Equivalence of Pushdown

Automata with Context-Free
Grammar




« CFG and PDA are equivalent in power: a
CFG generates a context-free language and
a PDA recognizes a context-free language.

* \We show here how to convert a CFG into a
PDA that recognizes the language specified
by the CFG and vice versa

e Application: this equivalence allows a CFG to
be used to specify a programming language
and the equivalent PDA to be used to
Implement its compiler.




Theorem 2.20

A language is context-free iff some pushdown
automaton recognizes it.

Note: This means that:

1. if alanguage L is context-free then there is a PDA M, that
recognizes it

2. if alanguage L is recognized by a PDA Mj, then there is a CFG
(G, that generates L.

Equivalence of Pushdown Automata with Context-Free Grammar — p.3/4'



Lemma 2.21

If a language is context-free then some
pushdown automaton recognizes it

Proof idea:
1. Let A be a CFL. From the definition we know that A has a CFG G,
that generates it

2. We will show how to convert G into a PDA P that accepts strings
w If G generates w

3. P will work by determining a derivation of w.
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What Is a derivation?

Recall: For G = (V, X, R, S), w € L(G):

® A derivation of w is a sequence of substitutions

S— A— B—
S =N w 2w, S5 a1,A—> as,...,B—a, €R,

S, A, ..., B not necessarily distinguished

® Each step in the derivation yields an intermediate string of
variables and terminals

® Hence, P will determine whether some series of substitutions
using rules in R can lead from start variable S to w
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Difficulties expected

 How should we figure out which substitution
to make? Nondeterminism allows us to

guess.
At each step of the derivation one of the rules for a particular

variable is selected nondeterministically.

« How does P starts?
P begins by writing the start variable on the stack and then

continues working this string.
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How does P terminate?

If while consuming w, P arrives at a string of ter-
minals that equals w then accept; otherwise reject
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More questions

e The initial string (the start variable) is on the
stack. How does P store the other
Intermediate strings?

* Using the stack doesn’t quite work because
the PDA needs to find the variables in the
iIntermediate string and make substitutions.

Note: stack does not support this because only
the top Is accessible




The way around

* Try to reconstruct the leftmost derivation of w

o Keep only part of the intermediate string on
the stack starting with the first variable in the
iIntermediate string.

« Any terminal symbol appearing before the
first variable can be matched with symbols in
the Input.

An example of graphic image of P is in Figure 1




An Intermediate string

Assume that S = 01A41A0.

Intermediate string
01 A1AQ

A1A0R matched

stack Input
$|0|A|1|A~—Control —0|1(1]|0(0]|1

Figure 1: P representing 01A1A0
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Informal description of P

® Place the marker symbol $ and the start variable on the stack

* Repeat

1. If the top of the stack is a variable symbol A,
nondeterministically select a rule r such that [hs(r) = A and
substitute A by the string rhs(r).

2. If the top of the stack is a terminal symbol, a, read the next
Input symbol and compare it with a. If they match pop the
stack; if they don’t match reject on this branch of
nondeterminism

3. If the top of the stack is the symbol $, enter the accept state:
accept state: If all text has been read accept, otherwise reject.

until accept or reject
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Proof of lemma 2.21

Now we can give formal detalls of the
construction of the PDA P = (Q, %, 1,6, q1, I

e First we introduce an appropriate notation for
transition function that provides a way to write
an entire string rhs(r) on the stack in one
step of the machine

e Simulation: this action can be simulated by
Introducing additional states to write the string
symbol by symbol




Formal construction

e letgq,re Q,a e X, ands e I..

e Assume that we want P to go from ¢ to r
when it reads a and pops s

 In addition, we want P to push on the stack
the string u = u; ... u; at the same time




Implementation

This construction can be implemented by Intro-
ducing the new states ¢,. . .,q;—1 and setting tran-
sition function as follows:
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Setting J(q, a, s):

(Q17uk) € 5(Q7a78)7
0(q1,€6,€) = {(Q27Uk:—1)}7
0(q2,€,€) = {(g3,ur—2)},

0(qr—1,6€) = {(r,u1)}

Note: transitions that push ujus . . . u; on the stack
operate on the reverse of w.
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(r,u) € d(q, a,s) means that when P is in state g,
a 1S the next input symbol, and s Is the symbol on
top of the stack, P reads a, pop s, pushes u on

the stack, and go to state r, as seen in Figure 2

a,S—U

Hence: (r,u) € d(q, a, s) IS equivalent with ¢ "— " r
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Figure 2 Implementing the shorthand (r, zyz) € 6(q, a, s)
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Construction of P

