
Equivalence of Pushdown
Automata with Context-Free

Grammar

Equivalence of Pushdown Automata with Context-Free Grammar – p.1/45

Motivation

� CFG and PDA are equivalent in power: a
CFG generates a context-free language and
a PDA recognizes a context-free language.

� We show here how to convert a CFG into a
PDA that recognizes the language specified
by the CFG and vice versa

� Application: this equivalence allows a CFG to
be used to specify a programming language
and the equivalent PDA to be used to
implement its compiler.

Equivalence of Pushdown Automata with Context-Free Grammar – p.2/45

Theorem 2.20

A language is context-free iff some pushdown
automaton recognizes it.

Note: This means that:
1. if a language

�

is context-free then there is a PDA

��� that
recognizes it

2. if a language

�

is recognized by a PDA

�� then there is a CFG

� � that generates

�

.

Equivalence of Pushdown Automata with Context-Free Grammar – p.3/45

Lemma 2.21

If a language is context-free then some
pushdown automaton recognizes it
Proof idea:

1. Let

�

be a CFL. From the definition we know that

�

has a CFG

�

,
that generates it

2. We will show how to convert
�

into a PDA

�

that accepts strings

� if

�

generates �

3.

�

will work by determining a derivation of �.

Equivalence of Pushdown Automata with Context-Free Grammar – p.4/45

What is a derivation?

Recall: For � �
� � � � �

, � � � � �
:

�

A derivation of � is a sequence of substitutions� 	�
 ��� ��� ��
 ����� � �
�
 ��� �,

� �� ��� � �� �� � � � � � �� � �

,�� �� � � � � �

not necessarily distinguished

�

Each step in the derivation yields an intermediate string of
variables and terminals

�

Hence,

�

will determine whether some series of substitutions
using rules in

can lead from start variable

�

to �

Equivalence of Pushdown Automata with Context-Free Grammar – p.5/45

Difficulties expected

� How should we figure out which substitution
to make? Nondeterminism allows us to
guess.
At each step of the derivation one of the rules for a particular

variable is selected nondeterministically.

� How does starts?

�

begins by writing the start variable on the stack and then

continues working this string.

Equivalence of Pushdown Automata with Context-Free Grammar – p.6/45

How does P terminate?

If while consuming �, arrives at a string of ter-

minals that equals � then accept; otherwise reject

Equivalence of Pushdown Automata with Context-Free Grammar – p.7/45

More questions

� The initial string (the start variable) is on the
stack. How does store the other
intermediate strings?

� Using the stack doesn’t quite work because
the PDA needs to find the variables in the
intermediate string and make substitutions.

Note: stack does not support this because only

the top is accessible

Equivalence of Pushdown Automata with Context-Free Grammar – p.8/45

The way around

� Try to reconstruct the leftmost derivation of �

� Keep only part of the intermediate string on
the stack starting with the first variable in the
intermediate string.

� Any terminal symbol appearing before the
first variable can be matched with symbols in
the input.

An example of graphic image of is in Figure 1

Equivalence of Pushdown Automata with Context-Free Grammar – p.9/45

An intermediate string

Assume that

� � �� � �

.

$ 0 A 1 A
stack � Control � 0 1 1 0 0 1

Input

0 1 A 1 A 0

Intermediate string

�

�� �� 	

�

� ��� ��� �

Figure 1: representing 01A1A0

Equivalence of Pushdown Automata with Context-Free Grammar – p.10/45

Informal description of

�

Place the marker symbol $ and the start variable on the stack

�

Repeat

1. If the top of the stack is a variable symbol

�

,
nondeterministically select a rule � such that

� ��� � � � � �

and
substitute

�

by the string � ��� � � � .

2. If the top of the stack is a terminal symbol, �, read the next
input symbol and compare it with �. If they match pop the
stack; if they don’t match reject on this branch of
nondeterminism

3. If the top of the stack is the symbol $, enter the accept state:
accept state: if all text has been read accept, otherwise reject.

until accept or reject

Equivalence of Pushdown Automata with Context-Free Grammar – p.11/45

Proof of lemma 2.21

Now we can give formal details of the
construction of the PDA � �

� � � �
�

� ��� �
�

� First we introduce an appropriate notation for
transition function that provides a way to write
an entire string � ��� � � �

on the stack in one
step of the machine

� Simulation: this action can be simulated by
introducing additional states to write the string
symbol by symbol

Equivalence of Pushdown Automata with Context-Free Grammar – p.12/45

Formal construction

� Let � � � � , � �
� and � � �
�.

