Equivalence of Pushdown Automata with Context-Free Grammar

Motivation

- CFG and PDA are equivalent in power: a CFG generates a context-free language and a PDA recognizes a context-free language.
- We show here how to convert a CFG into a PDA that recognizes the language specified by the CFG and vice versa
- Application: this equivalence allows a CFG to be used to specify a programming language and the equivalent PDA to be used to implement its compiler.

Theorem 2.20

A language is context-free iff some pushdown automaton recognizes it.

Note: This means that:

- 1. if a language L is context-free then there is a PDA M_L that recognizes it
- 2. if a language *L* is recognized by a PDA M_L then there is a CFG G_L that generates *L*.

If a language is context-free then some pushdown automaton recognizes it

Proof idea:

- 1. Let *A* be a CFL. From the definition we know that *A* has a CFG *G*, that generates it
- 2. We will show how to convert G into a PDA P that accepts strings w if G generates w
- 3. P will work by determining a derivation of w.

What is a derivation?

Recall: For $G = (V, \Sigma, R, S)$, $w \in L(G)$:

- A derivation of w is a sequence of substitutions $S \stackrel{S \to \alpha_1}{\Rightarrow} w_1 \stackrel{A \to \alpha_2}{\Rightarrow} \dots \stackrel{B \to \alpha_k}{\Rightarrow} w, S \to \alpha_1, A \to \alpha_2, \dots, B \to \alpha_k \in R,$ S, A, \dots, B not necessarily distinguished
- Each step in the derivation yields an *intermediate string* of variables and terminals
- Hence, *P* will determine whether some series of substitutions using rules in *R* can lead from start variable *S* to *w*

Difficulties expected

 How should we figure out which substitution to make? Nondeterminism allows us to guess.

At each step of the derivation one of the rules for a particular variable is selected nondeterministically.

• How does *P* starts?

P begins by writing the start variable on the stack and then continues working this string.

How does P terminate?

If while consuming w, P arrives at a string of terminals that equals w then accept; otherwise reject

More questions

- The initial string (the start variable) is on the stack. How does *P* store the other intermediate strings?
- Using the stack doesn't quite work because the PDA needs to find the variables in the intermediate string and make substitutions.

Note: stack does not support this because only the top is accessible

The way around

- Try to reconstruct the leftmost derivation of \boldsymbol{w}
- Keep only part of the intermediate string on the stack starting with the first variable in the intermediate string.
- Any terminal symbol appearing before the first variable can be matched with symbols in the input.

An example of graphic image of *P* is in Figure 1

An intermediate string

•

Assume that $S \stackrel{*}{\Rightarrow} 01A1A0$.

Figure 1: P representing OIA1A0

Informal description of P

- Place the marker symbol \$ and the start variable on the stack
- Repeat

•

- 1. If the top of the stack is a variable symbol A, nondeterministically select a rule r such that lhs(r) = A and substitute A by the string rhs(r).
- 2. If the top of the stack is a terminal symbol, *a*, read the next input symbol and compare it with *a*. If they match pop the stack; if they don't match reject on this branch of nondeterminism
- If the top of the stack is the symbol \$, enter the accept state: accept state: if all text has been read accept, otherwise reject.
 until accept or reject

Proof of lemma 2.21

Now we can give formal details of the construction of the PDA $P = (Q, \Sigma, \Gamma, \delta, q_1, F)$

- First we introduce an appropriate notation for transition function that provides a way to write an entire string rhs(r) on the stack in one step of the machine
- Simulation: this action can be simulated by introducing additional states to write the string symbol by symbol

Formal construction

- Let $q, r \in Q$, $a \in \Sigma_{\epsilon}$ and $s \in \Gamma_{\epsilon}$.
- Assume that we want *P* to go from *q* to *r* when it reads *a* and pops *s*
- In addition, we want P to push on the stack the string $u = u_1 \dots u_k$ at the same time

Implementation

•

This construction can be implemented by introducing the new states q_1, \ldots, q_{k-1} and setting transition function as follows:

