
Second Part of Regular
Expressions Equivalence with

Finite Automata

Second Part of Regular Expressions Equivalence with Finite Automata – p.1/30

Lemma 1.60

If a language is regular then it is specified by a RE

Proof idea: For a given regular language we will construct

a regular expression (RE) that specifies .

Second Part of Regular Expressions Equivalence with Finite Automata – p.2/30

Lemma 1.60

If a language is regular then it is specified by a RE

Proof idea: For a given regular language
�

we will construct

a regular expression (RE) that specifies

�

.

Second Part of Regular Expressions Equivalence with Finite Automata – p.2/30

Procedure

� Since

�

is regular, there is a DFA

��� recognizing

�

will be converted into a RE that specifies

This procedure is broken in two parts:

1. Convert the DFA into a generalized NFA, GNFA

2. Convert the GNFA into a RE

Second Part of Regular Expressions Equivalence with Finite Automata – p.3/30

Procedure

� Since

�

is regular, there is a DFA

��� recognizing

�

� �� will be converted into a RE

�� that specifies

�

This procedure is broken in two parts:

1. Convert the DFA into a generalized NFA, GNFA

2. Convert the GNFA into a RE

Second Part of Regular Expressions Equivalence with Finite Automata – p.3/30

Procedure

� Since

�

is regular, there is a DFA

��� recognizing

�

� �� will be converted into a RE

�� that specifies

�

This procedure is broken in two parts:

1. Convert the DFA into a generalized NFA, GNFA

2. Convert the GNFA into a RE

Second Part of Regular Expressions Equivalence with Finite Automata – p.3/30

Procedure

� Since

�

is regular, there is a DFA

��� recognizing

�

� �� will be converted into a RE

�� that specifies

�

This procedure is broken in two parts:

1. Convert the DFA into a generalized NFA, GNFA

2. Convert the GNFA into a RE

Second Part of Regular Expressions Equivalence with Finite Automata – p.3/30

Procedure

� Since

�

is regular, there is a DFA

��� recognizing

�

� �� will be converted into a RE

�� that specifies

�

This procedure is broken in two parts:

1. Convert the DFA into a generalized NFA, GNFA

2. Convert the GNFA into a RE

Second Part of Regular Expressions Equivalence with Finite Automata – p.3/30

What is an GNFA?

� A GNFA is an NFA wherein the transition arrows may
have any REs as labels

Hence, GNFA reads strings specified by REs (block of
symbols) from the input

GNFA moves along a transition arrow connecting two
states representing a RE, Figure 1

Second Part of Regular Expressions Equivalence with Finite Automata – p.4/30

What is an GNFA?

� A GNFA is an NFA wherein the transition arrows may
have any REs as labels

� Hence, GNFA reads strings specified by REs (block of
symbols) from the input

GNFA moves along a transition arrow connecting two
states representing a RE, Figure 1

Second Part of Regular Expressions Equivalence with Finite Automata – p.4/30

What is an GNFA?

� A GNFA is an NFA wherein the transition arrows may
have any REs as labels

� Hence, GNFA reads strings specified by REs (block of
symbols) from the input

� GNFA moves along a transition arrow connecting two
states representing a RE, Figure 1

Second Part of Regular Expressions Equivalence with Finite Automata – p.4/30

Example GNFA

� ��� ��� � � �� � �	
 �

��
�

 �
��

�

�

 �

�
�

 � �

�
 � �

�

�

�

 � � �

�

� �
�

�

Figure 1: A GNFA
Second Part of Regular Expressions Equivalence with Finite Automata – p.5/30

Note

� A GNFA is nondeterministic and so, it may have many
different ways to process the same input string

A GNFA accepts its input if its entire processing can
cause the GNFA to be in an accept state

Second Part of Regular Expressions Equivalence with Finite Automata – p.6/30

Note

� A GNFA is nondeterministic and so, it may have many
different ways to process the same input string

� A GNFA accepts its input if its entire processing can
cause the GNFA to be in an accept state

Second Part of Regular Expressions Equivalence with Finite Automata – p.6/30

GNFA of special form

� The start state has transition arrows to every other
state but no arrow coming from any other state

There is only one accept state and it has arrows
coming in from every other state, but has no arrows
going to any other state

The accept state is different from the start state

Except for start and accept states, one arrow goes
from every state to every other state and from each
state to itself

