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Nonregular languages

Consider the language

� � �� � � � ��� 	 � 


.

If we attempt to find a DFA that recognizes we discover that
such a machine needs to remember how many s have been
seen so far as it reads the input

Because the number of s isn’t limited, the machine needs to
keep track of an unlimited number of possibilities

This cannot be done with any finite number of states
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Intuition may fail us

� Just because a language appears to require
unbounded memory to be recognized, it doesn’t mean
that it is necessarily so

Example:
has an equal number of 0s and 1s not regular

has equal no of 01 and 10 substrings regular
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Language nonregularity

� The technique for proving nonregularity of some
language is provided by a theorem about regular
languages called pumping lemma

Pumping lemma states that all regular languages have
a special property

If we can show that a language does not have this
property we are guaranteed that is not regular.
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Observation

Pumping lemma states that all regular languages have a
special property.

Pumping lemma does not state that only regular languages
have this property. Hence, the property used to prove that
a language is not regular does not ensure that language
is regular.

Consequence: A language may not be regular and still have

strings that have all the properties of regular languages.
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Pumping property

All strings in the language can be “pumped" if they are at
least as long as a certain value, called the pumping length

Meaning: each such string in the language contains a sec-

tion that can be repeated any number of times with the re-

sulting string remaining in the language.
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Theorem 1.70

Pumping Lemma: If

�

is a regular language, then there is
a pumping length � such that:

If is any string in of length at least ,

Then may be divided into three pieces, ,
satisfying the following conditions:

1. for each ,

2.

3.
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Interpretation

� Recall that

�
�

�

represents the length of string � and � �

means that � may be concatenated
�

times, and � � � �

When , either or may be , but

Without condition theorem would be trivially true

is an extra technical condition, useful when
proving nonregularity
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Proof idea

Let � � ��
�

�
�

�
� ��� �

	 


be a DFA that recognizes

�

Assign a pumping length to be the number of states of

Show that any string , may be broken into three
pieces satisfying the pumping lemma’s conditions

If there are no strings in of length at least then theorem
becomes vacuously true because all three conditions hold for all
strings of length at least if there are no such strings
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More ideas

� If � � �

and

�
�

� 	 �, consider a sequence of states that
goes through to accept �, example: ����� ���� ���� � 	 	 	� �� �

Since accepts , must be final;if then the
length of is

Because and it result that .

By pigeonhole principle:

- If p pigeons are placed into fewer than p holes, some holes must
hold more than one pigeon

the sequence must contain a repeated
state, see Figure 1
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Recognition sequence
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Figure 1: State ��� repeats when reads �
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More ideas, continuation

Divide � in to the three pieces: �, � , and �

Piece is the part of appearing before

Piece is the part of between two appearances of

Piece is the part of after the 2nd appearance of

In other words:

takes from to ,

takes from to ,

takes from to
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Note

The division specified above satisfies the 3 conditions
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Observations

Suppose that we run on �� � �

Condition 1: it is obvious that accepts , , and in
general for all . For , which is also
accepted because takes to

Condition 2: Since , state is repeated. Then because is
the part between two successive occurrences of , .

Condition 3: makes sure that is the first repetition in the
sequence. Then by pigeonhole principle, the first states in
the sequence must contain a repetition. Therefore,
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Pumping lemma’s proof

Let � � ��
�

�
�

�
� ��� �

	 


be a DFA that has � states and
recognizes

�

. Let � � � � ��� � � �
� � be a string over

�

of
length � 	 �. Let � � � �� � � � � � � � � � be the sequence of states
while processing �, i.e., � � � � � � � � � � � �



,

� � � � �

and among the first elements in
two must be the same state, say .

Because occurs among the first places in the sequence
starting at , we have

Now let , , .
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Now let � � � � 	 	 	 � �
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Note

�

As � takes

�

from � � to �� , � takes

�

from �� to �� , and � takes

�

from �� to � � � � , which is an accept state,
�

must accept �� � � ,
for

� � �

We know that , so ;

We also know that , so

Thus, all conditions are satisfied and lemma is proven
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Before using lemma

Note: To use this lemma we must also ensure that if the
property stated by the pumping lemma is true then the
language is regular.

