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Robustness

� Robustness of a mathematical object (such
as proof, definition, algorithm, method, etc.) is
measured by its invariance to certain changes

� To prove that a mathematical object is robust
one needs to show that it is equivalent with its
variants

Question: is the definition of a Turing machine ro-

bust?
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TM definition is robust

� Variants of TM with multiple tapes or with
nondeterminism abound

� Original model of a TM and its variants all
have the same computation power, i.e., they
recognize the same class of languages.

Hence, robustness of TM definition is measured

by the invariance of its computation power to cer-

tain changes
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Example of robustness

Note: transition function of a TM in our definition
forces the head to move to the left or right after
each step. Let us vary the type of transition
function permitted.

� Suppose that we allow the head to stay put,
i.e.;

��� � � � � � � �
� �

� 	

� Does this feature allow TM to recognize
additional languages? Answer: NO
Sketch of proof:

1. An




transition can be represented by two transitions: one that
move to the left followed by one that moves to the right.

2. Since we can convert a TM which stay put into one that has
no this facility the answer is No.
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Equivalence of TMs

To show that two models of TM are equivalent we

need to show that we can simulate one by an-

other.
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Multitape Turing Machines

A multitape TM is like an ordinary TM with
several tapes

� Each tape has its own head for
reading/writing

� Initially the input is on tape 1 and other are
blank

� Transition function allow for reading, writing,
and moving the heads on all tapes
simultaneously, i.e.,

�� � � �

� � �

� � �
�

	 �

where

�

is the number of tapes.
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Formal expression

� � ��� �

��� � � � � �

� �
�

�
� ��	 �



� � � � � �



� �

�
� � � � � �

� �

means that:

if the machine is in state � � and heads 1 through k are

reading symbols � � through � � the machine goes to

state � 	 , writes



� through



� on tapes 1 through k re-

spectively and moves each head to the left or right as

specified by
�
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Theorem (3.8) 3.13

Every multitape Turing machine has an
equivalent single tape Turing machine.

Proof: we show how to convert a multitape TM

into a single tape TM

�

. The key idea is to show

how to simulate with
�
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Simulating with

Assume that has

�

tapes

�

�

simulates the effect of

�

tapes by storing
their information on its single tape

�

�

uses a new symbol as a delimiter to
separate the contents of different tapes

�

�

keeps track of the location of the heads by
marking with a � the symbols where the
heads would be.

Variants of Turing Machines – p.9/49



Example simulation

Figure 1 shows how to represent a machine
with 3 tapes by a machine

�

with one tape.

S
�

000
��
� 0 1 0

�

b

��
�

� ��
� a

�

� � �

	

M

b a


 � � �

	

b a


 � � �

	

0 1 0 1 0


 � � �

	

Figure 1: Multitape machine simulation
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General construction

�

= "On input � � � � ��� � � �

���

1. Put


 ���	� 
� �

in the format that represents
 ���	� 
�� �

:


 � �� 
 � ��� � ������� � � ��� � ��� �� � � � ��� �
2. Scan the tape from the first

�

(which represent the left-hand end)
to the

� ��� � �

-st

�

(which represent the right-hand end) to
determine the symbols under the virtual heads. Then




makes
the second pass over the tape to update it according to the way

’s transition function dictates.

3. If at any time




moves one of the virtual heads to the right of

�

it
means that


has moved on the corresponding tape onto the

unread blank portion of that tape. So,




shifts the tape contents
from this cell until the rightmost

�

, one unit to the right, and then
writes a

�
on the free tape cell thus obtained. Then it continues to

simulates as before".
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Corollary 3.15

A language is Turing recognizable iff some
multitape Turing machine recognizes it

Proof:

� if: a Turing recognizable language is
recognized by an ordinary TM. But an
ordinary TM is a special case of a multitape
TM.

� only if: This part follows from the equivalence
of a Turing multitape machine with the
Turing machine

�

that simulates it.
That is, if

�

is recognized by



then

�

is also recognized by the

TM



that simulates
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Nondeterministic TM

� A NTM is defined in the expected way: at any
point in a computation the machine may
proceed according to several possibilities

� Formally,

�� � � � � � � � �
�

	 �

� Computation performed by a NTM is a tree
whose branches correspond to different
possibilities for the machine

� If some branch of the computation tree leads
to the accept state, the machine accepts the
input
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Theorem 3.16

Every nondeterministic Turing machine, , has
an equivalent deterministic Turing machine, .