Setting $\delta(q, a, s)$:

$$(q_1, u_k) \in \delta(q, a, s),$$

$$\delta(q_1, \epsilon, \epsilon) = \{(q_2, u_{k-1})\},$$

$$\delta(q_2, \epsilon, \epsilon) = \{(q_3, u_{k-2})\},$$

$$\dots \qquad \dots$$

$$\delta(q_{k-1}, \epsilon, \epsilon) = \{(r, u_1)\}$$

Note: transitions that push $u_1u_2 \dots u_k$ on the stack operate on the reverse of u.

Notation

 $(r, u) \in \delta(q, a, s)$ means that when *P* is in state *q*, *a* is the next input symbol, and *s* is the symbol on top of the stack, *P* reads *a*, pop *s*, pushes *u* on the stack, and go to state *r*, as seen in Figure 2

Hence: $(r, u) \in \delta(q, a, s)$ is equivalent with $q \stackrel{a, s \to u}{\to} r$

Graphic

•

Figure 2: Implementing the shorthand $(r, xyz) \in \delta(q, a, s)$

Construction of *P*

- The states of P are
 - $Q = \{q_{start}, q_{loop}, q_{accept}\} \cup E$ where *E* is the set of states that we need to implement the shorthands.
- The transition function is defined as follows:
- Initialize the stack to contain \$ and \$, i.e., $\delta(q_{start}, \epsilon, \epsilon) = \{(q_{loop}, S\$)\}$
- Construct transitions for the main loop

Main loop transitions

- 1. First we handle the case where the top of the stack is a variable, by setting: $\delta(q_{loop}, \epsilon, A) = \{(q_{loop}, w) | A \rightarrow w \in R\}$ where *R* is the set of rules of CFG generating the language
- 2. Then we handle the case where the top of the stack is a terminal, setting:

 $\delta(q_{loop},a,a) = \{(q_{loop},\epsilon)\}$

3. Finally, if the top of stack is \$ we set: $\delta(q_{loop}, \epsilon, \$) = \{(q_{accept}, \epsilon)\}$

The state diagram of P is in Figure 3

State diagram of *P*

•

Figure 3: State transition diagram of *P*

Example

We use the procedure developed during the proof of Lemma 2.21 to construct the PDA P_G that recognizes the language generated by the CFG G with the rules:

$$\begin{array}{rccc} S & \to & aTb|b \\ T & \to & Ta|\epsilon \end{array}$$

A direct application of the construction in Figure 3 leads us to the PDA in Figure 4

State diagram of P_G

•

Figure 4: State transition diagram of P_G

•

If a language is recognized by a pushdown automaton then that language is a context-free language.

Proof idea

- Here we have a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ and want to construct a CFG *G* that generates all strings recognized by *P*.
- For this we design *G* to do somewhat more:

For each pair of states $p, q \in Q$, G will have a variable A_{pq} that generates all strings that can take P from p with an empty stack to q with an empty stack.

Assume that $F = \{q_a\}$. Then $A_{q_0q_a}$ is the start symbol of the grammar

Note: such strings can take P from p to q regardless of stack contents at p, leaving the stack at q the same as it was at p

Assumptions on P

- 1. *P* has a single accept state denoted q_a
- 2. *P* empties its stack before accepting
- 3. At each transition *P* either pushes a symbol on the stack or pops of a symbol from the stack, but does not do both at the same time

Note 1

Giving features (1) and (2) to P is easy.

- 1. To give feature (1) to *P* add a new state say q_a to *Q*, set $\{q_a\}$ the set of final states, and add the new transsitions: $\forall q \in F \bullet \delta(q, \epsilon, \epsilon) = \{(q_a, \epsilon)\}$
- 2. To guive feature (2) to *P* just add the transitions: $\forall b \in (V \cup \Sigma) \bullet \delta(q_a, \epsilon, b) = \{(q_r, \epsilon)\}$ where q_r is a new reject-state in *Q*.