Second Part of Regular Expressions Equivalence with Finite Automata – p.7/30

GNFA of special form

� The start state has transition arrows to every other
state but no arrow coming from any other state

� There is only one accept state and it has arrows
coming in from every other state, but has no arrows
going to any other state

The accept state is different from the start state

Except for start and accept states, one arrow goes
from every state to every other state and from each
state to itself

Second Part of Regular Expressions Equivalence with Finite Automata – p.7/30

GNFA of special form

� The start state has transition arrows to every other
state but no arrow coming from any other state

� There is only one accept state and it has arrows
coming in from every other state, but has no arrows
going to any other state

� The accept state is different from the start state

Except for start and accept states, one arrow goes
from every state to every other state and from each
state to itself

Second Part of Regular Expressions Equivalence with Finite Automata – p.7/30

GNFA of special form

� The start state has transition arrows to every other
state but no arrow coming from any other state

� There is only one accept state and it has arrows
coming in from every other state, but has no arrows
going to any other state

� The accept state is different from the start state

� Except for start and accept states, one arrow goes
from every state to every other state and from each
state to itself

Second Part of Regular Expressions Equivalence with Finite Automata – p.7/30

Converting DFA to GNFA

A DFA is converted to a GNFA of special form by the
followsing procedure:

1. Add a new start state with an arrow to the old start state and a
new accept state with an arrow from all old accept states

2. If any arrows have multiple labels or if there are multiple arrows
going between the same two states in the same direction replace
each with a single arrow whose label is the union of the previous
labels

3. Add arrows labeled between states that had no arrows

Second Part of Regular Expressions Equivalence with Finite Automata – p.8/30

Converting DFA to GNFA

A DFA is converted to a GNFA of special form by the
followsing procedure:

1. Add a new start state with an � arrow to the old start state and a
new accept state with an � arrow from all old accept states

2. If any arrows have multiple labels or if there are multiple arrows
going between the same two states in the same direction replace
each with a single arrow whose label is the union of the previous
labels

3. Add arrows labeled between states that had no arrows

Second Part of Regular Expressions Equivalence with Finite Automata – p.8/30

Converting DFA to GNFA

A DFA is converted to a GNFA of special form by the
followsing procedure:

1. Add a new start state with an � arrow to the old start state and a
new accept state with an � arrow from all old accept states

2. If any arrows have multiple labels or if there are multiple arrows
going between the same two states in the same direction replace
each with a single arrow whose label is the union of the previous
labels

3. Add arrows labeled between states that had no arrows

Second Part of Regular Expressions Equivalence with Finite Automata – p.8/30

Converting DFA to GNFA

A DFA is converted to a GNFA of special form by the
followsing procedure:

1. Add a new start state with an � arrow to the old start state and a
new accept state with an � arrow from all old accept states

2. If any arrows have multiple labels or if there are multiple arrows
going between the same two states in the same direction replace
each with a single arrow whose label is the union of the previous
labels

3. Add arrows labeled
�

between states that had no arrows

Second Part of Regular Expressions Equivalence with Finite Automata – p.8/30

Note

Adding

�

transitions doesn’t change the language
recognized by DFA because a transition labeled by

�

can
never be used

Assumption: now we assume that all GNFAs are in the spe-

cial form just defined.

Second Part of Regular Expressions Equivalence with Finite Automata – p.9/30

Note

Adding

�

transitions doesn’t change the language
recognized by DFA because a transition labeled by

�

can
never be used

Assumption: now we assume that all GNFAs are in the spe-

cial form just defined.

Second Part of Regular Expressions Equivalence with Finite Automata – p.9/30

Converting

Assume that GNFA has

�

states

Because start and accept states are different from
each other, it results that

If we construct an equivalent GNFA with
states. This can be repeated for each new GNFA until
we obtain a GNFA with states.

If , GNFA has a single arrow that goes from start
to accept and is labeled by a RE that specifies the
language recognized by the original DFA

Second Part of Regular Expressions Equivalence with Finite Automata – p.10/30

Converting

Assume that GNFA has

�

states

� Because start and accept states are different from
each other, it results that

� � �

If we construct an equivalent GNFA with
states. This can be repeated for each new GNFA until
we obtain a GNFA with states.