 The states of P are
Q= {Qstarb Qloop; Qaccept} U E where E Is the set
of states that we need to implement the
shorthands.

e The transition function is defined as follows:

e |nitialize the stack to contain $ and S, i.e.,
5(Qstarta €, 6) — {(QZoopa S$)}
e Construct transitions for the main loop
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Main loop transitions

1. First we handle the case where the top of the

stack Is a variable, by setting:
5(qroops € A) = {(qoop, w)|A — w € R} Where R IS the set

of rules of CFG generating the language

2. Then we handle the case where the top of the
stack Is a terminal, setting:
0 (Qtoop; @, @) = {(Qoop; €) }

3. Finally, if the top of stack is $ we set:
0(Qroop, €, 8) = {(daccept, €) }

The state diaﬁram of P isin Figure 3




State diagram of P

y€,€— S$
e,A—w  forrule A — w
dloop :
a,a — € for terminal a
168 — €

Figure 3: State transition diagram of P
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We use the procedure developed during the
proof of Lemma 2.21 to construct the PDA Pg

that recognizes the language generated by the
CFG G with the rules:

S — aTblb
T — Tale

A direct application of the construction in Figure 3
leads us to the PDA in Figure 4




State diagram of P

dstart
e,S—>b, ~\ee—=>T ~€6€eE—+a
%

N
e, e + S$ e,T —a e,e > T

Y

Qloop |«
\/\ ‘%G,S—}b
e,T — €
€, % — ¢ a,a —> €

Y b,b — €

Figure 4. State transition diagram of Pq
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Lemma 2.27

If a language is recognized by a pushdown au-
tomaton then that language is a context-free lan-
guage.
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® Here we have aPDA P = (Q,%, 1,9, qo, F) and want to construct
a CFG G that generates all strings recognized by P.

® [For this we design G to do somewhat more:

For each pair of states p,q € @), G will have a variable A,, that
generates all strings that can take P from p with an empty
stack to ¢ with an empty stack.

Assume that F' = {q,}. Then A4, is the start symbol of the
grammar

Note: such strings can take P from p to ¢ regardless of stack contents

at p, leaving the stack at ¢ the same as it was at p
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Assumptions on P

1. P has a single accept state denoted ¢,
2. P empties its stack before accepting

3. At each transition P either pushes a symbol
on the stack or pops of a symbol from the
stack, but does not do both at the same time




Giving features (1) and (2) to P is easy.

1. To give feature (1) to P add a new state say ¢, to @, set {q,} the
set of final states, and add the new tranbsitions:

Vg € Fed(q € €) ={(qa:€)}

2. To guive feature (2) to P just add the transitions:
Vb e (VUX) ed(qa,€,b) = {(gr,€)}
where ¢, IS a new reject-state in ().
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Nopte 2

To give feature (3) to P

® Replace each transition that simultaneously pops and pushes with
a two transitions sequence that goes through a new state;

® |n addition, replace each transition which neither pop nor push
with a two transitions sequence that pushes and then pops an
arbitrary stack symbol

See Figure
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Making it uniform

Replace Replace
@a,b—>c=@ @€7€_>€=@
by by

@a,b—>e=@ €,€—>C=@ @ e,e—>b=@ e,b—>e=@

Figure 5: Giving feature 3to P
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Making it happens

How Is P working on a string x while moving from
p with an empty stack to ¢ with an empty stack?

1. P’s first move on x must be a push, because each move is either
a push or a pop, and the stack is empty.

2. Similarly, last move must be a pop because stack ends up empty.

3. Two possibilities occur during P’s computation on z:
(a) symbol popped at the end is the symbol pushed at the
beginning;

(b) symbol popped at the end is not the symbol pushed at the
beginning
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 In case (a), the stack is empty only at the
peginning and end of P’s computation;

 In case (b) initially pushed symbol must get
popped before end and thus stack becomes
empty at that point.




Grammar simulation of P

e \We simulate the case (a) of P’'s computation
by the rule A,, — aA,sb where a Is the Input
symbol read at the first move, b Is the symbol
read at the last move, r Is the state following
p, and s Is the state preceding q

« \We simulate the case (b) of P’s computation
by the rule A,, — A, A,, where r Is the state

where the stack becomes empty




The formal proof

Let P = (Q, 2,146, q,{q.}). Construct
G = ({Aylp,q € Q}, X, R, Ay, ) Where R is
constructed as follows:

