Second Part of Regular Expressions Equivalence with Finite Automata

Lemma 1.60

•

If a language is regular then it is specified by a RE

Lemma 1.60

•

If a language is regular then it is specified by a RE

Proof idea: For a given regular language A we will construct a regular expression (RE) that specifies A.

•

• Since A is regular, there is a DFA D_A recognizing A

•

- Since A is regular, there is a DFA D_A recognizing A
- D_A will be converted into a RE R_A that specifies A

•

- Since A is regular, there is a DFA D_A recognizing A
- D_A will be converted into a RE R_A that specifies A

This procedure is broken in two parts:

- Since A is regular, there is a DFA D_A recognizing A
- D_A will be converted into a RE R_A that specifies A

This procedure is broken in two parts:

1. Convert the DFA into a generalized NFA, GNFA

- Since A is regular, there is a DFA D_A recognizing A
- D_A will be converted into a RE R_A that specifies A

This procedure is broken in two parts:

- 1. Convert the DFA into a generalized NFA, GNFA
- 2. Convert the GNFA into a RE

What is an GNFA?

•

• A GNFA is an NFA wherein the transition arrows may have any REs as labels

What is an GNFA?

- A GNFA is an NFA wherein the transition arrows may have any REs as labels
- Hence, GNFA reads strings specified by REs (block of symbols) from the input

What is an GNFA?

- A GNFA is an NFA wherein the transition arrows may have any REs as labels
- Hence, GNFA reads strings specified by REs (block of symbols) from the input
- GNFA moves along a transition arrow connecting two states representing a RE, Figure 1

Example GNFA

•

Figure 1: A GNFA Second Part of Regular Expressions Equivalence with Finite Automata – p.5/3

•

• A GNFA is nondeterministic and so, it may have many different ways to process the same input string

- A GNFA is nondeterministic and so, it may have many different ways to process the same input string
- A GNFA accepts its input if its entire processing can cause the GNFA to be in an accept state

•

• The start state has transition arrows to every other state but no arrow coming from any other state

- The start state has transition arrows to every other state but no arrow coming from any other state
- There is only one accept state and it has arrows coming in from every other state, but has no arrows going to any other state

- The start state has transition arrows to every other state but no arrow coming from any other state
- There is only one accept state and it has arrows coming in from every other state, but has no arrows going to any other state
- The accept state is different from the start state

- The start state has transition arrows to every other state but no arrow coming from any other state
- There is only one accept state and it has arrows coming in from every other state, but has no arrows going to any other state
- The accept state is different from the start state
- Except for start and accept states, one arrow goes from every state to every other state and from each state to itself

A DFA is converted to a GNFA of special form by the followsing procedure:

A DFA is converted to a GNFA of special form by the followsing procedure:

1. Add a new start state with an ϵ arrow to the old start state and a new accept state with an ϵ arrow from all old accept states

A DFA is converted to a GNFA of special form by the followsing procedure:

- 1. Add a new start state with an ϵ arrow to the old start state and a new accept state with an ϵ arrow from all old accept states
- 2. If any arrows have multiple labels or if there are multiple arrows going between the same two states in the same direction replace each with a single arrow whose label is the union of the previous labels

A DFA is converted to a GNFA of special form by the followsing procedure:

- 1. Add a new start state with an ϵ arrow to the old start state and a new accept state with an ϵ arrow from all old accept states
- 2. If any arrows have multiple labels or if there are multiple arrows going between the same two states in the same direction replace each with a single arrow whose label is the union of the previous labels
- 3. Add arrows labeled \emptyset between states that had no arrows

Adding Ø transitions doesn't change the language recognized by DFA because a transition labeled by Ø can never be used

Adding Ø transitions doesn't change the language recognized by DFA because a transition labeled by Ø can never be used

Assumption: now we assume that all GNFAs are in the special form just defined.

Assume that GNFA has k states

Assume that GNFA has k states

• Because start and accept states are different from each other, it results that $k \ge 2$

Assume that GNFA has k states

- Because start and accept states are different from each other, it results that $k \ge 2$
- If k > 2 we construct an equivalent GNFA with k 1 states. This can be repeated for each new GNFA until we obtain a GNFA with k = 2 states.

Assume that GNFA has k states

- Because start and accept states are different from each other, it results that $k \ge 2$
- If k > 2 we construct an equivalent GNFA with k 1 states. This can be repeated for each new GNFA until we obtain a GNFA with k = 2 states.
- If k = 2, GNFA has a single arrow that goes from start to accept and is labeled by a RE that specifies the language recognized by the original DFA

Example DFA conversion

Assuming that the original DFA has 3 states the process of its conversion is shown in Figure 2

Figure 2: Example DFA conversion to RE

•

• The crucial step is the construction of an equivalent GNFA with one fewer states than a GNFA when GNFA has k > 2 states.