If , GNFA has a single arrow that goes from start
to accept and is labeled by a RE that specifies the
language recognized by the original DFA

Second Part of Regular Expressions Equivalence with Finite Automata – p.10/30

Converting

Assume that GNFA has

�

states

� Because start and accept states are different from
each other, it results that

� � �

� If

� � �

we construct an equivalent GNFA with

�

�
�

states. This can be repeated for each new GNFA until
we obtain a GNFA with

� � �

states.

If , GNFA has a single arrow that goes from start
to accept and is labeled by a RE that specifies the
language recognized by the original DFA

Second Part of Regular Expressions Equivalence with Finite Automata – p.10/30

Converting

Assume that GNFA has

�

states

� Because start and accept states are different from
each other, it results that

� � �

� If

� � �

we construct an equivalent GNFA with

�

�
�

states. This can be repeated for each new GNFA until
we obtain a GNFA with

� � �

states.

� If

� � �

, GNFA has a single arrow that goes from start
to accept and is labeled by a RE that specifies the
language recognized by the original DFA

Second Part of Regular Expressions Equivalence with Finite Automata – p.10/30

Example DFA conversion

Assuming that the original DFA has 3 states the
process of its conversion is shown in Figure 2

3-state DFA

�

5-state GNFA

�

4-state GNFA
�

3-state GNFA

�

2-state GNFA

�Regular
expression

Figure 2: Example DFA conversion to RE

Second Part of Regular Expressions Equivalence with Finite Automata – p.11/30

Note

� The crucial step is the construction of an equivalent� �� �

with one fewer states than a
� �� �

when� �� �

has

� � �

states.

This is done by selecting a state, ripping it out of the
machine, and repairing the remainder so that the same
language is still recognized

Any state can be selected for ripping, providing that it
is not start or accept state. Such a state exists
because

Second Part of Regular Expressions Equivalence with Finite Automata – p.12/30

Note

� The crucial step is the construction of an equivalent� �� �

with one fewer states than a
� �� �

when� �� �

has

� � �

states.

� This is done by selecting a state, ripping it out of the
machine, and repairing the remainder so that the same
language is still recognized

Any state can be selected for ripping, providing that it
is not start or accept state. Such a state exists
because

Second Part of Regular Expressions Equivalence with Finite Automata – p.12/30

Note

� The crucial step is the construction of an equivalent� �� �

with one fewer states than a
� �� �

when� �� �

has

� � �

states.

� This is done by selecting a state, ripping it out of the
machine, and repairing the remainder so that the same
language is still recognized

� Any state can be selected for ripping, providing that it
is not start or accept state. Such a state exists
because

� � �

Second Part of Regular Expressions Equivalence with Finite Automata – p.12/30

Repairing after ripping a state

Assume that the state of a GNFA selected for ripping is ��� ���

After removing we repair the machine by altering the REs that
label each of the remaining transitions

The new labels compensate for the absence of by adding
back the lost computation

The new label of the arrow going from state to is a RE that
specifiesall strings that would take the machine from to
either directly or via

Second Part of Regular Expressions Equivalence with Finite Automata – p.13/30

Repairing after ripping a state

Assume that the state of a GNFA selected for ripping is ��� ���

�

After removing ��� ��� we repair the machine by altering the REs that
label each of the remaining transitions

The new labels compensate for the absence of by adding
back the lost computation

The new label of the arrow going from state to is a RE that
specifiesall strings that would take the machine from to
either directly or via

Second Part of Regular Expressions Equivalence with Finite Automata – p.13/30

Repairing after ripping a state

Assume that the state of a GNFA selected for ripping is ��� ���

�

After removing ��� ��� we repair the machine by altering the REs that
label each of the remaining transitions

�

The new labels compensate for the absence of � � ��� by adding
back the lost computation

The new label of the arrow going from state to is a RE that
specifiesall strings that would take the machine from to
either directly or via

Second Part of Regular Expressions Equivalence with Finite Automata – p.13/30

Repairing after ripping a state

Assume that the state of a GNFA selected for ripping is ��� ���

�

After removing ��� ��� we repair the machine by altering the REs that
label each of the remaining transitions

�

The new labels compensate for the absence of � � ��� by adding
back the lost computation