Proof idea: show that a NTM can be simulated
with a DTM .

Note: in this simulation tries all possible

branches of ’s computation. If ever finds the

accept state on one of these branches then it ac-

cepts. Otherwise simulation will not terminate
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More on NTM simulation

� ’s computation on an input � is a tree,

� � �

.

� Each branch of

� � �

represents one of the
branches of the nondeterminism

� Each node of

� � �

is a configuration of .

� The root of

� � �

is the start configuration

Note: searches

� � �

for an accepting configu-

ration
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A tempting bad idea

Design to explore

� � �

by a depth-first search
Note:

�

A depth-first search goes all the way down on one branch before
backing up to explore next branch.

�

Hence,

�

could go forever down on an infinite branch and miss an
accepting configuration on an other branch
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A better idea

Design to explore the tree by using a
breadth-first search
Note:

�

This strategy explores all branches at the same depth before
going to explore any branch at the next depth.

�

Hence, this method guarantees that

�

will visit every node of

� � � � until it encounters an accepting configuration
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Formal proof

has three tapes, Figure 2:

1. Tape 1 always contains the input and is never
altered

2. Tape 2 (called the simulation tape) maintains a copy
of ’s tape on some branch of its
nondeterministic computation

3. Tape 3 (called address tape) keeps track of ’s
location in ’s nondeterministic computation
tree
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Deterministic simulation of

D

1 2 3 3 2 3 1 2 1 1 3


 � � �

address tape

x x

�

1 x


 � � �

simulation tape

0 0 1 0


 � � �

input tape

	
�

�

Figure 2: Deterministic TM D simulating N
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Address tape

� Every node in

� � �

can have at most




children, where




is the size of the largest set
of possible choices given by ’s transition
function

� Hence, to every node we assign an address
that is a string in the alphabet

� �
� �

�

�
� � � � �


 	

.

� Example: we assign the address 231 to the node reached by

starting at the root, going to its second child and then going to that

node’s third child and then going to that node’s first child
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Note

�

Each symbol in a node address tells us which choice to make next
when simulating a step in one branch in

�

’s nondeterministic
computation

�

Sometimes a symbol may not correspond to any choice if too few
choices are available for a configuration. In that case the address
is invalid and doesn’t correspond to any node

�

Tape 3 contains a string over
��
� which represents a branch of

�

’s
computation from the root to the node addressed by that string,
unless the address is invalid.

�

The empty string � is the address of the root.
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The description of

1. Initially tape 1 contains � and tape 2 and 3 are empty

2. Copy tape 1 over tape 2

3. Use tape 2 to simulate

�

with input � on one branch of its
nondeterministic computation.

�

Before each step of

�

, consult the next symbol on tape 3 to
determine which choice to make among those allowed by

�

’s
transition function

�

If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4.

�

If a rejecting configuration is reached go to stage 4; if an
accepting configuration is encountered, accept the input

4. Replace the string on tape 3 with the lexicographically next string
and simulate the next branch of

�

’s computation by going to
stage 2.
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Corollary 3.17

A language is Turing-recognizable iff some
nondeterministic TM recognizes it

Proof:

� if: If a language is Turing-recognizable it is recognized by a DTM.
Any deterministic TM is automatically a
nondeterministic TM.

� only if: If language is recognized by a NTM then it is

Turing-recognizable.
This follow from the fact that any NTM can be
simulated by a DTM.
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Corollary 3.19

A language is decidable iff some NTM decides it
Sketch of a proof:

�

if: If a language

�

is decidable, it can be decided by a DTM. Since
a DTM is automatically a NTM, it follows that if L is decidable it is
decidable by a NTM.

�

only if: If a language

�

is decided by a NTM

�

it is decidable. This
means that

� � �  � �

that decides

�

.

� �

runs the same algorithm
as in the proof of theorem 3.16 with an addition stage:
reject if all branches of nondeterminism of

�

are exhausted.
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The description of

�

1. Initially tape 1 contains � and tape 2 and 3 are empty

2. Copy tape 1 over tape 2

3. Use tape 2 to simulate

�

with input � on one branch of its
nondeterministic computation.

�

Before each step of

�

, consult the next symbol on tape 3 to
determine which choice to make among those allowed by

�

’s

�

.

�

If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4.

