Formal Definition of a Finite Automaton

•

•

• A formal definition is precise:

- A formal definition is precise:
 - It resolves any uncertainties about what is allowed in a finite automaton such as the number of accept states and number of transitions exiting from a state

۲

- A formal definition is precise:
 - It resolves any uncertainties about what is allowed in a finite automaton such as the number of accept states and number of transitions exiting from a state
- A formal definition provides a notation:

- A formal definition is precise:
 - It resolves any uncertainties about what is allowed in a finite automaton such as the number of accept states and number of transitions exiting from a state
- A formal definition provides a notation:
 - Good notation helps think and express thoughts clearly

• A finite set of states

•

• A finite set of states

۲

• Rules for going from one state to another depending upon the input symbol

• A finite set of states

- Rules for going from one state to another depending upon the input symbol
- A finite input alphabet that indicates the allowed symbols

- A finite set of states
- Rules for going from one state to another depending upon the input symbol
- A finite input alphabet that indicates the allowed symbols
- A start state

- A finite set of states
- Rules for going from one state to another depending upon the input symbol
- A finite input alphabet that indicates the allowed symbols
- A start state

• A finite set of accept states

Observation

• In mathematical language a list of five elements is called a 5-tuple, hence a finite automaton can be defined as a 5-tuple

Observation

- In mathematical language a list of five elements is called a 5-tuple, hence a finite automaton can be defined as a 5-tuple
- We can denote the transition rules by a function called the transition function,

 $\delta: States \times Alphabet \rightarrow States$

Observation

- In mathematical language a list of five elements is called a 5-tuple, hence a finite automaton can be defined as a 5-tuple
- We can denote the transition rules by a function called the transition function,

 $\delta: States \times Alphabet \rightarrow States$

• **Example:** $\delta(q_0, x) = q_1$

•

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$:

•

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$:

1. *Q* is a finite set called the set of states

- A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$:
- 1. *Q* is a finite set called the set of states
- 2. Σ is a finite set called the alphabet

- A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$:
- 1. *Q* is a finite set called the set of states
- 2. Σ is a finite set called the alphabet
- 3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function

- A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$:
 - 1. *Q* is a finite set called the set of states
- 2. Σ is a finite set called the alphabet
- 3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- 4. $q_0 \in Q$ is the start (or initial) state

- A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$:
 - 1. *Q* is a finite set called the set of states
- 2. Σ is a finite set called the alphabet
- 3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- 4. $q_0 \in Q$ is the start (or initial) state
- 5. $F \subseteq Q$ is the set of accept (or final) states

Note

•

 Since the set F can be emptyset Ø a finite automaton may have zero accept states

Note

- Since the set F can be emptyset Ø a finite automaton may have zero accept states
- Since transitions are described by a function, the function δ specifies exactly one next state for each possible combination of state and input symbol

Example finite automaton

۲

The automaton M_1 have been defined by the transition diagram in Figure 1

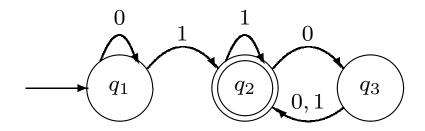


Figure 1: The finite automaton M_1

Formal Definition of a Finite Automaton – p.7/23

Formalizing M_1

- $M_1 = (Q, \Sigma, \delta, q_1, F)$ where
 - 1. $Q = \{q_1, q_2, q_3\}$
 - **2.** $\Sigma = \{0, 1\}$

•

3. δ is described by the table:

δ	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2

•

4. q_1 is the start state, and 5. $F = \{q_2\}$.

Language of a machine

• Since a finite automaton is used here as the model of a computer we also refer to a finite automaton as a "machine"

Language of a machine

- Since a finite automaton is used here as the model of a computer we also refer to a finite automaton as a "machine"
- If A is the set of all strings that a machine M accepts, we say that A is the language of the machine M and write L(M) = A.

