets 
•  STEP 5: Calculate frequent 3-item sets 
•  STOP when there is no more frequent item sets 
•   This is the end of Apriori Algorithm phase 
 



 Example 

•  How to  generate all frequent 3-item sets (in 
Step 5) 

•  FIRST: use the frequent 2-item sets to 
generate all 3-item set candidates 

•  SECOND: use Apriori Principle to prune the 
candidates set 

•  THIRD: Evaluate the count of the pruned set 
•  FOUR: list the frequent 3-item sets 
•  STEP 6: repeat the procedure for 4-item sets 

etc (if any) 



Example- Apriori Pocess  

•  Apriori Process Steps: 

•  STEP 7: Fix the minimum  confidence (usually 
high) 

•  STEP 8: Generate strong rules (support >min 
support and confidence> min confidence) 

•  END of rules generation phase 
•  END of the Apriori Process 



Example- Apriori Pocess 

•  Lets now calculate all steps of our Apriori 
Process  for a data  base  

•  D ={ T1, T2, …. T9}, where 
•   T1={ 1,2,5} (we write k for item ik) 
•  T2= {2, 4},  T3={2, 3},  T4={1, 2, 4}, T5={1, 3} 
•  T6={2, 3}, T7={1, 3}, T8={1, 2, 3,5}, T9={1,2,3} 

•  Here is our Step 1 
•  We represent our transactional data base as 

relational data base (a table) and put the 
occurrences of items as an extra row, on the 
bottom  



 Example: Step 1 
STEP 1: items occurrences=sc 

its    1     2    3   4    5 
T1    +     +    0    0    + 
T2    0     +    0    +    0 
T3    0     +    +    0    0 
T4    +     +    0    +    0 
T5    +     0    +    0    0 
T6    0                +    +    0    0 
T7    +     0    +    0    0 
T8    +     +    +    0    + 
T9    +     +    +    0    0 
 sc    6    7    6    2    2 



 Example;  Step 2 

•  STEP 2: Fix minimal support count, for example  
•  msc = 2 
•  Minimal support =  msc/#D= 2/9=22% 
•  ms=22% 

•  Observe: minimal support of an item set is 
determined uniquely by the minimal support 
count (msc) and we are going to use only msc 
to choose our frequent k-itemsets 



Example: steps 3, 4 
•  STEP 3: calculate frequent 1-item sets: look at 

the sc count – we get that all 1-item sets are 
frequent 

•  STEP 4: calculate frequent 2-item sets 
•  First we calculate 2-item sets candidates 

from frequent 1-item sets. 

•  As our all 1-item sets are frequent so all 
subsets of any 2-item set are frequent and we 
have to find counts of all 2-item sets 



Observation 

•  If for example  we set our msc=6, i.e we would have 
only {1}, {2} and {3} as frequent item sets 

•  Then by Apriori Principle: 
•   “if A is a frequent item set, then each of its subsets 

is a frequent item set” 

•   we would be examining only those 2-item sets that 
have {1}, {2}, {3} as subsets 

•  Apriori Principle reduces the complexity of the 
algorithm 



Example: Step 4 
•  STEP 4 :  All 2-item sets are all 2-element subsets of 

{1,2,3,4,5}. They are called are candidates and we 
evaluate their sc=support counts (in red). They are 
called 2-item set candidates: 

•   { 1,2},   {1, 3},    {1, 4},    {1, 5}, 
•   {2, 3},  {2, 4},   {2, 5},   {3,4},   {3,5},   {4,5} 
•  WE calculate their SUPPORT COUNT from SC TABLE 
•  {1,2,} (4),   {1,3} (4),  {1,4} (1),  {1,5} (2), 
•  {2,3} (4),     {2,4} (2),  {2,5} (2) , 
•  {3,4} (0),     {3,5} (1), 
•  {4,5} (0) 