�

If a rejecting configuration is reached go to stage 4; if an
accepting configuration is encountered, accept the input

4. Replace the string on tape 3 with the lexicographically next string
and simulate the next branch of

�

’s computation by going to
stage 2.

5. Reject if all branches of are exhausted.
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�

is a decider for

To prove that

� �

decide

�

we use the following theorem:

Tree theorem: if every node in a tree has finitely many children and any
branch of the tree has finitely many nodes then the tree itself has
finitely many nodes.

Proof:

1. If

�

accepts �, � �

will eventually find an accepting branch and
will accept � as well.

2. If

�

rejects �, all of its branches halt and reject because

�

is a
decider. Consequently each branch has finitely many nodes,
where each node represents a step in

�

’s computation along that
branch.

3. Consequently, according to the tree theorem, entire computation
tree is finite, and thus

� �

halts and rejects when the entire tree
has been explored
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Enumerators

� An enumerator is a variant of a TM with an
attached printer

� The enumerator uses the printer as an output
device to print strings

� Every time the TM wants to add a string to
the list of recognized strings it sends it to the
printer

Note: some people use the term recursively enumerable language for

languages recognized by enumerators
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Computation of an enumerator

� An enumerator starts with a blank input tape

� If the enumerator does not halt it may print an
infinite list of strings

� The language recognized by the enumerator
is the collection of strings that it eventually
prints out.

Note: an enumerator may generate the strings of

the language it recognizes in any order, possibly

with repetitions.
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Theorem 3.21

A language is Turing-recognizable iff some
enumerator enumerates it
Proof:

�

if: If

�

is recognizable in means that there is a TM



that
recognizes

�

. Then we can construct an enumerator

�

for

�

. For
that consider� ��� � �� � � � � the list of all possible strings in

� �

, where

�

is the alphabet of



.

�

= "Ignore the input.

1. Repeat for

� � �
�

�
�

�
� � � �

2. Run



for
�

steps on each input� ��� � �� � � � � � �

3. If any computation accepts, prints out the corresponding� 	 "
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Note

If accepts �, eventually it will appear on the list
generated by .

In fact� will appear infinitely many times because



runs from the

beginning on each string for each repetition of step 1. I.e., it appears

that



runs in parallel on all possible input strings
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Proof, continuation

� only if: If we have an enumerator that
enumerates a language then a TM
recognizes . works as follows:

= "On input �:
1. Run

�

. Every time

�

outputs a string, compare it with �.
2. If � ever appears in the output of

�

accept."

Clearly accepts those strings that appear
on ’s list.
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Problems

Now we solve two problems from the textbook:

� Problem 3.11 asking to show that a Turing
machine with double infinite tape is equivalent
to an ordinary Turing machine

� Problem 3.14 asking to show that a queue
automaton is equivalent to an ordinary Turing
machine.
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TM with double infinite tape

A Turing machine with double infinite tape is like
an ordinary Turing machine but its tape is infinite
in both directions, to the left and to the right.

Assumption: the tape is initially filled with blanks

except for the portion that contains the input.

Computation is defined as usual except that the

head never encounters an end to the tape as it

moves leftward.
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Problem

Show that a TM with double infinite tape can

simulate an ordinary TM and an ordinary TM

can simulate a TM with double infinite tape.
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Simulating by

A TM with double infinite tape can simulate an
ordinary TM by marking the left-hand side of
the input to detect and prevent the head from
moving off of that end.
This is done by:

1. Mark the left-hand end of the input. Let this mark be

� ��� ��� .

2. Each transition

�� ��� � � � � �� �
� � �

� �

performs as follows:

� � �
	 �� � � �� 	
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Simulating by

We show first how to simulate with a 2-tape
TM which was already shown to be equivalent
to an ordinary TM.

�

The first tape of the 2-tape TM



is written with the input string
and the second tape is blank.

�

Then cut the tape of the doubly infinite tape TM into two parts, at
the starting cell of the input string.

�

The portion with the input string and all the blank spaces to its
right appears on the first tape of the 2-tape TM. The portion to the
left of the input string appears on the second tape, in reverse
order, Figure 3
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Replacing -tape by 2 -tapes


 
 � � � 
 � � �

M-tape,

���
1 2

�

�� � � � � � ��� 
 � � �

M-tape,

��

� � � 
 � � � 
 
 �� � � � � � ��� 
 � � �

	

-tape

�

2 1

Figure 3: Representing

�

tape by 2



-tapes

Variants of Turing Machines – p.37/49



Deterministic Queue Automata

A DQA is like a push-down automaton except
that the stack is replaced by a queue.

