Graphs, Strings, Languages and Boolean Logic

Graphs

- An undirected graph, or simple a graph, is a set of points with lines connecting some points.
- The points are called nodes or vertices, and the lines are called edges

Example graphs

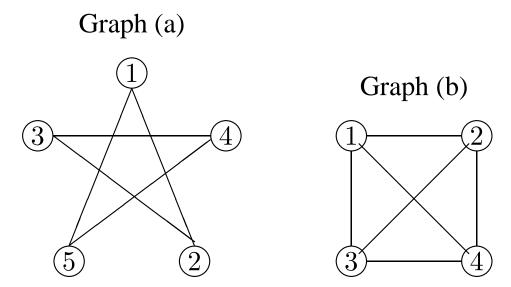


Figure 1: Examples of graphs

Note

- No more than one edge is allowed between any two nodes
- The number of edges at a particular node is called the degree of that node
- In Figure 1, Graphs (a), (b)?

Note

- No more than one edge is allowed between any two nodes
- The number of edges at a particular node is called the degree of that node
- In Figure 1, Graph (a) each node has the degree 2; in Figure 1, Graph (b) each node has the degree 3

Edge representation

- In a graph G that contains nodes i and j, the pair (i, j) represents the edge that connects i and j
- The order of *i* and *j* doesn't matter in an undirected graph, so the pairs (*i*, *j*) and (*j*, *i*) represent the same edge
- Because the order of the nodes is unimportant, we can also describe edges by sets such as $\{i, j\}$

Note

In a directed graph the edge (i, j) has as the source node *i* and as target node *j*

Formalizing the graph

- If V is the set of nodes of a graph G and E is the set of its edges, we say that G = (V, E)
- Hence, one can specify a graph by a diagram or by specifying the sets V and E
- **Example:** a formal description of the Graph (a) in Figure 1 is:

Formalizing the graph

- If V is the set of nodes of a graph G and E is the set of its edges, we say that G = (V, E)
- Hence, one can specify a graph by a diagram or by specifying the sets V and E
- **Example:** a formal description of the Graph (a) in Figure 1 is:

 $G=(\{1,2,3,4,5\},\{(1,2),(2,3),(3,4),(4,5),(5,1)\})$

Graph usage

- Graphs are frequently used to represent data
- Examples:
 - 1. nodes might be cities and edges might be the connecting highways
 - nodes might be electrical components and edges might be wires between them
- Sometimes, for convenience, we may label nodes (and edges) of a graph, thus obtaining a labeled graph, Figure 2

Example labeled graph

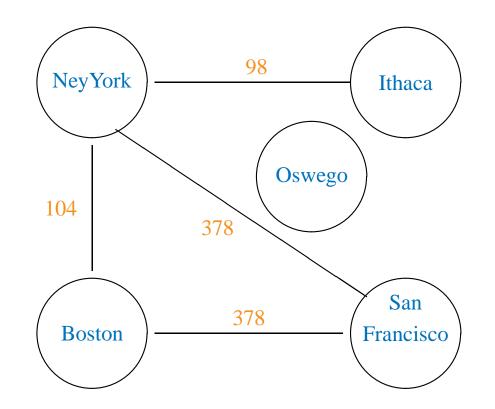


Figure 2: Cheapest air fares between cities

Subgraph

A graph $G = (V_1, E_1)$ is a subgraph of a graph $H = (G_2, E_2)$ if $V_1 \subseteq V_2$

Note: the edges of G are the edges of H on the corresponding nodes, Figure 3

Example subgraph

Graph H

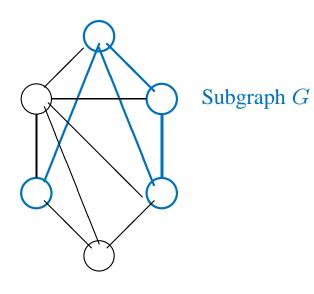


Figure 3: Graph G, a subgraph of H

Graph paths

- A path in a graph is a sequence of nodes connected by edges
- A simple path is a path that does not repeat any node
- A graph is connected if every two nodes have a path between them

Graph cycles

- A path is a cycle if it starts and ends in the same node
- A simple cycle is a cycle that doesn't repeat any edge

Trees

- A graph is a tree if it is connected and has no simple cycles, Figure 4
- The nodes of degree 1 in a tree are called leaves
- Sometimes there is a specially designated node of a tree called the root

Example graphs

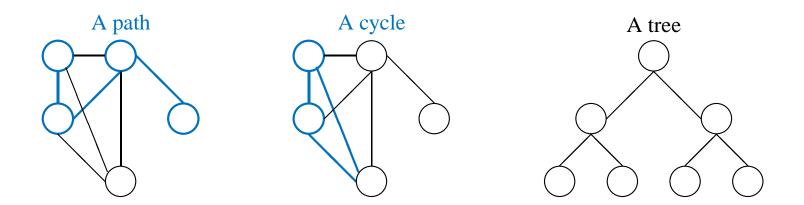


Figure 4: Path, cycle, and tree

Directed graphs

- If the edges of a graphs are arrows instead of lines the graph is a directed graph
- The number of arrows pointing from a particular node is the outdegree of that node
- The number of arrows pointing to a particular node is the indegree of that node