•  msc=2  and  we choose candidates with  sc >= 2 and 
get the following  

•  Frequent 2- item sets:  
•  {1,2}, {1,3}, {1,5}, {2,3}, {2,4}, {2,5} 



Support Count TABLE 

STEP 1: items occurrences=sc 
its    1     2    3   4    5 
T1    +     +    0    0    + 
T2    0     +    0    +    0 
T3    0     +    +    0    0 
T4    +     +    0    +    0 
T5    +     0    +    0    0 
T6    0                +    +    0    0 
T7    +     0    +    0    0 
T8    +     +    +    0    + 
T9    +     +    +    0    0 
 sc    6    7    6    2    2 



Example: Step 5 
•  STEP 5 : generate all frequent 3-item sets 
•  We use frequent 2- item sets:  
•  {1,2}, {1,3}, {1,5}, {2,3}, {2,4}, {2,5} 
•  and  proceed as follows 
•  FIRST:  we calculate  from the frequent 2- item sets a 

set of all   3-item set candidates: 
•   {1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {2,3,4}, {2,3,5}, 

{2,4,5}  
•  Observe  that the candidates 
•  {1,3,4}, {1,3,5}, {2,3,4}, {2,3,5}, {2,4,5}  
•  do not follow Apriori Principle: 
•  “if A is a frequent item set, then each of its subsets is a 

frequent item set” 



Example: Step 5 
•  Frequent 2- item sets are:  
•  {1,2}, {1,3}, {1,5}, {2,3}, {2,4}, {2,5} 
•  We reject {1,3,4}  as  its subset  {3,4}  is not a frequent 2- item set  

We reject {1,3,5}  as  its subset  {3,5}  is not a frequent 2- item set 
     We reject {2,3, 4}  as  its subset  {3,4}  is not a frequent 2- item set 
     We reject {2,3, 5}  as  its subset  {3,5}  is not a frequent 2- item set 
     We reject {2, 4, 5}  as  its subset  {4,5}  is not a frequent 2- item set 
 

 This  rejection process is called pruning  
 The following form  of the  Apriori Algorithm is called 
 

•  Prune Step:  Any (k-1)-item set that is not frequent 
cannot be a subset of a frequent k-item set 



Example: Step 5 
•   SECOND: we  perform  the  Prune Step and write the 

pruned frequent 3-item set candidates:   
•  {1,2,3},  {1,2,5},    {1,2, 4}  
•  THIRD:  we calculate the  sc=support count  for  the 

pruned frequent 3-item candidates  
•  {1,2,3}  (2),     {1,2,5} (2),  {1,2, 4}  (1) 

•  FOUR:  
•  msc=2  and  we choose the 3-item  candidates with  

sc >= 2 and get the following  list of 
•  Frequent 3-item sets:  
•  {1,2,3}, {1,2,5} 



Support Count TABLE 

STEP 1: items occurrences=sc 
its    1     2    3   4    5 
T1    +     +    0    0    + 
T2    0     +    0    +    0 
T3    0     +    +    0    0 
T4    +     +    0    +    0 
T5    +     0    +    0    0 
T6    0                +    +    0    0 
T7    +     0    +    0    0 
T8    +     +    +    0    + 
T9    +     +    +    0    0 
 sc    6    7    6    2    2 



Example: Steps 6, 7 

•  STEP 6:   there is no 4-item sets 
•   We STOP when there is no more frequent item sets 

•   This is the end of Apriori Algorithm phase 

•  STEP 7: 
•  We fix minimum confidence (usually high) as 

•  min conf = 70% 

•   We use the confidence to generate Apriori Rules 



Example: Step 8 
 Association Rules Generation 

 
•  Step 8:  Strong Rules Generation 
•  We will generate, as an example rules only from one 

frequent 2-item set: {1,2} 
•  Rule generation for other 2-item sets is similar 
•  Reminder: conf(A=>B) = 

•  We split {1,2} into disjoint subsets A and B as follows: 
A={1} and B={2} or A={2} and B={1} and get two 
possible rules: 