�

The new label of the arrow going from state � � to ��� is a RE that
specifiesall strings that would take the machine from � � to ���

either directly or via �� ���

Second Part of Regular Expressions Equivalence with Finite Automata – p.13/30

Illustration

We illustrate the approach of ripping and repairing in
Figure 3

� � �

�

� �
�

���

�

� �
� �

�

���

��

before ripping

� � ���

� � � � � � � � � � �� � � � ��� �

after ripping

Figure 3: Ripping and repairing an GNFA

Second Part of Regular Expressions Equivalence with Finite Automata – p.14/30

Note

� New labels obtained by concatenating REs of arrows
that go through �� ��� and union them with the labels of
the arrows that travel directly between � � and ���

This construct is carried out for each arrow that goes
from state to any state including

Second Part of Regular Expressions Equivalence with Finite Automata – p.15/30

Note

� New labels obtained by concatenating REs of arrows
that go through �� ��� and union them with the labels of
the arrows that travel directly between � � and ���

� This construct is carried out for each arrow that goes
from state � � to any state � � including � � � ��

Second Part of Regular Expressions Equivalence with Finite Automata – p.15/30

Formal proof

� First we need to define formally the GNFA

Since new labels are REs we use the symbol to
denote the collection of REs over an alphabet

To simplify, denote by and thestart and accept
states of the GNFA

Second Part of Regular Expressions Equivalence with Finite Automata – p.16/30

Formal proof

� First we need to define formally the GNFA

� Since new labels are REs we use the symbol

��� to
denote the collection of REs over an alphabet

�

To simplify, denote by and thestart and accept
states of the GNFA

Second Part of Regular Expressions Equivalence with Finite Automata – p.16/30

Formal proof

� First we need to define formally the GNFA

� Since new labels are REs we use the symbol

��� to
denote the collection of REs over an alphabet

�

� To simplify, denote by ��
� and �
 thestart and accept

states of the GNFA

Second Part of Regular Expressions Equivalence with Finite Automata – p.16/30

Transition function of a GNFA

� Because an arrow connects every state to every other
state, except that no arrows are coming from �
 or
going to �

� , the domain of the transition function of a
GNFA is

��� � �
�

� �

�� � � �

�
� �

�

�� 	 ��

If the arrow from to has the label

Second Part of Regular Expressions Equivalence with Finite Automata – p.17/30

Transition function of a GNFA

� Because an arrow connects every state to every other
state, except that no arrows are coming from �
 or
going to �

� , the domain of the transition function of a
GNFA is

��� � �
�

� �

�� � � �

�
� �

�

�� 	 ��

� If

� � � ��
�

��
�

� �

the arrow from � � to ��� has the label

�

Second Part of Regular Expressions Equivalence with Finite Automata – p.17/30

Definition 1.64

A generalized NFA (GNFA) is a 5-tuple

� �
�

�
�

�
�

�
� �

�

�

where:

1. is the finite set of states

2. is the input alphabet

3. is the transition function where
is the set of REs over

4. is the unique start state

5. is the unique accept state and .

Second Part of Regular Expressions Equivalence with Finite Automata – p.18/30

Definition 1.64

A generalized NFA (GNFA) is a 5-tuple

� �
�

�
�

�
�

�
� �

�

�

where:

1.

�

is the finite set of states

2. is the input alphabet

3. is the transition function where
is the set of REs over

4. is the unique start state

5. is the unique accept state and .

Second Part of Regular Expressions Equivalence with Finite Automata – p.18/30

Definition 1.64

A generalized NFA (GNFA) is a 5-tuple

� �
�

�
�

�
�

�
� �

�

�

where:

1.

�

is the finite set of states

2.

�

is the input alphabet

3. is the transition function where
is the set of REs over

4. is the unique start state

5. is the unique accept state and .

Second Part of Regular Expressions Equivalence with Finite Automata – p.18/30

Definition 1.64

A generalized NFA (GNFA) is a 5-tuple

� �
�

�
�

�
�

�
� �

�

�

where:

1.

�

is the finite set of states

2.

�

is the input alphabet

3.

��� � � � � ���
�� 	 � � � � ��

�� � ��
 is the transition function where

��
 is the set of REs over

�

4. is the unique start state

5. is the unique accept state and .

Second Part of Regular Expressions Equivalence with Finite Automata – p.18/30

Definition 1.64

A generalized NFA (GNFA) is a 5-tuple

� �
�

�
�

�
�

�
� �

�

�

where:

1.