� Assume that we want to go from � to �

when it reads � and pops �

� In addition, we want to push on the stack
the string � � � � � � �

��� at the same time

Equivalence of Pushdown Automata with Context-Free Grammar – p.13/45

Implementation

This construction can be implemented by intro-

ducing the new states �� , � � � , ��
�

� and setting tran-

sition function as follows:

Equivalence of Pushdown Automata with Context-Free Grammar – p.14/45

Setting � �
� :

��� �� � � � � � ��� � �� � ��

� � � �� �� � � � � � � �� � ��� � �	 �

� � � �� �� � � � � � ��
 � � ��� � �	 �

� � � � � �

� ��� � � �� �� � � � � � �� ��� �	

Note: transitions that push � � �� � � �
�� on the stack

operate on the reverse of �.

Equivalence of Pushdown Automata with Context-Free Grammar – p.15/45

Notation

� � � � � � � � � � � � �
�

means that when is in state �,

� is the next input symbol, and � is the symbol on
top of the stack, reads �, pop � , pushes � on
the stack, and go to state �, as seen in Figure 2

Hence:

� � � � � � � � � � � � �
�

is equivalent with �
�� � � �

�

Equivalence of Pushdown Automata with Context-Free Grammar – p.16/45

Graphic

�
�

�

 � � �� �� 	

�

 � � � �
��

�
� � � � �

�

�

� � � ��

�

Figure 2: Implementing the shorthand

� �� �� � � � � ��� � �� � �

Equivalence of Pushdown Automata with Context-Free Grammar – p.17/45

Construction of

� The states of are

� � �
� � � � � � � ��� � � � �
�� � � � �

� �

where is the set
of states that we need to implement the
shorthands.

� The transition function is defined as follows:

� Initialize the stack to contain $ and

�

, i.e.,

� � �
� � � � � � 	 � 	 � � � � � ��� � � � �
 � �

� Construct transitions for the main loop

Equivalence of Pushdown Automata with Context-Free Grammar – p.18/45

Main loop transitions

1. First we handle the case where the top of the
stack is a variable, by setting:

� ���� � ��� �� � � � � � �� � ��� � �� � � � � 	 where is the set
of rules of CFG generating the language

2. Then we handle the case where the top of the
stack is a terminal, setting:

� ���� � ��� �� � � � � ���� � ��� � �	
3. Finally, if the top of stack is $ we set:

� ���� � ��� �� � � � � ��� �� � � � �� � �	

The state diagram of is in Figure 3
Equivalence of Pushdown Automata with Context-Free Grammar – p.19/45

State diagram of

� ��� � �� �
� � � � � � �

��	� �

� � � �

for terminal

� � � � � for rule
� � �

� � � � � �

�

�
�� �� ��
 �

Figure 3: State transition diagram of

Equivalence of Pushdown Automata with Context-Free Grammar – p.20/45

Example

We use the procedure developed during the
proof of Lemma 2.21 to construct the PDA �

that recognizes the language generated by the
CFG with the rules:

� � � � �� �

� � � �� �

A direct application of the construction in Figure 3

leads us to the PDA in Figure 4

Equivalence of Pushdown Automata with Context-Free Grammar – p.21/45

State diagram of

� ��� � �� �
�

� � � � � �
��	� �

�

� � � � �
�

�
�� �� ��
 �

�� � � � �

�� � � � � � � � �

�
� � � �� � � � � � � � �

��� �

�

� � � � �

� � � � �

 � � �

� � � � �

Figure 4: State transition diagram of �

Equivalence of Pushdown Automata with Context-Free Grammar – p.22/45

Lemma 2.27

If a language is recognized by a pushdown au-

tomaton then that language is a context-free lan-

guage.

Equivalence of Pushdown Automata with Context-Free Grammar – p.23/45

Proof idea

�

Here we have a PDA

� � �� � �� �� �� � �� � �

and want to construct
a CFG

�

that generates all strings recognized by

�

.

�

For this we design

�

to do somewhat more:

For each pair of states �� � � �

,
�

will have a variable

�
�� that

generates all strings that can take
�

from � with an empty
stack to � with an empty stack.

Assume that

� � � � �
	

. Then

�� �� � is the start symbol of the
grammar

Note: such strings can take

�

from � to � regardless of stack contents

at �, leaving the stack at � the same as it was at �

Equivalence of Pushdown Automata with Context-Free Grammar – p.24/45

Assumptions on

1. has a single accept state denoted �
�

2. empties its stack before accepting

3. At each transition either pushes a symbol
on the stack or pops of a symbol from the
stack, but does not do both at the same time

Equivalence of Pushdown Automata with Context-Free Grammar – p.25/45

Note 1

Giving features (1) and (2) to is easy.