•  {1}=>{2}      or     {2}=>{1}  

sc(AUB) 
 scA 

 
 



Example: Association Rules Generation 

•  Conf(1=>2)=   
                                          = 4/6 = 66%   
The rule is not accepted (min conf= 70%) 
 
•  Conf(2=>1) =  
                                          = 4/7= 57% 
 
The rule is not accepted 

 sc{1,2}    
sc {1}  

sc{1,2} 
sc{2} 



Example: Step 8 

•  Now we use one frequent 3-item set 
•  {1,2,5}  to show how to generate strong rules 

•  First we evaluate all possibilities how to split the set 
{1,2,5} into to disjoint subsets A,B to obtain all possible 
rules  A=>B  

•  For each rule we evaluate its confidence and choose 
only those with conf ≥ 70% (our minimal confidence)  

•  The minimal support condition is fulfilled as we deal 
only with frequent items 

•  The rules such obtained are strong rules 



Example: Association Rules Generation 

•  The rules for {1,2,5} are the following: 
•  R1: {1,2}=>{5} 
•   conf(R1)=sc{1,2,5}/sc{1,2}= 2/4 = ½ = 50% 
•  R1 is rejected 
•  R2: {1,5} => {2} 
•  conf(R2)=sc{1,2,5}/sc{1,5}= 2/2 = 100% 
•  R2 is a strong rule (keep) 
•  R3: {2,5} => {1} 
•  conf(R3)=sc{1,2,5}/sc{2,5}= 2/2 = 100% 
•  R3 is a strong rule (keep) 
•  R4: {1} => {2,5} 
•  conf(R4)=sc{1,2,5}/sc{1}= 2/6 = 33% 
•  R4 is rejected 
 



Example: Association Rules Generation 

•  The next set of  rules for {1,2,5} are the following: 
•  R5: {2}=>{1,5} 
•   conf(R5)=sc{1,2,5}/sc{2}= 2/7 =  27% 
•  R5 is rejected 
•  R6: {5} => {1,2} 
•  conf(R6)=sc{1,2,5}/sc{5}= 2/2 = 100% 
•  R6 is a strong rule (keep) 
•  As the last step we evaluate the exact support for the 

strong rules  
•  We know  already that it is greater or equal to 

minimum support, as rules were obtained from the 
frequent item sets 

 



Example: Association Rules Generation 

•  Exact support for the strong rules is: 

•  Sup({1,5}=>{2})=sc{1,2,5}/#D=2/9= 22% 
•  We write: 
•  1∩ 5 => 2    [22%, 100%] 
•  Sup({2,5}=>{1}) =sc{1,2,5}/#D=2/9= 22% 
•  We write: 
•  2∩ 5 => 1    [22%, 100%] 
•  Sup({5}=>{1,2}) =sc{1,2,5}/#D=2/9= 22% 
•  We write: 
•   5 => 1 ∩ 2   [22%, 100%] 

•  THE END of  Apriori Process 



   Association and Correlation 

•  As we can see the  support-confidence 
framework can be misleading; 

•   it can identify a rule A=>B as interesting (strong) 
when, in fact the occurrence of A might not imply 
the occurrence of B 

•  Correlation Analysis provides an alternative 
framework for finding interesting relationships,  

•  or to improve understanding of meaning of 
some association rules (a lift of an association 
rule) 



      Correlation and Association 

•  Definition: Two item sets  A and B are 
independent (the occurrence of A is 
independent of the occurrence of item set B) iff 
probability  P fulfills the condition 

•  P(A ∪ B) = P(A) ⋅ P(B) 
•  Otherwise A and B are dependent or 

correlated 
•  The measure of correlation, or correlation 

between A and B is given by the formula: 

•  Corr(A,B)=  
P(A ∪ B) 
 P(A)P(B) 



Correlation and Association 

•    corr(A,B) >1   means that A and B are 
positively correlated i.e. the occurrence of one 
implies the occurrence of the other 