1. Foreachp,q,r,se€ Q,tel,a,be X, if(r,t) € d(p,a,c)(ie.,

D B! r)and (q,¢) € i(s,b,t) (i.e., s liny q) then put A,, — aA,sb

In R
2. Forteach p,q,r € Q puttherule A,, = A,,A,,in R

3. Foreachp e @ puttherule A,, — ein R

Figures 6 and 7 provide the intuition of this construction
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P’S COmpUtathn correspondingto A,, — A, A,

stack hight
A

r q Input
(0,0) generated generated string
by APT by Arq

Figure 6. P’s computation for 4,, — 4,,4,,
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P’S COmpUtathn correspondingto A,, — aA,sb

stack hight
A
r
p 8' q Input N
(0,0) a  string generated b string

by Ars

Figure 7. P’s computation for 4,, — aA,.b
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Claim 2.30

If A,, generates x then z brings P from p to ¢
with empty stack

Proof: by induction on the number of steps in the
derivation of z from A,,
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Induction basis

Derivation has 1 step

1. A derivation with a single step must use a rule whose rhs contains
no variables

2. The only rules in R whose rhs contain no variables are 4,, — ¢

3. Clearly, the input € takes P from p with empty stack to p with
empty stack
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Induction step

Assume claim 2.30 true for derivations of length
k, k> 1, and prove it for k + 1

1. Suppose A4,, = z with k -+ 1 steps. The first step of this derivation
s either A,;, = aA,sbor A,y = Ay Ay

2. In the first case consider y portion of z generated by A,., i.e.,
x = ayb.

3. Because A4,, = y with k steps, induction hypothesis tells us that
P can go from r to s with empty stack

4. Because A,, — aA,sb € R, it follows that (r,t) € d(p, a, €)

b,t—e

(p Bt r)and (q,e) € i(s,b,t) (s = q)
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|ndUCtIOn Step continuation

5. Hence, if P starts at p with empty stack, after reading a it can go
to » and push ¢ on the stack

6. Then, reading y it can go to s and leave ¢ on the stack

7. At q, because (q,¢) € (s, b, t), after reading b can go to state ¢
and pop t off the stack.

8. Hence, x brings P from p to ¢ with an empty stack
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Induction step, second case

1. Consider the portions y and z of x that are generated by A, and
A.,, respectively, i.e., z = yz, A, = Y, Arq = 2.

2. Because 4,, = y and A,, = z are derivations containing at most
k steps, y and z respectively bring P from p to r, and from r to ¢
respectively, with empty stack

3. Hence, x can bring P from p to ¢ with empty stack.
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Claim 2.31

If « brings P from p to ¢ with empty stack, then
A, generates z

Proof: by induction on the number of steps in the
computation of P going from p to ¢ with empty
stack on the input «
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Induction basis

Computation has 0 steps

1. With O steps, computation starts and ends with the same state p.

. So, we must show that A,, = = in 0 steps.

2
3. In zero steps P has only time to read the empty string, i1.e., z = ¢
4

. By construction, R contains the rule 4,, — ¢, hence 4,, = =
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Induction step

Assume claim 2.31 true for computations of
length at most &, £ > 0, and show that it remains
true for computations of length k£ + 1

Two cases:

Case a: P has a computation of length £ + 1 wherein x brings P
from p to g with empty stack.

Case b: P has a computation of length £ + 1 wherein the stack is
empty at the begin and end, and stacks may become empty also
during computation
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stack is empty only at the beginning and end.

1. The symbol that is pushed at the first move must be the same as
the symbol popped at the last move. Let it be ¢

2. Let a be the input read in the first move, b the input read at the last
move, r be the state after the first move, and s be the state before
the last move

3. Then (r,t) € é(p,a,e) and (q,¢) € 4(s,b,t), and A,, = aA,sb € R

4. Let y be the portion of x without ¢ and b, i.e., z = ayb. Using
induction we know that y brings P from r to s without touching ¢
because we can remove the first and the last step of computation,
hence 4, = v.

5. Butthen 4,, = aA,sb = ayb =z
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Induction step, case (b)

Let » be the state where the stack becomes
empty other than at the beginning or end of
computation on the input x

1. The portions of the computation from p to r and from r to g, both
contain at most £ steps

2. Let y be the input read during the computation from p to » and z
be the input read during the computation from r to ¢

3. Using induction hypothesis we have A,, = y and Anrq = 2.

4. Because A,;, = A,r A, € Ris result that
Apg = AprArg S yz=u1x

Equivalence of Pushdown Automata with Context-Free Grammar — p.44/4!



* \We have proved that pushdown automata
recognize the class of context free languages

e Every regular language is recognized by a
finite automaton

« Every finite automaton is a pushdown
automaton that ignores its stack

Conclusion: every regular language is a context-
free language.
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