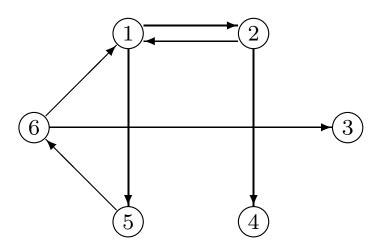


Figure 5: A directed graph

Formal description

- The formal representation of a directed graph *G* is (V, E) where *V* is the set of nodes and *E* is the set of directed edges
- Example: formal description of the graph in Figure 5 is

Formal description

- The formal representation of a directed graph *G* is (V, E) where *V* is the set of nodes and *E* is the set of directed edges
- **Example:** formal description of the graph in Figure 5 is

 $G = (\{ 1, 2, 3, 4, 5, 6 \}, \{ (1, 2), (1, 5), (2, 1), (2, 4), (5, 6), (6, 1), (6, 3) \})$

Note

- A path in which all arrows point in the same direction as its steps is called a directed path
- A directed graph is strongly connected if a directed path connects every two nodes

Example directed graph

The directed graph in Figure 6 represents the relation that characterizes the game scissors, paper, stone:

A game representation

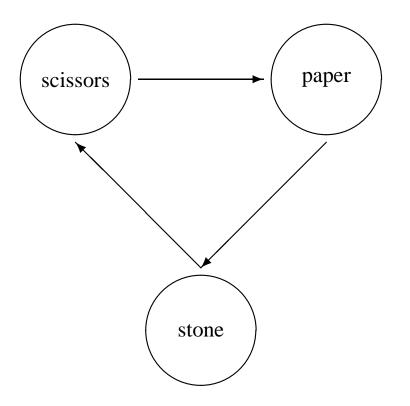


Figure 6: The graph of a relation

Applications

- Directed graphs are a handy way of depicting binary relations
- If *R* is a binary relation whose domain and range is *D*, i.e., $R \subseteq D \times D$, a labeled graph G = (D, E) represents *R* with $E = \{(x, y) | xRy\}$
- Graph in Figure 6 illustrate this fact

Strings

- Strings of characters are fundamental building blocks in CS
- The alphabet over which strings are defined may vary with application
- Alphabet is a finite set
- Members of the alphabet are the symbols

Notation

- We use Greek letters Σ and Γ to designate alphabets
- We also use typewriter fonts to denote symbols of an alphabet
- Examples:

$$\begin{split} \Sigma_1 &= \{0, 1\} \\ \Sigma_2 &= \{\texttt{a}, \texttt{b}, \texttt{c}, \texttt{d}, \texttt{e}, \texttt{f}, \texttt{g}, \texttt{h}, \texttt{i}, \texttt{j}, \texttt{k}, \texttt{l}, \texttt{m}, \texttt{n}, \texttt{o}, \texttt{p}, \texttt{q}, \texttt{r}, \texttt{s}, \texttt{t}, \texttt{u}, \texttt{v}, \texttt{w}, \texttt{x}, \texttt{y}, \texttt{z} \} \\ \Gamma &= \{0, 1, \texttt{x}, \texttt{y}, \texttt{z} \} \end{split}$$

Strings over an alphabet

- A string over an alphabet is a finite sequence of symbols from that alphabet, usually written next to one another
- Examples:

if $\Sigma_1 = \{0, 1\}$ then 01001 is a string over Σ_1

if $\Sigma_2 = \{a, b, c, \dots, z\}$ then abracadabra is a string over Σ_2

String properties

- If w is a string over Σ , the length of w, written |w|, is the number of symbols contained in w
- The string of length zero is called the empty string, written ϵ
- The empty string plays the role of 0 in a number system
- If |w| = n, we can write
 - $w = w_1 w_2 \dots w_n, w_i \in \Sigma, i = 1, 2, \dots, n$

More properties

- The reverse of $w = w_1 w_2 \dots w_n$, written $w^{\mathcal{R}}$, is $w^{\mathcal{R}} = w_n \dots w_2 w_1$
- A string z is a substring of w if w = xzy for x, ynot necessarily the empty strings
- Example: cad is a substring of abracadabra and x = abra, y = abra

String operations

- Concatenation: two strings $x = x_1 x_2 \dots x_m$ and $y = y_1 y_2 \dots y_n$, by concatenation define a new string $xy = x_1 x_2 \dots x_m y_1 y_2 \dots y_n$
- The concatenation $xx \dots x$, k-times is written x^k
- Lexicographic ordering: is the familiar dictionary ordering of strings, where shorter strings precede longer strings
- Example: lexicographic ordering of all strings over $\Sigma = \{0, 1\}$ is $\{\epsilon, 0, 1, 00, 01, 10, 11, 000, \ldots\}$