•  corr(A,B) < 1  means that the occurrence of A 
is negatively correlated with  B 

•  or discourages the occurrence of B 
•  corr(A,B) =1  means that A and B are 

independent 



     Correlation and Association 
•  The correlation formula can be re-written as 

•  Corr(A,B) =  

•  Supp(A=>B)= P(AUB) 
•  Conf(A=>B)= P(B|A), i.e. 
•  Conf(A=>B)= corr(A,B) P(B) 
•  So correlation, support and confidence are all different, 

but the correlation provides an extra information about 
the association rule (A=>B) 

•  We say that the correlation corr(A,B) provides the LIFT 
of the association rule (A=>B), i.e.  

•  A is said to increase or to  LIFT the likelihood of B by 
the factor of the value returned by the formula for 
corr(A,B) 

P(B|A) 
P(B) 



Correlation Rule (HAN Book) 

•  A correlation rule is a set of items 
•   {i1, i2, ….in}, where the items occurrences are 

correlated 
•  The correlation value is given by the correlation 

formula and we use Χ square test to determine if 
correlation is statistically significant 

•  The Χ square test can also determine the negative 
correlation 

•  We can also form minimal correlated item sets, etc… 
•  Limitations: Χ square test is less accurate on the data 

tables that are sparse and can be misleading for the 
contingency tables larger then 2x2 



Criticism to Support and Confidence 
(Han book) 

•  Example 1: (Aggarwal & Yu, PODS98) 
–  Among 5000 students 

•  3000 play basketball 
•  3750 eat cereal 
•  2000 both play basket ball and eat cereal 

RULE: play basketball  ⇒ eat cereal [40%, 66.7%]  is misleading 
because the overall percentage of students eating cereal is 75% 
which is higher than 66.7%. 

RULE: play basketball  ⇒ not eat cereal [20%, 33.3%] is far more 
accurate, although with lower support and confidence 

basketball not basketball sum(row)
cereal 2000 1750 3750
not cereal 1000 250 1250
sum(col.) 3000 2000 5000



EXTRTA Slides 

•  ADDITIONAL MATERIAL 
•  Read, explore; much of it I already 

covered in our slides 



Mining Association Rules in 
Large Databases  

Slightly modified HAN Book 
slides  follow from now  

 
 
 
 



Mining Association Rules in Large Databases  
 

•  Association rule mining 
•  Mining single-dimensional Boolean association rules 

from transactional databases 
•  Mining multilevel association rules from transactional 

databases 
•  Mining multidimensional association rules from 

transactional databases and data warehouse 
•  From association mining to correlation analysis 
•  Constraint-based association mining 
•  Summary 



Association Rule Mining: A Road Map 

•  Boolean (Qualitative) vs. quantitative 
associations (Based on the types of values handled) 

 
buys(x, “SQLServer”) ^ income(x, “DMBook”) =>  buys(x, “DBMiner”) 

[0.2%, 60%] (Boolean/Qualitative) 
 
age(x, “30..39”) ^ income(x, “42..48K”) =>  buys(x, “PC”) [1%, 75%] 

(quantitative) 
 

•  Single dimension (one predicate) vs. multiple dimensional 
associations (multiple predicates ) 



Association Rule Road Map (c.d) 

•  Single level vs. multiple-level analysis 
–  What brands of beers are associated with what brands 

of diapers – single level 
–  Various extensions 
1. Correlation  analysis (just discussed) 
2. Association does not necessarily imply correlation or 

causality 
3. Constraints enforced 

Example:   

 smallsales (sum < 100) implies bigbuys (sum >1,000)? 