�

is the finite set of states

2.

�

is the input alphabet

3.

��� � � � � ���
�� 	 � � � � ��

�� � ��
 is the transition function where

��
 is the set of REs over

�
4. ��
 is the unique start state

5. is the unique accept state and .

Second Part of Regular Expressions Equivalence with Finite Automata – p.18/30

Definition 1.64

A generalized NFA (GNFA) is a 5-tuple

� �
�

�
�

�
�

�
� �

�

�

where:

1.

�

is the finite set of states

2.

�

is the input alphabet

3.

��� � � � � ���
�� 	 � � � � ��

�� � ��
 is the transition function where

��
 is the set of REs over

�
4. ��
 is the unique start state

5. �� is the unique accept state and ���

��� ��
 .

Second Part of Regular Expressions Equivalence with Finite Automata – p.18/30

GNFA computation

A GNFA accepts a string � � ��

if � � ��� ����� � � �	� where

� � � ��

,

�
 �
 �

, if a sequence of states ���
�

��
�� � � �

��

exits such that:

1. is the start state

2. is the accept state

3. For each , and , i.e., is the RE
labeling the arrow from to and is an element of the
language specified by this expression

Second Part of Regular Expressions Equivalence with Finite Automata – p.19/30

GNFA computation

A GNFA accepts a string � � ��

if � � ��� ����� � � �	� where

� � � ��

,

�
 �
 �

, if a sequence of states ���
�

��
�� � � �

��

exits such that:

1. ��� � �
 is the start state

2. is the accept state

3. For each , and , i.e., is the RE
labeling the arrow from to and is an element of the
language specified by this expression

Second Part of Regular Expressions Equivalence with Finite Automata – p.19/30

GNFA computation

A GNFA accepts a string � � ��

if � � ��� ����� � � �	� where

� � � ��

,

�
 �
 �

, if a sequence of states ���
�

��
�� � � �

��

exits such that:

1. ��� � �
 is the start state

2. �� � ��� is the accept state

3. For each , and , i.e., is the RE
labeling the arrow from to and is an element of the
language specified by this expression

Second Part of Regular Expressions Equivalence with Finite Automata – p.19/30

GNFA computation

A GNFA accepts a string � � ��

if � � ��� ����� � � �	� where

� � � ��

,

�
 �
 �

, if a sequence of states ���
�

��
�� � � �

��

exits such that:

1. ��� � �
 is the start state

2. �� � ��� is the accept state

3. For each

�

,

� � � � � ��� � �
�

� � � and � � � � � � �
�

, i.e.,

� � is the RE
labeling the arrow from � � � � to � � and � � is an element of the
language specified by this expression

Second Part of Regular Expressions Equivalence with Finite Automata – p.19/30

More proof ideas

Returning to the proof of Lemma 1.60, we assume that
is a DFA recognizing the language

�

and proceed as
follows:

Convert into a GNFA by adding a new start state and a new
accept state and the additional arrows

Use the procedure that maps into a RE, as
explained before, while preserving the language

is recursive; however the case when GNFA has only two

sates is handled without recursion

Second Part of Regular Expressions Equivalence with Finite Automata – p.20/30

More proof ideas

Returning to the proof of Lemma 1.60, we assume that
is a DFA recognizing the language

�

and proceed as
follows:

�

Convert

�

into a GNFA

�

by adding a new start state and a new
accept state and the additional arrows

Use the procedure that maps into a RE, as
explained before, while preserving the language

is recursive; however the case when GNFA has only two

sates is handled without recursion

Second Part of Regular Expressions Equivalence with Finite Automata – p.20/30

More proof ideas

Returning to the proof of Lemma 1.60, we assume that
is a DFA recognizing the language

�

and proceed as
follows:

�

Convert

�

into a GNFA

�

by adding a new start state and a new
accept state and the additional arrows

�

Use the procedure

��� �� �� � � ��
that maps

�

into a RE, as
explained before, while preserving the language

�

is recursive; however the case when GNFA has only two

sates is handled without recursion

Second Part of Regular Expressions Equivalence with Finite Automata – p.20/30

More proof ideas

Returning to the proof of Lemma 1.60, we assume that
is a DFA recognizing the language

�

and proceed as
follows:

�

Convert

�

into a GNFA

�

by adding a new start state and a new
accept state and the additional arrows

�

Use the procedure

��� �� �� � � ��
that maps

�

into a RE, as
explained before, while preserving the language

�

��� �� �� � ��

is recursive; however the case when GNFA has only two

sates is handled without recursion

Second Part of Regular Expressions Equivalence with Finite Automata – p.20/30

�� �

1. Let

�

be the number of states of

�

,

�� �

.