Nopte 2

To give feature (3) to P

- Replace each transition that simultaneously pops and pushes with a two transitions sequence that goes through a new state;
- In addition, replace each transition which neither pop nor push with a two transitions sequence that pushes and then pops an arbitrary stack symbol

See Figure 5

Making it uniform

•

Figure 5: Giving feature 3 to P

Making it happens

How is P working on a string x while moving from p with an empty stack to q with an empty stack?

- 1. *P*'s first move on *x* must be a push, because each move is either a push or a pop, and the stack is empty.
- 2. Similarly, last move must be a pop because stack ends up empty.
- 3. Two possibilities occur during P's computation on x:
 - (a) symbol popped at the end is the symbol pushed at the beginning;
 - (b) symbol popped at the end is not the symbol pushed at the beginning

Note

- In case (a), the stack is empty only at the beginning and end of *P*'s computation;
- In case (b) initially pushed symbol must get popped before end and thus stack becomes empty at that point.

Grammar simulation of *P*

- We simulate the case (a) of *P*'s computation by the rule $A_{pq} \rightarrow aA_{rs}b$ where *a* is the input symbol read at the first move, *b* is the symbol read at the last move, *r* is the state following *p*, and *s* is the state preceding *q*
- We simulate the case (b) of *P*'s computation by the rule $A_{pq} \rightarrow A_{pr}A_{rq}$ where *r* is the state where the stack becomes empty

The formal proof

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_a\})$. Construct $G = (\{A_{pq} | p, q \in Q\}, \Sigma, R, A_{q_0q_a})$ where R is constructed as follows:

- 1. For each $p, q, r, s \in Q, t \in \Gamma, a, b \in \Sigma_{\epsilon}$, if $(r, t) \in \delta(p, a, \epsilon)$ (i.e., $p \xrightarrow{a, \epsilon \to t} r$) and $(q, \epsilon) \in \delta(s, b, t)$ (i.e., $s \xrightarrow{b, t \to \epsilon} q$) then put $A_{pq} \to aA_{rs}b$ in R
- 2. Fort each $p, q, r \in Q$ put the rule $A_{pq} \rightarrow A_{pr}A_{rq}$ in R
- 3. For each $p \in Q$ put the rule $A_{pp} \to \epsilon$ in R

Figures 6 and 7 provide the intuition of this construction

P's computation corresponding to $A_{pq} \rightarrow A_{pr}A_{rq}$

•

Figure 6: *P*'s computation for $A_{pq} \rightarrow A_{pr}A_{rq}$

P's computation corresponding to $A_{pq} \rightarrow aA_{rs}b$

•

Figure 7: *P*'s computation for $A_{pq} \rightarrow aA_{rs}b$

Claim 2.30

•

If A_{pq} generates x then x brings P from p to q with empty stack

Proof: by induction on the number of steps in the derivation of x from A_{pq}

Induction basis

Derivation has 1 step

- 1. A derivation with a single step must use a rule whose rhs contains no variables
- 2. The only rules in R whose rhs contain no variables are $A_{pp} \rightarrow \epsilon$
- 3. Clearly, the input ϵ takes P from p with empty stack to p with empty stack

Induction step

Assume claim 2.30 true for derivations of length $k, k \ge 1$, and prove it for k + 1

- 1. Suppose $A_{pq} \stackrel{*}{\Rightarrow} x$ with k + 1 steps. The first step of this derivation is either $A_{pq} \Rightarrow aA_{rs}b$ or $A_{pq} \Rightarrow A_{pr}A_{rq}$
- 2. In the first case consider y portion of x generated by A_{rs} , i.e., x = ayb.
- 3. Because $A_{rs} \stackrel{*}{\Rightarrow} y$ with k steps, induction hypothesis tells us that P can go from r to s with empty stack
- 4. Because $A_{pq} \to aA_{rs}b \in R$, it follows that $(r,t) \in \delta(p,a,\epsilon)$ $(p \xrightarrow{a,\epsilon \to t} r)$ and $(q,\epsilon) \in \delta(s,b,t)$ $(s \xrightarrow{b,t \to \epsilon} q)$