- The crucial step is the construction of an equivalent GNFA with one fewer states than a GNFA when GNFA has k > 2 states.
- This is done by selecting a state, ripping it out of the machine, and repairing the remainder so that the same language is still recognized

- The crucial step is the construction of an equivalent GNFA with one fewer states than a GNFA when GNFA has k > 2 states.
- This is done by selecting a state, ripping it out of the machine, and repairing the remainder so that the same language is still recognized
- Any state can be selected for ripping, providing that it is not start or accept state. Such a state exists because k > 2

Assume that the state of a GNFA selected for ripping is q_{rip}

Assume that the state of a GNFA selected for ripping is q_{rip}

• After removing q_{rip} we repair the machine by altering the REs that label each of the remaining transitions

Assume that the state of a GNFA selected for ripping is q_{rip}

- After removing q_{rip} we repair the machine by altering the REs that label each of the remaining transitions
- The new labels compensate for the absence of q_{rip} by adding back the lost computation

Assume that the state of a GNFA selected for ripping is q_{rip}

- After removing q_{rip} we repair the machine by altering the REs that label each of the remaining transitions
- The new labels compensate for the absence of q_{rip} by adding back the lost computation
- The new label of the arrow going from state q_i to q_j is a RE that specifi esall strings that would take the machine from q_i to q_j either directly or via q_{rip}
Illustration

•

We illustrate the approach of ripping and repairing in Figure 3

Figure 3: Ripping and repairing an GNFA

Note

•

• New labels obtained by concatenating REs of arrows that go through q_{rip} and union them with the labels of the arrows that travel directly between q_i and q_j

Note

- New labels obtained by concatenating REs of arrows that go through q_{rip} and union them with the labels of the arrows that travel directly between q_i and q_j
- This construct is carried out for each arrow that goes from state q_i to any state q_j including $q_i = q_j$

Formal proof

•

• First we need to define formally the GNFA

Formal proof

- First we need to define formally the GNFA
- Since new labels are REs we use the symbol \mathcal{R}_{Σ} to denote the collection of REs over an alphabet Σ

Formal proof

- First we need to define formally the GNFA
- Since new labels are REs we use the symbol \mathcal{R}_{Σ} to denote the collection of REs over an alphabet Σ
- To simplify, denote by q_s and q_a thestart and accept states of the GNFA

Transition function of a GNFA

Because an arrow connects every state to every other state, except that no arrows are coming from q_a or going to q_s, the domain of the transition function of a GNFA is δ : (Q - {q_a}) × (Q - {q_s}) → R_Σ

Transition function of a GNFA

- Because an arrow connects every state to every other state, except that no arrows are coming from q_a or going to q_s, the domain of the transition function of a GNFA is δ : (Q {q_a}) × (Q {q_s}) → R_Σ
- If $\delta(q_i, q_j) = R$ the arrow from q_i to q_j has the label R

•

•

A generalized NFA (GNFA) is a 5-tuple $(Q, \Sigma, \delta, q_s, q_a)$ where:

1. *Q* is the finite set of states

•

- 1. *Q* is the finite set of states
- 2. Σ is the input alphabet

•

- 1. *Q* is the finite set of states
- 2. Σ is the input alphabet
- 3. $\delta: (Q \{q_a\}) \times (Q \{q_s\}) \rightarrow \mathcal{R}_{\Sigma}$ is the transition function where \mathcal{R}_{Σ} is the set of REs over Σ

•

- 1. *Q* is the finite set of states
- 2. Σ is the input alphabet
- 3. $\delta: (Q \{q_a\}) \times (Q \{q_s\}) \rightarrow \mathcal{R}_{\Sigma}$ is the transition function where \mathcal{R}_{Σ} is the set of REs over Σ
- 4. q_s is the unique start state

•

- 1. *Q* is the finite set of states
- 2. Σ is the input alphabet
- 3. $\delta: (Q \{q_a\}) \times (Q \{q_s\}) \rightarrow \mathcal{R}_{\Sigma}$ is the transition function where \mathcal{R}_{Σ} is the set of REs over Σ
- 4. q_s is the unique start state
- 5. q_a is the unique accept state and $q_a \neq q_s$.

