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Why a formal definition?

• A formal definition is precise:
- It resolves any uncertainties about what is allowed in a finite

automaton such as the number of accept states and number of

transitions exiting from a state

• A formal definition provides a notation:
- Good notation helps think and express thoughts clearly
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Parts of a finite automaton

• A finite set of states
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Parts of a finite automaton

• A finite set of states
• Rules for going from one state to another

depending upon the input symbol
• A finite input alphabet that indicates the

allowed symbols
• A start state
• A finite set of accept states
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Observation

• In mathematical language a list of five
elements is called a 5-tuple, hence a finite
automaton can be defined as a 5-tuple
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Observation
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automaton can be defined as a 5-tuple

• We can denote the transition rules by a
function called the transition function,

δ : States × Alphabet → States
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Observation

• In mathematical language a list of five
elements is called a 5-tuple, hence a finite
automaton can be defined as a 5-tuple

• We can denote the transition rules by a
function called the transition function,

δ : States × Alphabet → States

• Example: δ(q0, x) = q1
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Formal definition

A finite automaton is a 5-tuple (Q, Σ, δ, q0, F ):
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Formal definition

A finite automaton is a 5-tuple (Q, Σ, δ, q0, F ):

1. Q is a finite set called the set of states

2. Σ is a finite set called the alphabet

3. δ : Q × Σ → Q is the transition function

4. q0 ∈ Q is the start (or initial) state

5. F ⊆ Q is the set of accept (or final) states
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Note

• Since the set F can be emptyset ∅ a finite
automaton may have zero accept states
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Note

• Since the set F can be emptyset ∅ a finite
automaton may have zero accept states

• Since transitions are described by a function,
the function δ specifies exactly one next state
for each possible combination of state and
input symbol
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Example finite automaton

The automaton M1 have been defined by the
transition diagram in Figure 1
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Figure 1: The finite automaton M1
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Formalizing M1

M1 = (Q,Σ, δ, q1 , F ) where

1. Q = {q1, q2, q3}

2. Σ = {0, 1}

3. δ is described by the table:

δ 0 1

q1 q1 q2

q2 q3 q2

q3 q2 q2

4. q1 is the start state, and 5. F = {q2}.
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Language of a machine

• Since a finite automaton is used here as the
model of a computer we also refer to a finite
automaton as a “machine"

Formal Definition of a Finite Automaton – p.9/23



Language of a machine

• Since a finite automaton is used here as the
model of a computer we also refer to a finite
automaton as a “machine"

• If A is the set of all strings that a machine M

accepts, we say that A is the language of the
machine M and write L(M) = A.
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Terminology

• The term accept has a different meaning
when we refer to machines accepting strings
and machines accepting languages. In order
to avoid confusion:
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Terminology

• The term accept has a different meaning
when we refer to machines accepting strings
and machines accepting languages. In order
to avoid confusion:

• Use accept when we refer to strings
• Use recognize when we refer to languages
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Consequences

• A machine may accept several strings, but it
always recognizes only one language
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Consequences
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• If a machine accepts no strings, it still
recognizes one language, namely the empty
language ∅

• Language recognized by machine M1 is:
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Consequences

• A machine may accept several strings, but it
always recognizes only one language

• If a machine accepts no strings, it still
recognizes one language, namely the empty
language ∅

• Language recognized by machine M1 is:
A = {w| w contains at least one 1 and an even number of 0s follow the last 1}
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Consequences

• A machine may accept several strings, but it
always recognizes only one language

• If a machine accepts no strings, it still
recognizes one language, namely the empty
language ∅

• Language recognized by machine M1 is:
A = {w| w contains at least one 1 and an even number of 0s follow the last 1}

• Conclusion: L(M1) = A, or equivalently, M1

recognizes A
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Machine M2

The state diagram in Figure 2 describes a machine M2
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Figure 2: State diagram of the finite automaton M2

Formal Definition of a Finite Automaton – p.12/23



Machine M2

The state diagram in Figure 2 describes a machine M2

-��
��

q1

?

0

U
1

K
0 ��

��
��
��

q2

?

1

Figure 2: State diagram of the finite automaton M2

Formally,

Formal Definition of a Finite Automaton – p.12/23



Machine M2

The state diagram in Figure 2 describes a machine M2
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Figure 2: State diagram of the finite automaton M2

Formally, M2 = ({q1, q2}, {0, 1}, δ, q1, {q2}) where
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Machine M2

The state diagram in Figure 2 describes a machine M2
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Figure 2: State diagram of the finite automaton M2

Formally, M2 = ({q1, q2}, {0, 1}, δ, q1, {q2}) where

δ(q1, 0) = q1, δ(q1, 1) = q2, δ(q2, 0) = q1, δ(q2, 1) = q2
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Note

• State diagram of M2 and its formal description
contain the same information, in different form
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Note

• State diagram of M2 and its formal description
contain the same information, in different form

• A good way of understanding any machine is
to try it on some sample input string

• Example: Discover the language of M2,

L(M2) = {w| w ends in a 1}
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Another example

Consider the finite automaton M3 in Figure 3
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Figure 3: State diagram of the finite automaton M3
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Another example

Consider the finite automaton M3 in Figure 3
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Figure 3: State diagram of the finite automaton M3

Note: M3 is similar to M2, except for the location of the accept state
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Observations

• As usual, M3 accepts all strings that leave it in an
accept state when it has consumed the input.
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• Because M3’s start state is also accept state, M3

accepts the empty string ǫ.
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so it accepts it
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• Because M3’s start state is also accept state, M3

accepts the empty string ǫ.