Induction step continuation

- 5. Hence, if *P* starts at *p* with empty stack, after reading *a* it can go to *r* and push *t* on the stack
- 6. Then, reading y it can go to s and leave t on the stack
- 7. At q, because $(q, \epsilon) \in \delta(s, b, t)$, after reading b can go to state q and pop t off the stack.
- 8. Hence, x brings P from p to q with an empty stack

Induction step, second case

- 1. Consider the portions y and z of x that are generated by A_{pr} and A_{rq} , respectively, i.e., x = yz, $A_{pr} \stackrel{*}{\Rightarrow} y$, $A_{rq} \stackrel{*}{\Rightarrow} z$.
- 2. Because $A_{pr} \stackrel{*}{\Rightarrow} y$ and $A_{rq} \stackrel{*}{\Rightarrow} z$ are derivations containing at most k steps, y and z respectively bring P from p to r, and from r to q respectively, with empty stack
- 3. Hence, x can bring P from p to q with empty stack.

Claim 2.31

If x brings P from p to q with empty stack, then A_{pq} generates x

Proof: by induction on the number of steps in the computation of P going from p to q with empty stack on the input x

Induction basis

Computation has 0 steps

- 1. With 0 steps, computation starts and ends with the same state p.
- 2. So, we must show that $A_{pp} \stackrel{*}{\Rightarrow} x$ in 0 steps.
- 3. In zero steps P has only time to read the empty string, i.e., $x = \epsilon$
- 4. By construction, *R* contains the rule $A_{pp} \rightarrow \epsilon$, hence $A_{pp} \stackrel{*}{\Rightarrow} x$

Induction step

Assume claim 2.31 true for computations of length at most $k, k \ge 0$, and show that it remains true for computations of length k + 1

Two cases:

- **Case a:** *P* has a computation of length k + 1 wherein *x* brings *P* from *p* to *q* with empty stack.
- **Case b:** *P* has a computation of length k + 1 wherein the stack is empty at the begin and end, and stacks may become empty also during computation

Case (a)

stack is empty only at the beginning and end.

- 1. The symbol that is pushed at the first move must be the same as the symbol popped at the last move. Let it be t
- Let a be the input read in the first move, b the input read at the last move, r be the state after the first move, and s be the state before the last move
- 3. Then $(r,t) \in \delta(p,a,\epsilon)$ and $(q,\epsilon) \in \delta(s,b,t)$, and $A_{pq} \rightarrow aA_{rs}b \in R$
- 4. Let *y* be the portion of *x* without *a* and *b*, i.e., x = ayb. Using induction we know that *y* brings *P* from *r* to *s* without touching *t* because we can remove the first and the last step of computation, hence $A_{rs} \stackrel{*}{\Rightarrow} y$.

5. But then
$$A_{pq} \Rightarrow aA_{rs}b \stackrel{*}{\Rightarrow} ayb = x$$

Induction step, case (b)

Let r be the state where the stack becomes empty other than at the beginning or end of computation on the input x

- 1. The portions of the computation from p to r and from r to q, both contain at most k steps
- 2. Let y be the input read during the computation from p to r and z be the input read during the computation from r to q
- 3. Using induction hypothesis we have $A_{pr} \stackrel{*}{\Rightarrow} y$ and $A_{rq} \stackrel{*}{\Rightarrow} z$.

4. Because
$$A_{pq} \rightarrow A_{pr}A_{rq} \in R$$
 is result that
 $A_{pq} \Rightarrow A_{pr}A_{rq} \stackrel{*}{\Rightarrow} yz = x$

Note

- We have proved that pushdown automata recognize the class of context free languages
- Every regular language is recognized by a finite automaton
- Every finite automaton is a pushdown automaton that ignores its stack

Conclusion: every regular language is a context-free language.