A GNFA accepts a string $w \in \Sigma^*$ if $w = w_1 w_2 \dots w_k$ where $w_i \in \Sigma^*$, $1 \le i \le k$, if a sequence of states q_0, q_1, \dots, q_k exits such that:

A GNFA accepts a string $w \in \Sigma^*$ if $w = w_1 w_2 \dots w_k$ where $w_i \in \Sigma^*$, $1 \le i \le k$, if a sequence of states q_0, q_1, \dots, q_k exits such that:

1. $q_o = q_s$ is the start state

A GNFA accepts a string $w \in \Sigma^*$ if $w = w_1 w_2 \dots w_k$ where $w_i \in \Sigma^*$, $1 \le i \le k$, if a sequence of states q_0, q_1, \dots, q_k exits such that:

- 1. $q_o = q_s$ is the start state
- 2. $q_k = q_a$ is the accept state

A GNFA accepts a string $w \in \Sigma^*$ if $w = w_1 w_2 \dots w_k$ where $w_i \in \Sigma^*$, $1 \le i \le k$, if a sequence of states q_0, q_1, \dots, q_k exits such that:

- 1. $q_o = q_s$ is the start state
- 2. $q_k = q_a$ is the accept state
- 3. For each *i*, $\delta(q_{i-1}, q_i) = R_i$ and $w_i \in L(R_i)$, i.e., R_i is the RE labeling the arrow from q_{i-1} to q_i and w_i is an element of the language specified by this expression

Returning to the proof of Lemma 1.60, we assume that *M* is a DFA recognizing the language *A* and proceed as follows:

Returning to the proof of Lemma 1.60, we assume that *M* is a DFA recognizing the language *A* and proceed as follows:

• Convert *M* into a GNFA *G* by adding a new start state and a new accept state and the additional arrows

Returning to the proof of Lemma 1.60, we assume that *M* is a DFA recognizing the language *A* and proceed as follows:

- Convert *M* into a GNFA *G* by adding a new start state and a new accept state and the additional arrows
- Use the procedure *Convert*(*G*) that maps *G* into a RE, as explained before, while preserving the language *A*

Returning to the proof of Lemma 1.60, we assume that *M* is a DFA recognizing the language *A* and proceed as follows:

- Convert *M* into a GNFA *G* by adding a new start state and a new accept state and the additional arrows
- Use the procedure *Convert*(*G*) that maps *G* into a RE, as explained before, while preserving the language *A*

Convert() is recursive; however the case when GNFA has only two sates is handled without recursion

•

1. Let k be the number of states of G, $k \ge 2$.

- 1. Let k be the number of states of G, $k \ge 2$.
- 2. If k = 2 then *G* must consists of a start state and an accept state and a single arrow connecting them, labeled by a RE *R*. Return *R*

- 1. Let k be the number of states of G, $k \ge 2$.
- 2. If k = 2 then *G* must consists of a start state and an accept state and a single arrow connecting them, labeled by a RE *R*. Return *R*
- 3. While k > 2, select any state $q_{rip} \in Q$, different from q_s and q_a and let G' be the GNFA $(Q', \Sigma, \delta', q_s, q_a)$ where:

- 1. Let k be the number of states of G, $k \ge 2$.
- 2. If k = 2 then *G* must consists of a start state and an accept state and a single arrow connecting them, labeled by a RE *R*. Return *R*
- 3. While k > 2, select any state $q_{rip} \in Q$, different from q_s and q_a and let G' be the GNFA $(Q', \Sigma, \delta', q_s, q_a)$ where:

•
$$Q' = Q - \{q_{rip}\}$$

- 1. Let k be the number of states of G, $k \ge 2$.
- 2. If k = 2 then *G* must consists of a start state and an accept state and a single arrow connecting them, labeled by a RE *R*. Return *R*
- 3. While k > 2, select any state $q_{rip} \in Q$, different from q_s and q_a and let G' be the GNFA $(Q', \Sigma, \delta', q_s, q_a)$ where:
 - $Q' = Q \{q_{rip}\}$
 - for any $q_i \in Q' \{q_a\}$ and any $q_j \in Q' \{q_s\}$ let $\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4)$ where: $R_1 = \delta(q_i, q_{rip}), R_2 = \delta(q_{rip}, q_{rip}), R_3 = \delta(q_{rip}, q_j),$ $R_4 = \delta(q_i, q_j)$

- 1. Let k be the number of states of G, $k \ge 2$.
- 2. If k = 2 then *G* must consists of a start state and an accept state and a single arrow connecting them, labeled by a RE *R*. Return *R*
- 3. While k > 2, select any state $q_{rip} \in Q$, different from q_s and q_a and let G' be the GNFA $(Q', \Sigma, \delta', q_s, q_a)$ where:
 - $Q' = Q \{q_{rip}\}$
 - for any $q_i \in Q' \{q_a\}$ and any $q_j \in Q' \{q_s\}$ let $\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4)$ where: $R_1 = \delta(q_i, q_{rip}), R_2 = \delta(q_{rip}, q_{rip}), R_3 = \delta(q_{rip}, q_j),$ $R_4 = \delta(q_i, q_j)$
 - Convert(G');