Chapter 5: Mining Association Rules 

•  Association rule mining 
•  Mining single-dimensional Boolean association rules 

from transactional databases 
•  Mining multilevel association rules from transactional 

databases 
•  Mining multidimensional association rules from 

transactional databases and data warehouse 
•  From association mining to correlation analysis 
•  Constraint-based association mining 
•  Summary 



An Example 

For rule A ⇒ C: 
support = support({A, C}) = 50% 
confidence = sc({A, C})/sc({A}) = 66.6% 

The Apriori principle: 
Any subset of a frequent itemset must be frequent 

Transaction ID Items Bought
2000 A,B,C
1000 A,C
4000 A,D
5000 B,E,F

Frequent Itemset Support
{A} 75%
{B} 50%
{C} 50%
{A,C} 50%

Min. support 50% 
Min. confidence 50% 



Mining Frequent Itemsets: the Key Step 

•  Find the frequent item sets: the sets of 
items that have minimum support 
–  A subset of a frequent item set must also be a 

frequent item set 
•  i.e., if {A, B} is a frequent item set, both {A} and {B} 

should be a frequent item set 

–  Iteratively find frequent item sets with cardinality 
from 1 to k (k-item set) 

•  Use the frequent item sets to generate 
association rules. 



 Apriori Algorithm — Book  Example of frequents items 
sets generation 

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D 

C1 
L1 

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2 

C2 C2 
Scan D 

C3 L3 itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2



Generating Candidates: Ck     

•  Join Step: Ck is generated by 
joining Lk-with itself 

 
• Prune Step:  Any (k-1)-item set 

that is not frequent cannot be a 
subset of a frequent k-item set 



Example of Generating Candidates 

•  L3={abc, abd, acd, ace, bcd} 

•  We write abc for {a,b,c}, etc…   

•  Self-joining: L3*L3 
–  abcd  from abc and abd 

–  acde  from acd and ace 

•  Pruning: 
–  acde is removed because ade  is not frequent: is not in L3   

•  C4={abcd} 



Appriori Performance Bottlenecks 

•  The core of the Apriori algorithm: 
–  Use frequent (k – 1)-item sets to generate 
     candidate frequent k-item sets 
–  Use database scan and pattern matching to collect counts for the 

candidate item sets 

•  The bottleneck of Apriori: candidate generation 
–  Huge candidate sets: 

•  104 frequent 1-itemset will generate 107 candidate 2-itemsets 
•  To discover a frequent pattern of size 100, e.g., 
•   {a1, a2, …, a100}, one needs to generate 2100 ≈ 1030 

candidates 
–  Multiple scans of database:  

•  Needs (n +1 ) scans, n  is the length of the longest pattern 



How to Count Supports of Candidates? 

•  Why counting supports of candidates is a problem? 
–  The total number of candidates can be very huge 
–   One transaction may contain many candidates 

•  Method: 
–  Candidate itemsets are stored in a hash-tree 
–  Leaf node of hash-tree contains a list of itemsets and counts 
–  Interior node contains a hash table 
–  Subset function: finds all the candidates contained in a 

transaction 



Methods to Improve Apriori’s Efficiency 

•  Hash-based itemset counting: A k-itemset whose corresponding 
hashing bucket count is below the threshold cannot be frequent 

•  Transaction reduction: A transaction that does not contain any 
frequent k-itemset is useless in subsequent scans 

•  Partitioning: Any itemset that is potentially frequent in DB must be 
frequent in at least one of the partitions of DB 

•  Sampling: mining on a subset of given data, lower support 
threshold + a method to determine the completeness 

•  Dynamic itemset counting: add new candidate itemsets only when 
all of their subsets are estimated to be frequent 



An Alternative: Mining Frequent Patterns Without 
Candidate Generation 

•  Compress a large database into a compact,  
•   Frequent-Pattern tree (FP-tree) structure 

–  highly condensed, but complete for frequent pattern mining 
–  avoid costly database scans 

•  Develop an efficient, FP-tree-based frequent pattern 
mining method 
–  A divide-and-conquer methodology: decompose 

mining tasks into smaller ones 
–  Avoid candidate generation: sub-database test only! 



Why Is Frequent Pattern Growth Fast? 

