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Graphs
• An undirected graph, or simple agraph, is a set of

pointswith linesconnecting some points.
• Thepointsare callednodesor vertices, and the

linesare callededges
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Example graphs
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Figure 1:Examples of graphs
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Note
• No more thanone edgeis allowed between any

two nodes
• Thenumber of edges at a particular nodeis called

thedegreeof that node
• In Figure1, Graphs (a), (b)?
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Note
• No more thanone edgeis allowed between any

two nodes
• Thenumber of edges at a particular nodeis called

thedegreeof that node
• In Figure1, Graph (a) each node has the degree 2;

in Figure1, Graph (b) each node has the degree 3
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Edge representation
• In a graphG that contains nodesi andj, thepair

(i, j) represents theedgethat connectsi andj

• Theorderof i andj doesn’t matterin an
undirected graph, so the pairs(i, j) and(j, i)
represent thesame edge

• Because the order of the nodes is unimportant,
we can also describeedges by setssuch as{i, j}
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Note
In a directed graphthe edge(i, j) has as thesource

nodei and astarget nodej

Graphs, Strings, Languages and Boolean Logic– p.7/41



Formalizing the graph
• If V is theset of nodesof a graphG andE is the

set of its edges, we say thatG = (V, E)

• Hence, one canspecify a graphby adiagramor
by specifyingthe setsV andE

• Example: a formal description of the Graph (a)
in Figure1 is:
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Formalizing the graph
• If V is theset of nodesof a graphG andE is the

set of its edges, we say thatG = (V, E)

• Hence, one canspecify a graphby adiagramor
by specifyingthe setsV andE

• Example: a formal description of the Graph (a)
in Figure1 is:
G=({1,2,3,4,5},{(1,2),(2,3),(3,4),(4,5),(5,1)})
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Graph usage
• Graphs are frequently used torepresent data
• Examples:

1. nodesmight becitiesandedgesmight be theconnecting highways

2. nodesmight beelectrical componentsandedgesmight bewires

between them

• Sometimes, for convenience, we maylabel nodes
(and edges)of a graph, thus obtaining alabeled
graph, Figure2
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Example labeled graph
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Figure 2:Cheapest air fares between cities
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Subgraph
A graphG = (V1, E1) is asubgraphof a graph
H = (G2, E2) if V1 ⊆ V2

Note: theedges ofG are theedges ofH on the corre-

sponding nodes, Figure3
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Example subgraph
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Figure 3:GraphG, a subgraph ofH
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Graph paths
• A pathin a graph is asequence of nodes

connected by edges
• A simple pathis a path thatdoes not repeat any

node
• A graph is connectedif every two nodes have a

path between them
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Graph cycles
• A path is acycleif it starts and ends in the same

node
• A simple cycleis a cycle thatdoesn’t repeat any

edge
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Trees
• A graph is atreeif it is connectedandhas no

simple cycles, Figure4
• Thenodes of degree1 in a tree are calledleaves
• Sometimes there is aspecially designated node of

a treecalled theroot
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Example graphs
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Figure 4:Path, cycle, and tree
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Directed graphs
• If the edgesof a graphsare arrowsinstead of

lines the graph is adirected graph
• Thenumber of arrows pointing froma particular

node is theoutdegreeof that node
• Thenumber of arrows pointing toa particular

node is theindegreeof that node
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Example directed graph
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Formal description
• The formal representation of adirected graphG

is (V, E) whereV is the set of nodesandE is the
set of directed edges

• Example: formal description of the graph in
Figure5 is
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Formal description
• The formal representation of adirected graphG

is (V, E) whereV is the set of nodesandE is the
set of directed edges

• Example: formal description of the graph in
Figure5 is
G=({1,2,3,4,5,6},{(1,2),(1,5),(2,1),(2,4),(5,6),(6,1),(6,3)})
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Note
• A path in whichall arrows point in the same

direction as its stepsis called adirected path
• A directed graph isstrongly connectedif a

directed path connects every two nodes
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Example directed graph
The directed graph in Figure6 represents the relation

that characterizes the gamescissors, paper, stone:
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A game representation
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Figure 6:The graph of a relation
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Applications
• Directed graphsare a handy way of depicting

binary relations
• If R is abinary relationwhosedomainandrange

is D, i.e.,R ⊆ D × D, a labeled graph
G = (D, E) representsR with E = {(x, y)|xRy}

• Graph in Figure6 illustrate this fact
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Strings
• Strings of charactersare fundamentalbuilding

blocksin CS
• Thealphabetover which strings are definedmay

varywith application
• Alphabetis afinite set
• Membersof the alphabet are thesymbols
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Notation
• We useGreek lettersΣ andΓ to designate

alphabets
• We also usetypewriter fontsto denotesymbols of

an alphabet
• Examples:

Σ1 = {0, 1}

Σ2 = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}

Γ = {0, 1, x, y, z}
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Strings over an alphabet
• A string over an alphabetis afinite sequence of

symbols from that alphabet, usually written next
to one another

• Examples:
if Σ1 = {0, 1} then01001 is a string overΣ1

if Σ2 = {a, b, c, . . . , z} thenabracadabra is a string overΣ2
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String properties
• If w is a string overΣ, thelength ofw, written
|w|, is thenumber of symbols contained inw

• Thestring of length zerois called theempty
string, writtenǫ

• Theempty stringplays therole of0 in a number
system

• If |w| = n, we can write
w = w1w2 . . . wn, wi ∈ Σ, i = 1, 2, . . . , n
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More properties
• Thereverseof w = w1w2 . . . wn, writtenwR, is

wR = wn . . . w2w1

• A string z is asubstringof w if w = xzy for x, y
not necessarily the empty strings