- Note: as soon as M3 begins the reading of ǫ it is at the end,

so it accepts it

• In addition to ǫ, M3 accepts any string that ends in 0
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Observations

• As usual, M3 accepts all strings that leave it in an
accept state when it has consumed the input.

• Because M3’s start state is also accept state, M3

accepts the empty string ǫ.

- Note: as soon as M3 begins the reading of ǫ it is at the end,

so it accepts it

• In addition to ǫ, M3 accepts any string that ends in 0

L(M3) = {w|w is the empty string ǫ or ends in 0}
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Example 1.4

Consider the five-state machine M4, Figure 4
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Figure 4: Finite automaton M4
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Observations

• M4 has two accept states, q1 and r1
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Observations

• M4 has two accept states, q1 and r1

• M4 operates over the alphabet Σ = {a, b}

• Some experimentation with M4 shows that it
accepts strings as a, b, aa, bb, bab and does
not accept strings as ab, ba, bbba

Formal Definition of a Finite Automaton – p.17/23



Observations

• M4 has two accept states, q1 and r1

• M4 operates over the alphabet Σ = {a, b}

• Some experimentation with M4 shows that it
accepts strings as a, b, aa, bb, bab and does
not accept strings as ab, ba, bbba

• M4 begins in state s and after it reads the first
symbol in the input it either goes to the left to
q states or to the right to r states
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More observations

• Once M4 goes to the left or to the right it can never
return to the start state

Formal Definition of a Finite Automaton – p.18/23



More observations

• Once M4 goes to the left or to the right it can never
return to the start state

• If the first symbol in the string is a then it goes to the
left and accepts when the strings ends with an a
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More observations

• Once M4 goes to the left or to the right it can never
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More observations

• Once M4 goes to the left or to the right it can never
return to the start state

• If the first symbol in the string is a then it goes to the
left and accepts when the strings ends with an a

• If the first symbol in the string is b then it goes to the
right and accept when the strings ends with a b

• Conclusion: L(M4) = {w|w = axa} ∪ {w|w = byb} for x, y ∈ Σ∗
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Example 1.5

The state diagram in Figure 5 shows the
machine M5 which has a four-symbol input
alphabet, Σ = {〈RESET 〉, 0, 1, 2} where
〈RESET 〉 is treated as a single symbol
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Figure 5: Finite automaton M5
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Running M5

• M5 keeps a running count of the sum of the
numerical input symbols it reads, modulo 3.
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Running M5

• M5 keeps a running count of the sum of the
numerical input symbols it reads, modulo 3.

• The three states of the automaton correspond
to the three numbers 0,1,2, the sum could
ever be
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Running M5

• M5 keeps a running count of the sum of the
numerical input symbols it reads, modulo 3.

• The three states of the automaton correspond
to the three numbers 0,1,2, the sum could
ever be

• Every time the automaton receives the
〈RESET 〉 symbol it resets the count to 0 while
moving to state q0
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Limitation of state diagrams

• It is not always possible to describe a finite
automaton using a state diagram
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Limitation of state diagrams

• It is not always possible to describe a finite
automaton using a state diagram

• That may occur when the diagram would be
too big to draw, or if, as in the Example 1.5,
the description depends on some unspecified
parameter
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Limitation of state diagrams

• It is not always possible to describe a finite
automaton using a state diagram

• That may occur when the diagram would be
too big to draw, or if, as in the Example 1.5,
the description depends on some unspecified
parameter

• In these cases one needs to resort to a
formal description to specify the machine
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Example 1.6

Consider a generalization of the Example 1.5
using the same four symbol alphabet Σ

• For each i ≥ 0 let Ai be the language of all
strings where the sum of the numbers making
up the input is a multiple of i, except that the
sum is reset to 0 whenever a symbol 〈RESET 〉

appears
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Example 1.6

Consider a generalization of the Example 1.5
using the same four symbol alphabet Σ

• For each i ≥ 0 let Ai be the language of all
strings where the sum of the numbers making
up the input is a multiple of i, except that the
sum is reset to 0 whenever a symbol 〈RESET 〉

appears
• For each Ai we construct a finite automaton
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The automatonBi

The machine Bi is described formally as follows:
Bi = (Qi, Σ, δi, q0, {q0}) where

• Qi = {q0, q1, . . . , qi−1}
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The automatonBi

The machine Bi is described formally as follows:
Bi = (Qi, Σ, δi, q0, {q0}) where

• Qi = {q0, q1, . . . , qi−1}

• Σ = {0, 1, 2, 〈RESET 〉}

• δi is designed so that for each j, 0 ≤ j ≤ i − 1, if Bi is in the state
qj then the running sum is j modulo i. For each qj we set:

δi(qj , 0) = qj

δi(qj , 1) = qk, k = j + 1 modulo i

δi(qj , 2) = qk, k = j + 2 modulo i

δi(qj , 〈RESET 〉) = q0
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