Proof: assuming that each element of language satisfies
the three conditions stated in pumping lemma we can
easily construct a FA that recognizes , that is, is regular.

Note: if only some elements of satisfy the three conditions it does not

mean that is regular.
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Using pumping lemma (PL)

Proving that a language

�

is not regular using PL:

1. Assume that is regular in order to obtain a contradiction

2. The pumping lemma guarantees the existence of a pumping
length s.t. all strings of length or greater in can be pumped

3. Find , , that cannot be pumped: demonstrate that
cannot be pumped by considering all ways of dividing into , , ,
showing that for each division one of the pumping lemma
conditions, (1) , (2) , (3) , fails.
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Observations

� The existence of � contradicts pumping lemma, hence

�

cannot be regular

Finding sometimes takes a bit of creative thinking.
Experimentation is suggested
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Applications

Example 1: prove that

� � � � � � � �� 	 � 


is not regular

Assume that is regular and let be the pumping length of

. Choose ; obviously . By pumping

lemma such that for any ,
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Example, continuation

Consider the cases:

1. consists of s only. In this case has more s than s and
so it is not in , violating condition 1

2. consists of s only. This leads to the same contradiction

3. consists of s and s. In this case may have the same
number of s and s but they are out of order with some s before
some s hence it cannot be in either

The contradiction is unavoidable if we make the assumption

that is regular so is not regular
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Example 2

Prove that

� � ��� � � has an equal number of 0s and 1s




is not regular

Proof: assume that is regular and is its pumping length.

Let with . Then pumping lemma guarantees

that , where for any .
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Note

If we take the division � � � � �, � � � � � �

it seems that
indeed, no contradiction occurs. However:

Condition 3 states that , and in our case and
. Hence, cannot be pumped

If then must consists of only s, so because
there are more 1-s than 0-s.

This gives us the desired contradiction
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Other selections

Selecting � � �� � 
 �

leads us to trouble because this string

can be pumped by the division: � � �, � � � �

, � � �� � 
 � �
�

.

Then �� � � � �

for any

� 	 �
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An alternative method

Use the fact that

�

is nonregular.

If were regular then would also be regular because
is regular and of regular languages is a regular language.

But which is not regular.

Hence, is not regular either.
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Example 3

Show that

	 � � � � � � � � �
�

� 
� 


is nonregular using
pumping lemma

Proof: Assume that is regular and is its pumping length.

Consider . Since , and

satisfiesthe conditions of the pumping lemma.
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Note

� Condition 3 is again crucial because without it we
could pump � if we let � � � � �, so �� � � � 	

The string exhibits the essence of the
nonregularity of .

If we chose, say we fail because this string
can be pumped
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Example 4

Show that

� � � � �� ��� 	 � 


is nonregular.

Proof by contradiction: Assume that is regular and let

be its pumping length. Consider , .

Pumping lemma guarantees that can be split, ,

where for all ,
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Searching for a contradiction

The elements of

�

are strings whose lengths are perfect
squares. Looking at first perfect squareswe observe that
they are: 0, 1, 4, 9, 25, 36, 49, 64, 81, � � �

Note the growing gap between these numbers: large members
cannot be near each other

Consider two strings and which differ from each other
by a single repetition of .

If we chose very large the lengths of and cannot be
both perfect square because they are too close to each other.
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Turning this idea into a proof

Calculate the value of

�

that gives us the contradiction.

If , calculating the difference we obtain

By pumping lemma and are both perfect
squares. But letting we can see that they
cannot be both perfect square if ,
because they would be too close together.
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Value of

�

for contradiction

To calculate the value for

�

that leads to contradiction we
observe that:

Let . Then
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Example 5

Sometimes “pumping down" is useful when we apply
pumping lemma.

We illustrate this using pumping lemma to prove that
is not regular

Proof: by contradiction using pumping lemma. Assume that is
regular and its pumping length is .
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Searching for a contradiction

� Let � � � � � � � �

; From decomposition � � �� �, from
condition 3,

� �� � � � it results that � consists only of 0s.

Let us examine to see if it is in . Adding an
extra-copy of increases the number of zeros. Since
contains all strings that have more 0s than 1s, it
will still give a string in
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Try something else

� Since �� � � � �

even when

� � � , consider
� � � and

�� � � � � � � �

.