Claim 1.65

•

For any GNFA G, Convert(G) is equivalent to G

Claim 1.65

For any GNFA G, Convert(G) is equivalent to G

Proof:

•

Claim 1.65

•

For any GNFA G, Convert(G) is equivalent to G

Proof: by induction on k, the number of states of G

Induction Basis: k = 2

•

• If G has only two states, by definition, it can have only a single arrow which goes from q_s to q_a

Induction Basis: k = 2

- If G has only two states, by definition, it can have only a single arrow which goes from q_s to q_a
- The RE labeling this arrow specifies the language accepted by *G*

Induction Basis: k = 2

- If G has only two states, by definition, it can have only a single arrow which goes from q_s to q_a
- The RE labeling this arrow specifies the language accepted by *G*
- Since this expression is returned by Convert(G), it means that *G* and Convert(G) are equivalent

Induction Step

•

Assume that the claim is true for *G* having k - 1 states and use this assumption to show that the claim is true for an GNFA with *k* states

Induction Step

Assume that the claim is true for *G* having k - 1 states and use this assumption to show that the claim is true for an GNFA with k states

• Observe from construction that *G* and *G'* recognize the same language
Induction Step

Assume that the claim is true for *G* having k - 1 states and use this assumption to show that the claim is true for an GNFA with *k* states

- Observe from construction that *G* and *G'* recognize the same language
- Suppose *G* accepts the input *w*. Then in an accepting branch of computation, *G* enters the sequence of states $q_s, q_1, q_2, q_3, \ldots, q_a$

Induction Step

Assume that the claim is true for *G* having k - 1 states and use this assumption to show that the claim is true for an GNFA with *k* states

- Observe from construction that *G* and *G'* recognize the same language
- Suppose *G* accepts the input *w*. Then in an accepting branch of computation, *G* enters the sequence of states $q_s, q_1, q_2, q_3, \ldots, q_a$
- Show that G' has an accepting computation for w, too.

1. If none of the states $q_s, q_1, q_2, \ldots, q_a$ is q_{rip} , clearly G' also accepts w because each of the new REs labeling arrows of G' contain the old REs as part of a union

- 1. If none of the states $q_s, q_1, q_2, \ldots, q_a$ is q_{rip} , clearly G' also accepts w because each of the new REs labeling arrows of G' contain the old REs as part of a union
- If q_{rip} does appear in the computation q_s, q₁, q₂,..., q_a by removing each run of consecutive q_{rip} states we obtain an accepting computation for G'. This is because states q_i and q_j bracketing a run of consecutive q_{rip} states have a new RE on the arrow between them that specify all strings taking q_i to q_j via q_{rip} on G. So, G' accepts w in this case too.

•

For the other direction, suppose that G' accepts w.

For the other direction, suppose that G' accepts w.

1. Each arrow between any two states q_i and q_j in G' is labeled by a RE that specifi es strings specifi ed by arrows in *G* from q_i directly to q_j or via q_{rip}

•

For the other direction, suppose that G' accepts w.

- 1. Each arrow between any two states q_i and q_j in G' is labeled by a RE that specifi es strings specifi ed by arrows in *G*from q_i directly to q_j or via q_{rip}
- 2. Hence, by the definition of GNFA it follows that *G* must also accept *w*.

For the other direction, suppose that G' accepts w.

- 1. Each arrow between any two states q_i and q_j in G' is labeled by a RE that specifi es strings specifi ed by arrows in *G*from q_i directly to q_j or via q_{rip}
- 2. Hence, by the definition of GNFA it follows that G must also accept w.

That is, G and G' accept the same language

Conclusion

The induction hypothesis states that when the algorithm calls itself recursively on input G', the result is a RE that is equivalent to G' because G' has k - 1 states

Conclusion

- The induction hypothesis states that when the algorithm calls itself recursively on input G', the result is a RE that is equivalent to G' because G' has k 1 states
- Hence, that RE is also equivalent to *G* because *G'* is equivalent to *G*

Conclusion

- The induction hypothesis states that when the algorithm calls itself recursively on input G', the result is a RE that is equivalent to G' because G' has k 1 states
- Hence, that RE is also equivalent to *G* because *G'* is equivalent to *G*
- Consequently Convert(G) and G are equivalent

Convert the DFA D in Figure 4 into the RE that specifies the language accepted by D

Figure 4: DFA D to be converted

GNFA G_1 obtained from D

Figure 5 shows the four-state GNFA obtained from *D* by adding new start state and accept state and replacing a, b by $a \cup b$

Figure 5: GNFA G_1 obtained from D

Eliminating nodes

•

Removing state 1 and then state 2, Figure 6 shows the GNFA G_3 :

Figure 6: GNFA G_3 obtained from G_2