1. To give feature (1) to

�

add a new state say � � to

�

, set

� � �
	

the
set of final states, and add the new tranbsitions:

�� � �
�

� ��� � �� � � � � ��� �� � �	

2. To guive feature (2) to

�

just add the transitions:

� � � � �� � �
�

� ��� �� �� � � � � � ��� � � �	

where � � is a new reject-state in

�

.

Equivalence of Pushdown Automata with Context-Free Grammar – p.26/45

Nopte 2

To give feature (3) to

�

Replace each transition that simultaneously pops and pushes with
a two transitions sequence that goes through a new state;

�

In addition, replace each transition which neither pop nor push
with a two transitions sequence that pushes and then pops an
arbitrary stack symbol

See Figure 5

Equivalence of Pushdown Automata with Context-Free Grammar – p.27/45

Making it uniform

� � � � � �
�

� �� � � � � � � �� � � � �
�

� �� � � � � �

by by

� � � � � � �

Replace

� �� � � � � �

Replace

Figure 5: Giving feature 3 to

Equivalence of Pushdown Automata with Context-Free Grammar – p.28/45

Making it happens

How is working on a string � while moving from

� with an empty stack to � with an empty stack?
1.

�

’s first move on � must be a push, because each move is either
a push or a pop, and the stack is empty.

2. Similarly, last move must be a pop because stack ends up empty.

3. Two possibilities occur during
�

’s computation on �:

(a) symbol popped at the end is the symbol pushed at the
beginning;

(b) symbol popped at the end is not the symbol pushed at the
beginning

Equivalence of Pushdown Automata with Context-Free Grammar – p.29/45

Note

� In case (a), the stack is empty only at the
beginning and end of ’s computation;

� In case (b) initially pushed symbol must get
popped before end and thus stack becomes
empty at that point.

Equivalence of Pushdown Automata with Context-Free Grammar – p.30/45

Grammar simulation of

� We simulate the case (a) of ’s computation
by the rule �� �

� �

�

where � is the input
symbol read at the first move,

�

is the symbol
read at the last move, � is the state following

�, and � is the state preceding �

� We simulate the case (b) of ’s computation
by the rule �� � � �� where � is the state
where the stack becomes empty

Equivalence of Pushdown Automata with Context-Free Grammar – p.31/45

The formal proof

Let � �
� � � �

�
� ��� �

� � �
� �

. Construct

� � �

��
�

� � � � �
� � � � � � �

�

where is
constructed as follows:

1. For each �� � � �� � � �

,

� � �

, �� � � ��
� , if

� �� � � � � � �� �� � � (i.e.,

� ��� �
 �

� � �) and

��� � � � � � � � � �� � �

(i.e., �

�� �
 �
� � �) then put

�
�� � � �� �

�

in

2. Fort each �� � � � � �

put the rule

�
� � � �
�� �� � in

3. For each � � �

put the rule

�
� � � � in

Figures 6 and 7 provide the intuition of this construction

Equivalence of Pushdown Automata with Context-Free Grammar – p.32/45

’s computation corresponding to

�
� � � �
�� �� �

�Input
string

�

stack hight

(0,0)

� � � � � �

generated
by

�
�

generated
by

�� �

Figure 6: ’s computation for �
�� � �
�� �� �

Equivalence of Pushdown Automata with Context-Free Grammar – p.33/45

’s computation corresponding to

�
� � � � �� �

�

�Input
string

�

stack hight

(0,0)

� �

� �
�

� � ��

� �

string generated
by

�� �

Figure 7: ’s computation for �
�� � � �� �

�

Equivalence of Pushdown Automata with Context-Free Grammar – p.34/45

Claim 2.30

If �� generates � then � brings from � to �

with empty stack

Proof: by induction on the number of steps in the

derivation of � from ��

Equivalence of Pushdown Automata with Context-Free Grammar – p.35/45

Induction basis

Derivation has 1 step
1. A derivation with a single step must use a rule whose � �� contains

no variables

2. The only rules in

whose � ��� contain no variables are

�
� � � �

3. Clearly, the input � takes

�

from � with empty stack to � with
empty stack

Equivalence of Pushdown Automata with Context-Free Grammar – p.36/45

Induction step

Assume claim 2.30 true for derivations of length

�

,

� �

, and prove it for

� �

1. Suppose

�
� �

� � � with

� � �

steps. The first step of this derivation
is either

�
�� � � �� �

�

or

�
�� � �
�� �� �

2. In the first case consider � portion of � generated by

�� � , i.e.,

� � �� �

.