2. If then must consists of a start state and an accept state
and a single arrow connecting them, labeled by a RE . Return

3. While , select any state , different from and and
let be the GNFA where:

for any and any let
where:

, , ,

;

Second Part of Regular Expressions Equivalence with Finite Automata – p.21/30

�� �

1. Let

�

be the number of states of

�

,

�� �

.

2. If

� � �

then

�

must consists of a start state and an accept state
and a single arrow connecting them, labeled by a RE

�

. Return

�

3. While , select any state , different from and and
let be the GNFA where:

for any and any let
where:

, , ,

;

Second Part of Regular Expressions Equivalence with Finite Automata – p.21/30

�� �

1. Let

�

be the number of states of

�

,

�� �

.

2. If

� � �

then

�

must consists of a start state and an accept state
and a single arrow connecting them, labeled by a RE

�

. Return

�

3. While

��� �

, select any state � � ��� � �

, different from �
 and ��� and
let

� �

be the GNFA

� � �
�

�
�

� �
� �
 � ��

�
where:

for any and any let
where:

, , ,

;

Second Part of Regular Expressions Equivalence with Finite Automata – p.21/30

�� �

1. Let

�

be the number of states of

�

,

�� �

.

2. If

� � �

then

�

must consists of a start state and an accept state
and a single arrow connecting them, labeled by a RE

�

. Return

�

3. While

��� �

, select any state � � ��� � �

, different from �
 and ��� and
let

� �

be the GNFA

� � �
�

�
�

� �
� �
 � ��

�
where:

� � �
� � � � �� ���

�

for any and any let
where:

, , ,

;

Second Part of Regular Expressions Equivalence with Finite Automata – p.21/30

�� �

1. Let

�

be the number of states of

�

,

�� �

.

2. If

� � �

then

�

must consists of a start state and an accept state
and a single arrow connecting them, labeled by a RE

�

. Return

�

3. While

��� �

, select any state � � ��� � �

, different from �
 and ��� and
let

� �

be the GNFA

� � �
�

�
�

� �
� �
 � ��

�
where:

� � �
� � � � �� ���

�

�

for any � � � � � � � ���
�

and any ��� � � � � � ��

�

let

� � � � �� ��
�

�
� �

�
� � ��
�

� � � ��
�

� � � ��
�

�

where:

�
� � � � � �� �� ��

�

,
��
� � � � ��� ��� � ��� ���

�

,

��
� � � � �� ��� � ��

�

,

��
� � � � � �� ��

�

;

Second Part of Regular Expressions Equivalence with Finite Automata – p.21/30

�� �

1. Let

�

be the number of states of

�

,

�� �

.

2. If

� � �

then

�

must consists of a start state and an accept state
and a single arrow connecting them, labeled by a RE

�

. Return

�

3. While

��� �

, select any state � � ��� � �

, different from �
 and ��� and
let

� �

be the GNFA

� � �
�

�
�

� �
� �
 � ��

�
where:

� � �
� � � � �� ���

�

�

for any � � � � � � � ���
�

and any ��� � � � � � ��

�

let

� � � � �� ��
�

�
� �

�
� � ��
�

� � � ��
�

� � � ��
�

�

where:

�
� � � � � �� �� ��

�

,
��
� � � � ��� ��� � ��� ���

�

,

��
� � � � �� ��� � ��

�

,

��
� � � � � �� ��

�

� ��� �� �� � � � � �
;