Terminology

• The term accept has a different meaning when we refer to machines accepting strings and machines accepting languages. In order to avoid confusion:

Terminology

- The term accept has a different meaning when we refer to machines accepting strings and machines accepting languages. In order to avoid confusion:
- Use accept when we refer to strings

Terminology

- The term accept has a different meaning when we refer to machines accepting strings and machines accepting languages. In order to avoid confusion:
- Use accept when we refer to strings
- Use recognize when we refer to languages

۲

• A machine may accept several strings, but it always recognizes only one language

- A machine may accept several strings, but it always recognizes only one language
- If a machine accepts no strings, it still recognizes one language, namely the empty language ∅

- A machine may accept several strings, but it always recognizes only one language
- If a machine accepts no strings, it still recognizes one language, namely the empty language ∅
- Language recognized by machine M_1 is:

- A machine may accept several strings, but it always recognizes only one language
- If a machine accepts no strings, it still recognizes one language, namely the empty language ∅
- Language recognized by machine M_1 is:

 $A = \{w | w \text{ contains at least one 1 and an even number of 0s follow the last 1} \}$

- A machine may accept several strings, but it always recognizes only one language
- If a machine accepts no strings, it still recognizes one language, namely the empty language ∅
- Language recognized by machine M_1 is: $A = \{w | w \text{ contains at least one 1 and an even number of 0s follow the last 1}\}$
- Conclusion: $L(M_1) = A$, or equivalently, M_1 recognizes A

•

The state diagram in Figure 2 describes a machine M_2

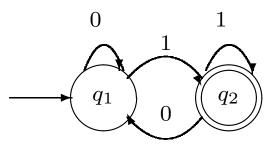


Figure 2: State diagram of the finite automaton M_2

•

The state diagram in Figure 2 describes a machine M_2

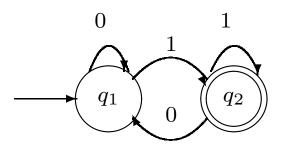


Figure 2: State diagram of the finite automaton M_2

Formally,

•

The state diagram in Figure 2 describes a machine M_2

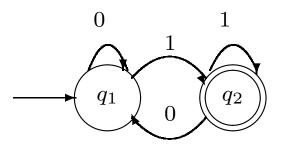


Figure 2: State diagram of the finite automaton M_2

Formally, $M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$ where

•

The state diagram in Figure 2 describes a machine M_2

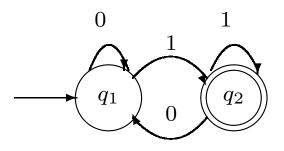


Figure 2: State diagram of the finite automaton M_2

Formally, $M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$ where $\delta(q_1, 0) = q_1, \delta(q_1, 1) = q_2, \quad \delta(q_2, 0) = q_1, \delta(q_2, 1) = q_2$

• •

•

• State diagram of M_2 and its formal description contain the same information, in different form

- State diagram of M_2 and its formal description contain the same information, in different form
- A good way of understanding any machine is to try it on some sample input string

- State diagram of M_2 and its formal description contain the same information, in different form
- A good way of understanding any machine is to try it on some sample input string
- Example: Discover the language of M_2 ,

۲

- State diagram of M_2 and its formal description contain the same information, in different form
- A good way of understanding any machine is to try it on some sample input string
- Example: Discover the language of M_2 ,

 $L(M_2) = \{ w | w \text{ ends in a 1} \}$

Another example

۲

Consider the finite automaton M_3 in Figure 3

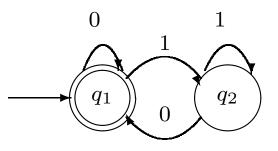


Figure 3: State diagram of the finite automaton M_3

Another example

۲

Consider the finite automaton M_3 in Figure 3

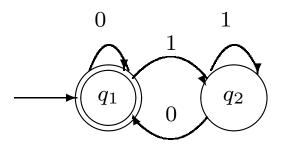


Figure 3: State diagram of the finite automaton M_3

Note: M_3 is similar to M_2 , except for the location of the accept state

• As usual, M_3 accepts all strings that leave it in an accept state when it has consumed the input.