Language

A language is a set of strings over a given alphabet. Let Σ be an alphabet, Σ^* be the set of all strings over Σ , and $W \subseteq \Sigma^*$. Then we have:

- Σ is a finite set of symbols. For $x, y \in \Sigma$, x and y are distinguishable symbols.
- Σ* is formally defined as the semigroup of words generated by the concatenation operation (○) over the alphabet Σ. The generation rules are:
 - 1. $\epsilon \in \Sigma^*$
 - 2. For each $x \in \Sigma$, $x \in \Sigma^*$.
 - 3. If $x, y \in \Sigma^*$ then $x \circ y = xy \in \Sigma^*$.
- W is a language over Σ .

Fundamental problems

For Σ an alphabet and $L \subseteq \Sigma^*$ a language the following are fundamental problems:

- Language specification: devise a specification mechanism SM_L that discriminates strings x ∈ L from strings in y ∈ Σ* and y ∉ L.
 Examples language specification mechanisms?
- Language recognition: device a recognition mechanism RM_L that for any string x ∈ Σ* decides whether x ∈ L or x ∉ L.
 Examples language recognition mechanism?
- Language translation: let L₁ and L₂ be languages over the alphabets Σ₁ and Σ₂, f : Σ₁ → Σ₂ a function and F : Σ₁^{*} → Σ₂^{*} the semigroup homomorphism induced by f. Device a translation mechanism T : L₁ → L₂ that preserves the semigroup structures of Σ₁^{*} and Σ₂^{*} on L₁ and L₂.

Boolean logic

- Boolean logic is a mathematical system built around two values, TRUE and FALSE, called boolean values and often represented by 1 and 0, respectively
- Though originally conceived as pure mathematics, now this system is considered to be the foundation of digital electronics and computer design
- Boolean values are used in situations with two possibilities such as high or low voltage, true or false proposition, yes or no answer

Boolean operations

Boolean values are manipulated by boolean operations:

- Negation or NOT, ¬:
- Conjunction or AND, \wedge :
- Disjunction or OR, \lor :

Boolean operations

Boolean values are manipulated by boolean operations:

- Negation or NOT, \neg : $\neg 0 = 1; \neg 1 = 0$
- Conjunction or AND, \land : $0 \land 0 = 0; 0 \land 1 = 0; 1 \land 0 = 0; 1 \land 1 = 1$
- Disjunction or OR, ∨:
 0 ∨ 0 = 0; 0 ∨ 1 = 1; 1 ∨ 0 = 1; 1 ∨ 1 = 1

Boolean expressions

- Boolean operations are used to combine simple statements into more complex boolean expressions just as the arithmetic operations + and × are used to construct arithmetic expressions
- Examples: Let P and Q be Boolean values representing the truth of statements "the sun is shining" and "today is Monday":
 - P ∧ Q represent the truth value of statement:
 "the sun is shining and today is Monday"
 - *P* ∨ *Q* represents the truth value of statement:
 "the sun is shining or today is Monday"

Other Boolean operations

- Exclusive OR or XOR, \oplus :
- Equality, \leftrightarrow :
- Implication, \rightarrow :

Other Boolean operations

- Exclusive OR or XOR, \oplus : $0 \oplus 0 = 0; 0 \oplus 1 = 1; 1 \oplus 0 = 1; 1 \oplus 1 = 0$
- Equality, \leftrightarrow :

 $0 \leftrightarrow 0 = 1; 0 \leftrightarrow 1 = 0; 1 \leftrightarrow 0 = 0; 1 \leftrightarrow 1 = 1$

• Implication, \rightarrow :

 $0 \to 0 = 1; 0 \to 1 = 1; 1 \to 0 = 0; 1 \to 1 = 1$

Properties

- One can establish various relationship among Boolean operations
- All Boolean operations can be expressed in terms of AND and NOT by the following identities:

$$P \lor Q = \neg (\neg P \land \neg Q)$$

$$P \to Q = \neg P \lor Q$$

$$P \leftrightarrow Q = (P \to Q) \land (Q \to P)$$

$$P \oplus Q = \neg (P \leftrightarrow Q)$$

Distribution law

- Distribution law for AND and OR comes in handy while manipulating Boolean expressions
- This law is similar to distribution law for addition and multiplication in arithmetic:

 $a \times (b+c) = (a \times b) + (a \times c)$

- Boolean version: two dual laws
 - $\begin{array}{l} P \land (Q \lor R) \text{ equals } (P \land Q) \lor (P \land R) \\ P \lor (Q \land R) \text{ equals } (P \lor Q) \land (P \lor R) \end{array}$

Note

The dual of the distribution law for addition and multiplication does not hold in general, i.e.

 $a + (b * c) \neq (a + b) * (a + c)$