Second Part of Regular Expressions Equivalence with Finite Automata – p.21/30

Claim 1.65

For any GNFA

�

,

��� �� �� � � ��

is equivalent to
�

Proof: by induction on , the number of states of

Second Part of Regular Expressions Equivalence with Finite Automata – p.22/30

Claim 1.65

For any GNFA

�

,

��� �� �� � � ��

is equivalent to
�

Proof:

by induction on , the number of states of

Second Part of Regular Expressions Equivalence with Finite Automata – p.22/30

Claim 1.65

For any GNFA

�

,

��� �� �� � � ��

is equivalent to
�

Proof: by induction on

�

, the number of states of

�

Second Part of Regular Expressions Equivalence with Finite Automata – p.22/30

Induction Basis: �

� If

�

has only two states, by definition, it can have only
a single arrow which goes from �

� to �

The RE labeling this arrow specifies the language
accepted by

Since this expression is returned by , it
means that and are equivalent

Second Part of Regular Expressions Equivalence with Finite Automata – p.23/30

Induction Basis: �

� If

�

has only two states, by definition, it can have only
a single arrow which goes from �

� to �

� The RE labeling this arrow specifies the language
accepted by

�

Since this expression is returned by , it
means that and are equivalent

Second Part of Regular Expressions Equivalence with Finite Automata – p.23/30

Induction Basis: �

� If

�

has only two states, by definition, it can have only
a single arrow which goes from �

� to �

� The RE labeling this arrow specifies the language
accepted by

�

� Since this expression is returned by

��� � � �� � � ��

, it
means that

�

and

��� �� �� � � ��

are equivalent

Second Part of Regular Expressions Equivalence with Finite Automata – p.23/30

Induction Step

Assume that the claim is true for

�

having
�

�
�

states and
use this assumption to show that the claim is true for an
GNFA with

�

states

Observe from construction that and recognize the
same language

Suppose accepts the input . Then in an accepting
branch of computation, enters the sequence of
states

Show that has an accepting computation for , too.

Second Part of Regular Expressions Equivalence with Finite Automata – p.24/30

Induction Step

Assume that the claim is true for

�

having
�

�
�

states and
use this assumption to show that the claim is true for an
GNFA with

�

states

� Observe from construction that
�

and

� �

recognize the
same language

Suppose accepts the input . Then in an accepting
branch of computation, enters the sequence of
states

Show that has an accepting computation for , too.

Second Part of Regular Expressions Equivalence with Finite Automata – p.24/30

Induction Step

Assume that the claim is true for

�

having
�

�
�

states and
use this assumption to show that the claim is true for an
GNFA with

�

states

� Observe from construction that
�

and

� �

recognize the
same language

� Suppose

�

accepts the input �. Then in an accepting
branch of computation,

�

enters the sequence of
states �

� �

��
�

��
�

��
�� � � �

�

Show that has an accepting computation for , too.

Second Part of Regular Expressions Equivalence with Finite Automata – p.24/30

Induction Step

Assume that the claim is true for

�

having
�

�
�

states and
use this assumption to show that the claim is true for an
GNFA with

�

states

� Observe from construction that
�

and

� �

recognize the
same language

� Suppose

�

accepts the input �. Then in an accepting
branch of computation,

�

enters the sequence of
states �

� �

��
�

��
�

��
�� � � �

�

� Show that
� �

has an accepting computation for �, too.

Second Part of Regular Expressions Equivalence with Finite Automata – p.24/30

Induction step, continuation

1. If none of the states �
 � � � � �� � � � � � �� is �� ��� , clearly
� �

also accepts

� because each of the new REs labeling arrows of

� �

contain the
old REs as part of a union

2. If does appear in the computation by
removing each run of consecutive states we obtain an
accepting computation for . This is because states and
bracketing a run of consecutive states have a new RE on the
arrow between them that specify all strings taking to via
on . So, accepts in this case too.

Second Part of Regular Expressions Equivalence with Finite Automata – p.25/30

Induction step, continuation

1. If none of the states �
 � � � � �� � � � � � �� is �� ��� , clearly
� �

also accepts

� because each of the new REs labeling arrows of

� �

contain the
old REs as part of a union

2. If ��� ��� does appear in the computation �
 � � �� �� � � � � � �� by
removing each run of consecutive � � �� states we obtain an
accepting computation for

� �

. This is because states � � and ��

bracketing a run of consecutive � � ��� states have a new RE on the
arrow between them that specify all strings taking � � to �� via ��� ���

on

�

. So,

� �

accepts � in this case too.

Second Part of Regular Expressions Equivalence with Finite Automata – p.25/30

Induction step, continuation

For the other direction, suppose that

� �

accepts �.