•  Performance study shows 
–  FP-growth is an order of magnitude faster than 

Apriori, and is also faster than tree-projection 

•  Reasoning 
–  No candidate generation, no candidate test 

–  Use compact data structure 

–  Eliminate repeated database scan 

–  Basic operation is counting and FP-tree building 



FP-growth vs. Apriori: Scalability With the 
Support Threshold 
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FP-growth vs. Tree-Projection: Scalability 
with Support Threshold 
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Presentation of Association Rules 
(Table Form ) 



Visualization of Association Rule Using Plane Graph 



Visualization of Association Rule Using Rule Graph 



Iceberg Queries 

•  Iceberg query: Compute aggregates over one or 
a set of attributes only for those whose aggregate 
values is above certain threshold 

•  Example: 
select P.custID, P.itemID, sum(P.qty) 
from purchase P 
group by P.custID, P.itemID 
having sum(P.qty) >= 10 

•  Compute iceberg queries efficiently by Apriori: 
–  First compute lower dimensions 
–  Then compute higher dimensions only when all the 

lower ones are above the threshold 



Chapter 6: Mining Association Rules in Large 
Databases 

•  Association rule mining 
•  Mining single-dimensional Boolean association 

rules from transactional databases 
•  Mining multilevel association rules from 

transactional databases 
•  Mining multidimensional association rules from 

transactional databases and data warehouse 
•  From association mining to correlation analysis 
•  Constraint-based association mining 
•  Summary 



Multiple-Level Association Rules 

•  Items often form hierarchy 
•  Items at the lower level are 

expected to have lower 
support. 

•  Rules regarding itemsets at 
    appropriate levels could be 

quite useful. 
•  Transaction database can be 

encoded based on 
dimensions and levels 

•  We can explore shared multi-
level mining 

Food 

bread milk 

skim 

Sunset Fraser 

2% white wheat 

TID Items
T1 {111, 121, 211, 221}
T2 {111, 211, 222, 323}
T3 {112, 122, 221, 411}
T4 {111, 121}
T5 {111, 122, 211, 221, 413}



Mining Multi-Level Associations 

•  A top_down, progressive deepening approach: 
–   First find high-level strong rules: 

                                milk →   bread  [20%, 60%] 
–   Then find their lower-level “weaker” rules: 

                                2% milk →   wheat bread [6%, 50%] 
•  Variations at mining multiple-level 

association rules. 
–     Level-crossed association rules: 

               2% milk →  Wonder wheat bread 
–    Association rules with multiple, alternative 

hierarchies: 
               2% milk →  Wonder bread 



Chapter 6: Mining Association Rules in 
Large Databases 

•  Association rule mining 
•  Mining single-dimensional Boolean association 

rules from transactional databases 
•  Mining multilevel association rules from 

transactional databases 
•  Mining multidimensional association rules from 

transactional databases and data warehouse 
•  From association mining to correlation analysis 
•  Constraint-based association mining 
•  Summary 



Multi-Dimensional Association (1) 

•  Single-dimensional rules: 
  
•  buys(X, “milk”)  ⇒   buys(X, “bread”) 

 
•  Multi-dimensional rules: Involve 2 or more 

dimensions or predicates 
 

–  Inter-dimension association rules (no repeated 
predicates) 

 
•  age(X,”19-25”)  ∧ occupation(X,“student”) ⇒   

buys(X,“coke”) 
 



Multi-Dimensional Association 

– Hybrid-dimension association rules 
(repeated predicates) 

 
• age(X,”19-25”) ∧  buys(X, “popcorn”) 
⇒ buys(X, “coke”) 

 
•  Categorical (qualitative) Attributes 

–  finite number of possible values, no 
ordering among values 

•  Quantitative Attributes 
– numeric, implicit ordering among values 



Techniques for Mining MD Associations 

•  Search for frequent k-predicate set: 
–  Example:  
–  {age, occupation, buys} is a 3-predicate set. 
–  Techniques can be categorized by how age are treated. 