- As usual, M_3 accepts all strings that leave it in an accept state when it has consumed the input.
- Because M_3 's start state is also accept state, M_3 accepts the empty string ϵ .

۲

۲

- As usual, M_3 accepts all strings that leave it in an accept state when it has consumed the input.
- Because M_3 's start state is also accept state, M_3 accepts the empty string ϵ .

- Note: as soon as M_3 begins the reading of ϵ it is at the end, so it accepts it

۲

۲

- As usual, M_3 accepts all strings that leave it in an accept state when it has consumed the input.
- Because M_3 's start state is also accept state, M_3 accepts the empty string ϵ .

- Note: as soon as M_3 begins the reading of ϵ it is at the end, so it accepts it

• In addition to ϵ , M_3 accepts any string that ends in 0

۲

۲

- As usual, M_3 accepts all strings that leave it in an accept state when it has consumed the input.
- Because M_3 's start state is also accept state, M_3 accepts the empty string ϵ .

- Note: as soon as M_3 begins the reading of ϵ it is at the end, so it accepts it

• In addition to ϵ , M_3 accepts any string that ends in 0

 $L(M_3) = \{w | w \text{ is the empty string } \epsilon \text{ or ends in 0} \}$

۲

Consider the five-state machine M_4 , Figure 4

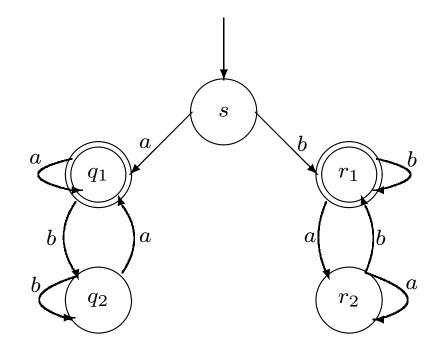


Figure 4: Finite automaton M₄

•

• M_4 has two accept states, q_1 and r_1

- M_4 has two accept states, q_1 and r_1
- M_4 operates over the alphabet $\Sigma = \{a, b\}$

- M_4 has two accept states, q_1 and r_1
- M_4 operates over the alphabet $\Sigma = \{a, b\}$
- Some experimentation with M_4 shows that it accepts strings as a, b, aa, bb, bab and does not accept strings as ab, ba, bbba

- M_4 has two accept states, q_1 and r_1
- M_4 operates over the alphabet $\Sigma = \{a, b\}$
- Some experimentation with M_4 shows that it accepts strings as a, b, aa, bb, bab and does not accept strings as ab, ba, bbba
- M_4 begins in state *s* and after it reads the first symbol in the input it either goes to the left to q states or to the right to r states

•

• Once M_4 goes to the left or to the right it can never return to the start state

- Once M_4 goes to the left or to the right it can never return to the start state
- If the first symbol in the string is *a* then it goes to the left and accepts when the strings ends with an *a*

- Once M_4 goes to the left or to the right it can never return to the start state
- If the first symbol in the string is *a* then it goes to the left and accepts when the strings ends with an *a*
- If the first symbol in the string is *b* then it goes to the right and accept when the strings ends with a *b*

- Once M_4 goes to the left or to the right it can never return to the start state
- If the first symbol in the string is *a* then it goes to the left and accepts when the strings ends with an *a*
- If the first symbol in the string is *b* then it goes to the right and accept when the strings ends with a *b*
- Conclusion: $L(M_4) = \{w | w = axa\} \cup \{w | w = byb\}$ for $x, y \in \Sigma^*$

The state diagram in Figure 5 shows the machine M_5 which has a four-symbol input alphabet, $\Sigma = \{\langle RESET \rangle, 0, 1, 2\}$ where $\langle RESET \rangle$ is treated as a single symbol

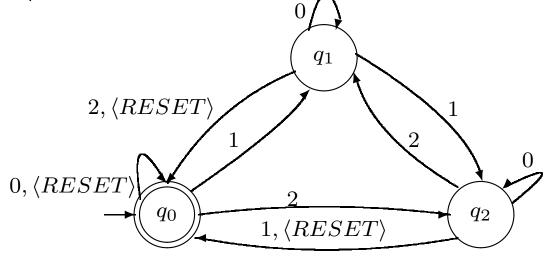


Figure 5: Finite automaton M_5

۲

• M_5 keeps a running count of the sum of the numerical input symbols it reads, modulo 3.