1. Each arrow between any two states and in is labeled by a
RE that specifies strings specified by arrows in from directly
to or via

2. Hence, by the definitionof GNFA it follows that must also
accept .

That is, and accept the same language

Second Part of Regular Expressions Equivalence with Finite Automata – p.26/30

Induction step, continuation

For the other direction, suppose that

� �

accepts �.

1. Each arrow between any two states � � and ��� in

� �
is labeled by a

RE that specifies strings specified by arrows in

�

from � � directly
to ��� or via �� ��

2. Hence, by the definitionof GNFA it follows that must also
accept .

That is, and accept the same language

Second Part of Regular Expressions Equivalence with Finite Automata – p.26/30

Induction step, continuation

For the other direction, suppose that

� �

accepts �.

1. Each arrow between any two states � � and ��� in

� �
is labeled by a

RE that specifies strings specified by arrows in

�

from � � directly
to ��� or via �� ��

2. Hence, by the definitionof GNFA it follows that

�

must also
accept �.

That is, and accept the same language

Second Part of Regular Expressions Equivalence with Finite Automata – p.26/30

Induction step, continuation

For the other direction, suppose that

� �

accepts �.

1. Each arrow between any two states � � and ��� in

� �
is labeled by a

RE that specifies strings specified by arrows in

�

from � � directly
to ��� or via �� ��

2. Hence, by the definitionof GNFA it follows that

�

must also
accept �.

That is,

�

and

� �

accept the same language

Second Part of Regular Expressions Equivalence with Finite Automata – p.26/30

Conclusion

� The induction hypothesis states that when the
algorithm calls itself recursively on input

� �

, the result
is a RE that is equivalent to

� �

because

� �

has

�

�
�

states

Hence, that RE is also equivalent to because is
equivalent to

Consequently and are equivalent

Second Part of Regular Expressions Equivalence with Finite Automata – p.27/30

Conclusion

� The induction hypothesis states that when the
algorithm calls itself recursively on input

� �

, the result
is a RE that is equivalent to

� �

because

� �

has

�

�
�

states

� Hence, that RE is also equivalent to

�

because

� �

is
equivalent to

�

Consequently and are equivalent

Second Part of Regular Expressions Equivalence with Finite Automata – p.27/30

Conclusion

� The induction hypothesis states that when the
algorithm calls itself recursively on input

� �

, the result
is a RE that is equivalent to

� �

because

� �

has

�

�
�

states

� Hence, that RE is also equivalent to

�

because

� �

is
equivalent to

�

� Consequently

��� �� �� � � ��

and

�

are equivalent

Second Part of Regular Expressions Equivalence with Finite Automata – p.27/30

Example 1.35

Convert the DFA

�

in Figure 4 into the RE that specifies
the language accepted by

�
�

�

1 �

�
�

�
�

�

Figure 4: DFA

�

to be converted

Second Part of Regular Expressions Equivalence with Finite Automata – p.28/30

GNFA � obtained from

Figure 5 shows the four-state GNFA obtained from

�

by
adding new start state and accept state and replacing �

�

�

by � � �

�

�

�

�

�
�

�
�

� �� �
�

�� �
�

Figure 5: GNFA

�
� obtained from

�

Second Part of Regular Expressions Equivalence with Finite Automata – p.29/30

Eliminating nodes

Removing state

�

and then state

�

, Figure 6 shows the
GNFA

�
� :

� ��
��

�

 � � �
 � �
 � � � �

Figure 6: GNFA

�
� obtained from

�
�

Second Part of Regular Expressions Equivalence with Finite Automata – p.30/30

	Lemma 1.60
	Procedure
	What is an GNFA?
	Example GNFA
	Note
	GNFA of special form
	Converting DFA to GNFA
	Note
	Converting $GNFA	o RE$
	Example DFA conversion
	Note
	Repairing after ripping a state
	Illustration
	Note
	Formal proof
	Transition function of a GNFA
	Definition 1.64
	GNFA computation
	More proof ideas
	$Convert(G)$
	Claim 1.65
	Induction Basis: $k = 2$
	Induction Step
	Induction step, {scriptsize continuation}
	Induction step, {scriptsize continuation}
	Conclusion
	Example 1.35
	GNFA G_1 obtained from D
	Eliminating nodes