�

A queue is a tape allowing symbols to be written only on the
left-hand end and read only at the right hand-end.

�

Each write operation (called a 
� � �
) adds a symbol to the

left-hand end of the queue

�

Each read operation (called a 
 � � �

) reads and removes a symbol
at the right-hand end.

Note: As with a PDA, the input of a DQA is placed

on a separate read-only input tape, and the head

on the input tape can move only from left to right.
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More on the DQA

� Initial condition: the input tape of a DQA
contains a cell with a blank symbol following
the input, so that the end of the input can be
detected.

� Computation: A queue automaton accepts its
input by entering a special accept state at any
time.

� Problem: Show that a language can be
recognized by a deterministic queue
automaton, DQA, iff the language is
Turing-recognizable.
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Solution sketch

� Show that any DQA can be simulated with
a 2-tape TM

� Show that any single-tape deterministic TM
can be simulated by a DQA .
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Simulating a DQA by a TM

�

The first tape of



holds the input, and the second tape of



holds the queue.

�

To simulate reading

�

’s next input symbol,


reads the symbol
under the first head and moves to the right.

�

To simulate a 
 � � �� ,



writes� on the leftmost blank cell of the
second tape.

�

To simulate a 
 � � �

,



reads the rightmost symbol on the second
tape and shifts the tape one symbol leftward.

Note: Multitape TM-s are equivalent to single tape TM-s, so we can

conclude that if a language is recognized by DQA is is recognized by a

TM.
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Simulating a TM with a DQA

� � ��� �

�
�

� �� � �� � ���� � ��� � �� �

�� � ��� � �
�

� � 	 
� �� �� � � � ��

� � ��� � �� � �

�

For each symbol  of



’s tape alphabet
� � , the alphabet

�� of

�

has two symbols:  and


 .

�

We use


  to denote  with



’s head over it.

�

In addition

�� has an end-of-tape marker symbol denoted

�

.
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The simulation

� simulates by maintaining a copy of the
’s tape in the queue.

� can effectively scan the tape from right to
left by pulling symbols from the right-hand
end of the queue and pushing them back on
the left-hand end side, until

�

is seen.

� When a

��
� symbol is encountered, can

determine ’s next move, because can
record ’s current state in its control.
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Computation simulation

�

If



’s tape head moves leftwards, the updating of the queue is
done by writing the new symbol  instead of the old


  and moving
the




one symbol leftwards.

Formally: if current configuration is � � 
 � � 	 and

� ��� � � ��� ��� �
� �

� �

then the next configuration is � 
�  � 	 and is obtained by:

pull v; push v;

pull t; push t;

pull hat(b); push c; pull a; push hat(a);

pull u; push u
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Computation simulation

�

If



’s tape head moves rightward, the updating is harder because
the




must go to the right.

�

By the time


  is pulled from the queue, the symbol which receives
the




has already been pushed onto the queue.
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Solution

The solution is to hold tape symbols in the control for an extra move,
before pushing them onto the queue. This gives

�

enough time to
move the




rightward if necessary.

Formally: if current configuration is � � 
 � � 	 and

� �� � � ��� ��� �
� �

� �

then
the next configuration is � �  
� 	 and is obtained by:

pull v; push v;

pull t; hold (t);

pull hat(b); push hat(t); push(c);

pull u; push u;
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Equivalence with other models

� There are many other models of general
purpose computation.
Example: recursive functions, normal algorithms, semi-thue

systems,

�

-calculus, etc.

� Some of these models are very much like
Turing machines; other are quite different

� All share the essential feature of a TM:
unrestricted access to unlimited memory

� All these models turn out to be equivalent in
computation power with TM
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Analogy

� There are hundreds of programming
languages

� However, if an algorithm can be programmed
using one language it might be programmed
in any other language

� If one language
�

� can be mapped into
another language

� � it means that

�
� and

� �

describe exactly the same class of algorithms
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Philosophy

� Even though there are many different
computational models, the class of algorithms
that they describe is unique

� Whereas each individual computational
model has certain arbitrariness to its
definition, the underlying class of algorithms it
describes is natural because it is the same for
other models

This has profound implications in mathematics
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