Running M_5

- M_5 keeps a running count of the sum of the numerical input symbols it reads, modulo 3.
- The three states of the automaton correspond to the three numbers 0,1,2, the sum could ever be

Running M_5

- M_5 keeps a running count of the sum of the numerical input symbols it reads, modulo 3.
- The three states of the automaton correspond to the three numbers 0,1,2, the sum could ever be
- Every time the automaton receives the $\langle RESET \rangle$ symbol it resets the count to 0 while moving to state q_0

Limitation of state diagrams

۲

• It is not always possible to describe a finite automaton using a state diagram

Limitation of state diagrams

- It is not always possible to describe a finite automaton using a state diagram
- That may occur when the diagram would be too big to draw, or if, as in the Example 1.5, the description depends on some unspecified parameter

Limitation of state diagrams

- It is not always possible to describe a finite automaton using a state diagram
- That may occur when the diagram would be too big to draw, or if, as in the Example 1.5, the description depends on some unspecified parameter
- In these cases one needs to resort to a formal description to specify the machine

Consider a generalization of the Example 1.5 using the same four symbol alphabet $\boldsymbol{\Sigma}$

For each *i* ≥ 0 let *A_i* be the language of all strings where the sum of the numbers making up the input is a multiple of *i*, except that the sum is reset to 0 whenever a symbol ⟨*RESET*⟩ appears

Consider a generalization of the Example 1.5 using the same four symbol alphabet Σ

- For each *i* ≥ 0 let *A_i* be the language of all strings where the sum of the numbers making up the input is a multiple of *i*, except that the sum is reset to 0 whenever a symbol ⟨*RESET*⟩ appears
- For each A_i we construct a finite automaton B_i recognizing A_i

Consider a generalization of the Example 1.5 using the same four symbol alphabet Σ

- For each *i* ≥ 0 let *A_i* be the language of all strings where the sum of the numbers making up the input is a multiple of *i*, except that the sum is reset to 0 whenever a symbol ⟨*RESET*⟩ appears
- For each A_i we construct a finite automaton B_i recognizing A_i

The automaton B_i

۲

The machine B_i is described formally as follows: $B_i = (Q_i, \Sigma, \delta_i, q_0, \{q_0\})$ where

•
$$Q_i = \{q_0, q_1, \dots, q_{i-1}\}$$

The automaton B_i

۲

The machine B_i is described formally as follows: $B_i = (Q_i, \Sigma, \delta_i, q_0, \{q_0\})$ where

- $Q_i = \{q_0, q_1, \dots, q_{i-1}\}$
- $\Sigma = \{0, 1, 2, \langle RESET \rangle \}$

The automaton B_i

The machine B_i is described formally as follows: $B_i = (Q_i, \Sigma, \delta_i, q_0, \{q_0\})$ where

- $Q_i = \{q_0, q_1, \dots, q_{i-1}\}$
- $\Sigma = \{0, 1, 2, \langle RESET \rangle \}$
- δ_i is designed so that for each j, $0 \le j \le i 1$, if B_i is in the state q_j then the running sum is j modulo i. For each q_j we set:

$$\delta_i(q_j, 0) = q_j$$

$$\delta_i(q_j, 1) = q_k, k = j + 1 \mod lo i$$

$$\delta_i(q_j, 2) = q_k, k = j + 2 \mod lo i$$

$$\delta_i(q_j, \langle RESET \rangle) = q_0$$