1. Using static discretization of quantitative attributes 
–  Quantitative attributes are statically discretized by using 

predefined concept hierarchies. 
2. Quantitative association rules 

–  Quantitative attributes are dynamically discretized into “bins” 
based on the distribution of the data. 

3. Distance-based association rules 
–  This is a dynamic discretization process that considers the 

distance between data points. 



Static Discretization of Quantitative Attributes 

•  Discretized prior to mining using concept 
hierarchy. 

•  Numeric values are replaced by ranges 
•  In relational database, finding all frequent k-

predicate sets will require k or k+1 table scans. 
•  Data cube is well suited for mining. 
•  The cells of an n-dimensional  

cuboid correspond to the  
predicate sets. 

•  Mining from data cubes 
can be much faster. 

(income) (age) 

() 

(buys) 

(age, income) (age,buys) (income,buys) 

(age,income,buys) 



Quantitative Association Rules 

age(X,”30-34”) ∧ 
       income(X,”24K - 48K”)  
            ⇒ buys(X,”high resolution TV”) 

•  Numeric attributes are dynamically discretized 
–  Such that the confidence or compactness of the rules mined is 

maximized. 
•  2-D quantitative association rules: Aquan1 ∧ Aquan2 ⇒ Acat 
•  Cluster “adjacent”  

association rules 
to form general  
rules using a 2-D  
grid. 

•  Example:  



ARCS (Association Rule Clustering System) 

1. Binning 
 
2. Find frequent 

predicateset 
 
3. Clustering 
 
4. Optimize 

How does ARCS work? 



Limitations of ARCS 

•  Only quantitative attributes on LHS of rules. 

•  Only 2 attributes on LHS.  (2D limitation) 

•  An alternative to ARCS 
–  Non-grid-based 

–  equi-depth binning 

–  clustering based on a measure of partial 
completeness. 

–  “Mining Quantitative Association Rules in Large 
Relational Tables” by R. Srikant and R. Agrawal. 



•  The diameter, d, assesses the density of a 
cluster CX , where 

•  Finding clusters and distance-based rules 
–  the density threshold, d0 , replaces the notion of support 
–  modified version of the BIRCH clustering algorithm 

XdCd X 0)( ≤

0sCX ≥

Clusters and Distance Measurements 



Mining Distance-based Association Rules 

•  Binning methods do not capture the semantics of interval 
data 

 
•  Distance-based partitioning, more meaningful discretization 

considering: 
–  density/number of points in an interval 
–  “closeness” of points in an interval 

Price($)
Equi-width
(width $10)

Equi-depth
(depth 2)

Distance-
based

7 [0,10] [7,20] [7,7]
20 [11,20] [22,50] [20,22]
22 [21,30] [51,53] [50,53]
50 [31,40]
51 [41,50]
53 [51,60]



•  S[X] is a set of N tuples t1, t2, …, tN , 
projected on the attribute set X 

•  The diameter of S[X]: 

– distx:distance metric, e.g. Euclidean distance or 

Manhattan 
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Clusters and Distance Measurements 



Chapter 6: Mining Association Rules in 
Large Databases 

•  Association rule mining 
•  Mining single-dimensional Boolean association 

rules from transactional databases 
•  Mining multilevel association rules from 

transactional databases 
•  Mining multidimensional association rules from 

transactional databases and data warehouse 
•  From association mining to correlation analysis 
•  Constraint-based association mining 
•  Summary 



Interestingness Measurements 

•  Objective measures 
Two popular measurements:  
❶ support;  and  
❷ confidence 

•  Subjective  measures (Silberschatz & 
Tuzhilin, KDD95) 
A rule (pattern) is interesting if 
❶ it is unexpected (surprising to the user); and/or 
❷ actionable (the user can do something with it) 



Criticism to Support and Confidence 
•  Example 2: 