3. Because

�� �
� � � with

�

steps, induction hypothesis tells us that

�

can go from � to � with empty stack

4. Because

�
� � � � �� �

� �

, it follows that

� �� � � � � � �� �� � �

(�
��� �
 �� �) and
��� � � � � � � � � �� � �

(�
�� �
 �� �)

Equivalence of Pushdown Automata with Context-Free Grammar – p.37/45

Induction step continuation

5. Hence, if

�

starts at � with empty stack, after reading � it can go
to � and push

�

on the stack

6. Then, reading � it can go to � and leave
�

on the stack

7. At � , because

� � � � � � � � � � �� � �

, after reading

�

can go to state �

and pop

�

off the stack.

8. Hence, � brings

�

from � to � with an empty stack

Equivalence of Pushdown Automata with Context-Free Grammar – p.38/45

Induction step, second case

1. Consider the portions � and � of � that are generated by

�
�� and

�� � , respectively, i.e., � � � �,

�
��

� � � ,

�� �
� � �.

2. Because

�
��

� � � and

�� � � � � are derivations containing at most

�

steps, � and � respectively bring

�

from � to �, and from � to �

respectively, with empty stack

3. Hence, � can bring

�

from � to � with empty stack.

Equivalence of Pushdown Automata with Context-Free Grammar – p.39/45

Claim 2.31

If � brings from � to � with empty stack, then

�� generates �

Proof: by induction on the number of steps in the

computation of going from � to � with empty

stack on the input �

Equivalence of Pushdown Automata with Context-Free Grammar – p.40/45

Induction basis

Computation has 0 steps
1. With 0 steps, computation starts and ends with the same state �.

2. So, we must show that

�
� �

� � � in

�

steps.

3. In zero steps

�

has only time to read the empty string, i.e., � � �

4. By construction,

contains the rule

�
� � � �, hence

�
� �

� � �

Equivalence of Pushdown Automata with Context-Free Grammar – p.41/45

Induction step

Assume claim 2.31 true for computations of
length at most

�

,

� �

, and show that it remains
true for computations of length

� �

Two cases:

Case a:

�

has a computation of length

� � �

wherein � brings

�

from � to � with empty stack.

Case b:

�

has a computation of length

� � �

wherein the stack is
empty at the begin and end, and stacks may become empty also
during computation

Equivalence of Pushdown Automata with Context-Free Grammar – p.42/45

Case (a)

stack is empty only at the beginning and end.
1. The symbol that is pushed at the first move must be the same as

the symbol popped at the last move. Let it be

�

2. Let � be the input read in the first move,
�

the input read at the last
move, � be the state after the first move, and � be the state before
the last move

3. Then

� �� � � � � � �� �� � � and
��� � � � � � � � � �� � �

, and

�
� � � � �� �

� �

4. Let � be the portion of � without � and

�

, i.e., � � �� �

. Using
induction we know that � brings

�

from � to � without touching

�

because we can remove the first and the last step of computation,
hence

�� �
� � � .

5. But then
�

�� � � �� �
� � � �� � � �

Equivalence of Pushdown Automata with Context-Free Grammar – p.43/45

Induction step, case (b)

Let � be the state where the stack becomes
empty other than at the beginning or end of
computation on the input �

1. The portions of the computation from � to � and from � to � , both
contain at most

�

steps

2. Let � be the input read during the computation from � to � and �

be the input read during the computation from � to �

3. Using induction hypothesis we have

�
��

� � � and

�� � � � �.

4. Because

�
� � � �
�� �� � �

is result that

�
�� � �
�� �� � � � � � � �

Equivalence of Pushdown Automata with Context-Free Grammar – p.44/45

Note

� We have proved that pushdown automata
recognize the class of context free languages

� Every regular language is recognized by a
finite automaton

� Every finite automaton is a pushdown
automaton that ignores its stack

Conclusion: every regular language is a context-

free language.

Equivalence of Pushdown Automata with Context-Free Grammar – p.45/45

	Motivation
	Theorem 2.20
	Lemma 2.21
	What is a derivation?
	Difficulties expected
	How does P terminate?
	More questions
	The way around
	An intermediate string
	Informal description of P
	Proof of lemma 2.21
	Formal construction
	Implementation
	Setting $delta (q,a,s)$:
	Notation
	Graphic
	Construction of P
	Main loop transitions
	State diagram of P
	Example
	State diagram of P_G
	Lemma 2.27
	Proof idea
	Assumptions on P
	Note 1
	Nopte 2
	Making it uniform
	Making it happens
	Note
	Grammar simulation of P
	The formal proof
	P's computation {scriptsize corresponding to $A_{pq}	o A_{pr}A_{rq}$}
	P's computation {scriptsize corresponding to $A_{pq}	o aA_{rs}b$}
	Claim 2.30
	Induction basis
	Induction step
	Induction step {scriptsize continuation}
	Induction step, second case
	Claim 2.31
	Induction basis
	Induction step
	Case (a)
	Induction step, case (b)
	Note