This decreases the number of 0s in .

Since has just one more 0 than 1 and cannot have
more 0s than 1s,
( and )

cannot be in .

This is the required contradiction
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more 0s than 1s,
( �� � � � � � � � �

and

� � � � � �

)

� � cannot be in
�

.

This is the required contradiction
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Minimum pumping length

� The pumping lemma says that every regular language
has a pumping length �, such that every string in the
language of length at least � can be pumped.

Hence, if is a pumping length for a regular language
so is any length .

The minimum pumping length for is the smallest
that is a pumping length for .

The Pumping Lemma forRegular Languages – p.35/39



Minimum pumping length

� The pumping lemma says that every regular language
has a pumping length �, such that every string in the
language of length at least � can be pumped.

� Hence, if � is a pumping length for a regular language

�
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Minimum pumping length

� The pumping lemma says that every regular language
has a pumping length �, such that every string in the
language of length at least � can be pumped.

� Hence, if � is a pumping length for a regular language

�

so is any length � � 	 �.

� The minimum pumping length for

�

is the smallest �

that is a pumping length for

�

.
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Example

Consider

� � � � �

. The minimum pumping length for

�

is 2.

Reason: the string , and cannot be pumped. But any

string , can be pumped because for where ,

, and . Hence, the minimum pumping length for

is 2.
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Example

Consider

� � � � �

. The minimum pumping length for

�

is 2.

Reason: the string � � � � �

,

�
�

� � �

and � cannot be pumped. But any

string � � �

,

�
�
� � �

can be pumped because for � � �� � where � � �

,

� � �

, � � �� �
�

and �� � � � �

. Hence, the minimum pumping length for

�

is 2.
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Problem 1

Find the minimum pumping length for the language

� � � � �

.

Solution: The minimum pumping length for is 4.

Reason: but cannot be pumped. Hence, 3 is not a

pumping length for . If and can be pumped by

the division , , , .
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Problem 1

Find the minimum pumping length for the language

� � � � �

.

Solution: The minimum pumping length for

� � � � �

is 4.

Reason:

� � � � � � � � �
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� � �

cannot be pumped. Hence, 3 is not a

pumping length for

� � � � �

. If � � � � � � �

and
�

�
� � �

� can be pumped by

the division � � �� � , � � � � �

, � � �
, � � �� �

�

.
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Problem 2

Find the minimum pumping length for the language

� � ��

.

Solution: The minimum pumping length of is 1.

Reason: the minimum pumping length for cannot be 0 because is

in the language but cannot be pumped. Every nonempty string ,

can be pumped by the division: , , first character

of and the rest of .
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Problem 2

Find the minimum pumping length for the language

� � ��

.

Solution: The minimum pumping length of

� � � �

is 1.

Reason: the minimum pumping length for cannot be 0 because is

in the language but cannot be pumped. Every nonempty string ,

can be pumped by the division: , , first character
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The Pumping Lemma forRegular Languages – p.38/39



Problem 2

Find the minimum pumping length for the language

� � ��

.

Solution: The minimum pumping length of

� � � �

is 1.

Reason: the minimum pumping length for

� � � �
cannot be 0 because � is

in the language but cannot be pumped. Every nonempty string � � � � � �

,

�
�
� � �

can be pumped by the division: � � �� � , � � �, � first character

of � and � the rest of �.
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Problem 3

Find the minimum pumping length for the language

� � � � � � �� � � � � �

.

Solution: The minimum pumping length for is 3.

Reason: The pumping length cannot be 2 because the string is in the

language and it cannot be pumped. Let be a string in the language

of length at least 3. If is generated by we can write is as

, , is the first symbol of , and is the rest of the string.

If is generated by we can write it as , , and

is the remainder of .
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Problem 3

Find the minimum pumping length for the language
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.

Solution: The minimum pumping length for
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is 3.

Reason: The pumping length cannot be 2 because the string

� �

is in the

language and it cannot be pumped. Let � be a string in the language

of length at least 3. If � is generated by
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we can write is as

� � �� � , � � �, � is the first symbol of �, and � is the rest of the string.

If � is generated by
� � � �

we can write it as � � �� � , � � �

, � � �

and �

is the remainder of �.
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