–  X and Y: positively correlated, 
–  X and Z, negatively related 
–  support and confidence of  
    X=>Z dominates  

X 1 1 1 1 0 0 0 0
Y 1 1 0 0 0 0 0 0
Z 0 1 1 1 1 1 1 1

Rule Support Confidence
X=>Y 25% 50%
X=>Z 37.50% 75%



Other Interestingness Measures: Interest 

•  Interest 

–  taking both P(A) and P(B) in consideration 

–  P(A^B)=P(B)*P(A), if A and B are independent events 

–  A and B negatively correlated, if the value is less than 1; 

otherwise A and B positively correlated. 

)()(
)(
BPAP
BAP ∧

X 1 1 1 1 0 0 0 0
Y 1 1 0 0 0 0 0 0
Z 0 1 1 1 1 1 1 1

Itemset Support Interest
X,Y 25% 2
X,Z 37.50% 0.9
Y,Z 12.50% 0.57



Chapter 6: Mining Association Rules in 
Large Databases 

•  Association rule mining 
•  Mining single-dimensional Boolean association rules 

from transactional databases 
•  Mining multilevel association rules from transactional 

databases 
•  Mining multidimensional association rules from 

transactional databases and data warehouse 
•  From association mining to correlation analysis 
•  Constraint-based association mining 
•  Summary 



Constraint-Based Mining 

•  Interactive, exploratory mining giga-bytes of data?   
–  Could it be real? — Making good use of constraints! 

•  What kinds of constraints can be used in mining? 
–  Knowledge type constraint: classification, association, etc. 
–  Data constraint: SQL-like queries  

•  Find product pairs sold together in Vancouver in Dec.’98 

–  Dimension/level constraints: 
•  in relevance to region, price, brand, customer category 
•  small sales (price  < $10) triggers big sales (sum > $200). 

–  Interestingness constraints: 
•  strong rules (min_support  ≥ 3%, min_confidence ≥  60%). 



Rule Constraints in Association Mining 

•  Two kind of rule constraints:  
–  Rule form constraints: meta-rule guided mining. 

•   P(x, y) ^ Q(x, w) →   takes(x, “database systems”).  
–  Rule (content) constraint: constraint-based query 

optimization (Ng, et al., SIGMOD’98). 
•  sum(LHS) < 100 ^ min(LHS) > 20 ^ count(LHS) > 3 ^ sum(RHS) > 

1000 

•  1-variable vs. 2-variable constraints (Lakshmanan, 
et al. SIGMOD’99):  
–  1-var: A constraint confining only one side (L/R) of the 

rule, e.g., as shown above.  
–  2-var: A constraint confining both sides (L and R). 

•  sum(LHS) < min(RHS) ^ max(RHS) < 5* sum(LHS) 



Chapter 6: Mining Association Rules in 
Large Databases 

•  Association rule mining 
•  Mining single-dimensional Boolean association rules 

from transactional databases 
•  Mining multilevel association rules from transactional 

databases 
•  Mining multidimensional association rules from 

transactional databases and data warehouse 
•  From association mining to correlation analysis 
•  Constraint-based association mining 
•  Summary 



Why Is the Big Pie Still There? 

•  More on constraint-based mining of associations  
–  Boolean vs. quantitative associations 

•  Association on discrete vs. continuous data 
–  From association to correlation and causal structure 

analysis. 
•  Association does not necessarily imply correlation or causal 

relationships 
–  From intra-trasanction association to inter-

transaction associations 
•  E.g., break the barriers of transactions (Lu, et al. TOIS’99).  

–  From association analysis to classification and 
clustering analysis 

•  E.g, clustering association rules 



Summary 

•  Association rule mining  
–  probably the most significant contribution from the 

database community in KDD 
–  A large number of papers have been published 

•  Many interesting issues have been explored 
•  An interesting research direction: 

–  Association analysis in other types of data: spatial 
data, multimedia data, time series data, etc. 