• Example: cad is a substring ofabracadabra
andx = abra, y=abra
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String operations
• Concatenation:two stringsx = x1x2 . . . xm and

y = y1y2 . . . yn, by concatenation define a new
stringxy =x1x2 . . . xmy1y2 . . . yn

• The concatenationxx . . . x, k-times is writtenxk

• Lexicographic ordering:is the familiardictionary
orderingof strings, whereshorterstringsprecede
longerstrings

• Example: lexicographic ordering of all strings
overΣ = {0, 1} is
{ǫ, 0, 1, 00, 01, 10, 11, 000, . . .}
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Language
A languageis aset of stringsover a given alphabet.

Let Σ be an alphabet,Σ∗ be the set of all strings over
Σ, andW ⊆ Σ∗. Then we have:

• Σ is a finite set of symbols. Forx, y ∈ Σ, x andy
are distinguishable symbols.

• Σ∗ is formally defined as thesemigroupof words
generated by theconcatenationoperation (◦) over
the alphabetΣ. Thegeneration rulesare:
1. ǫ ∈ Σ

∗

2. For eachx ∈ Σ, x ∈ Σ
∗.

3. If x, y ∈ Σ
∗ thenx ◦ y = xy ∈ Σ

∗.

• W is alanguageoverΣ.
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Fundamental problems
ForΣ an alphabet andL ⊆ Σ∗ a language the
following are fundamental problems:

• Language specification:devise a specification mechanismSML that

discriminatesstringsx ∈ L from strings iny ∈ Σ
∗ andy 6∈ L.

Examples language specification mechanisms?

• Language recognition:device a recognition mechanismRML that for

any stringx ∈ Σ
∗ decides whetherx ∈ L or x 6∈ L.

Examples language recognition mechanism?

• Language translation:let L1 andL2 be languages over the alphabetsΣ1

andΣ2, f : Σ1 → Σ2 a function andF : Σ
∗

1
→ Σ

∗

2
the semigroup

homomorphism induced byf . Device a translation mechanism

T : L1 → L2 thatpreserves the semigroup structuresof Σ
∗

1
andΣ

∗

2
on

L1 andL2.
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Boolean logic
• Boolean logicis a mathematical system built

aroundtwo values, TRUE andFALSE, called
boolean valuesand often represented by1 and0,
respectively

• Thoughoriginally conceived aspure
mathematics, now this system is considered to be
thefoundation of digital electronics and
computer design

• Boolean values are used insituations with two
possibilitiessuch ashigh or low voltage,trueor
falseproposition,yesor noanswer
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Boolean operations
Boolean values are manipulated by boolean
operations:

• Negation or NOT,¬:

• Conjunction or AND,∧:

• Disjunction or OR,∨:
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Boolean operations
Boolean values are manipulated by boolean
operations:

• Negation or NOT,¬:
¬0 = 1; ¬1 = 0

• Conjunction or AND,∧:
0 ∧ 0 = 0; 0 ∧ 1 = 0; 1 ∧ 0 = 0; 1 ∧ 1 = 1

• Disjunction or OR,∨:
0 ∨ 0 = 0; 0 ∨ 1 = 1; 1 ∨ 0 = 1; 1 ∨ 1 = 1
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Boolean expressions
• Boolean operationsare used tocombine simple

statementsinto more complexboolean
expressionsjust as thearithmetic operations+
and× are used to constructarithmetic
expressions

• Examples: Let P andQ be Boolean values
representing the truth of statements “the sun is
shining" and “today is Monday":
• P ∧ Q represent the truth value of statement:

“the sun is shining and today is Monday"

• P ∨ Q represents the truth value of statement:

“the sun is shining or today is Monday"
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Other Boolean operations
• Exclusive OR or XOR,⊕:

• Equality,↔:

• Implication,→:
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Other Boolean operations
• Exclusive OR or XOR,⊕:

0 ⊕ 0 = 0; 0 ⊕ 1 = 1; 1 ⊕ 0 = 1; 1 ⊕ 1 = 0

• Equality,↔:
0 ↔ 0 = 1; 0 ↔ 1 = 0; 1 ↔ 0 = 0; 1 ↔ 1 = 1

• Implication,→:
0 → 0 = 1; 0 → 1 = 1; 1 → 0 = 0; 1 → 1 = 1
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Properties
• One can establish variousrelationship among

Boolean operations
• All Boolean operationscan be expressedin terms

of AND andNOT by the following identities:

P ∨ Q = ¬(¬P ∧ ¬Q)

P → Q = ¬P ∨ Q

P ↔ Q = (P → Q) ∧ (Q → P )

P ⊕ Q = ¬(P ↔ Q)
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Distribution law
• Distribution lawfor AND andORcomes in

handy while manipulating Boolean expressions
• This law issimilar to distribution lawfor addition

andmultiplicationin arithmetic:

a × (b + c) = (a × b) + (a × c)

• Boolean version:two dual laws

P ∧ (Q ∨ R) equals(P ∧ Q) ∨ (P ∧ R)
P ∨ (Q ∧ R) equals(P ∨ Q) ∧ (P ∨ R)
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Note
Thedualof the distribution law foradditionand
multiplicationdoes not holdin general, i.e.

a + (b ∗ c) 6= (a + b) ∗ (a + c)
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