
STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

CSE328 Fundamentals of Computer 
Graphics: Theory, Algorithms, and 

Applications

Hong Qin

Department of Computer Science

Stony Brook University (SUNY at Stony Brook)

Stony Brook, New York 11794-2424

Tel: (631)632-8450; Fax: (631)632-8334

qin@cs.stonybrook.edu

http://www.cs.stonybrook.edu/~qin



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion

• The earlier task allows us to draw line segments, 

polylines, curves, is it sufficient for 2D graphics?

• What are still missing for the rasterization task?

• Wireframe geometry and display is NOT enough

• We must have drawing routines to support the 

solid-shaded appearance (not only boundaries, 

but also all interior points of polygons)

• Scan conversion is achieving such goal

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Simple Algorithms

• We start from a simple triangle T: a = (x1,y1), b 

= (x2,y2), and c = (x3,y3)

• The task is to find all pixels inside T

• Naïve algorithm (the worst algorithm)

– For each pixel p do 

– If p is inside T, then draw-point(p) end if

– End for

• For a single triangle, we MUST traverse all 

pixels, the worst performance
CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Slight Improvement
• We start from a simple triangle T: v1=(x1,y1), 

v2=(x2,y2), and v3=(x3,y3)

• We compute its bounding box B (later we will investigate 

the hierarchical modeling for the bounding volume 

hierarchy) first

– For each pixel p that is inside B do 

– If p is inside T, then draw-point(p) end if

– End for

• Essentially, the scan conversion MUST solve this 

problem, given a T and a pixel (or point in general), can 

we determine: p is a part of T
CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Ray Casting (Ray Firing)

• We start from a simple triangle T: v1=(x1,y1), 

v2=(x2,y2), and v3=(x3,y3) and a point

– (1) draw a ray from p outward along any direction

– (2) count the number of intersections of this ray with 

triangular boundaries for T

– (3) If ODD, then p is inside T, otherwise, p is not a 

part of T

• Is this method correct?

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Polygon Scan Conversion

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion

• What happens if the ray pass through a vertex of a 

simple triangle T: (x1,y1), (x2,y2), and (x3,y3)

• How do you actually count the number of 

intersections with a triangular boundary?

• How do you actually compute the intersection?

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computing Intersections

• Mathematically speaking: f(x,y)=0; g(x,y)=0, 

simple solve them for possible solutions

• In reality (computer graphics), we don’t really do 

the above way!

• Why?

• How do we handle this in computer graphics?

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computing Intersections

• First, consider a boundary of a polygon, we do 

NOT use its explicit representation at all. Instead, 

we use f(x,y)=ax+by+c=0; 

• Second, consider a ray geometry, once again, we 

do NOT use its explicit representation at all. 

Instead we are using its parametric representation: 

ray(p, v) = p + v*t, where t is a spatial parameter, 

ray(p, v) works for (x,y) simultaneously!

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computing Intersections

• Parametric equation

• Vector expression

• The parameter is between 0 and 1 to describe a line 

segment, the ray can be expressed in the same way 

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computing Intersections

• Combine the two equations together (one is the 

implicit equation, another one is the parametric 

equation), f(ray(p,v))=0, where t is the ONLY 

parameter (to be solved)

• What is the geometric meaning of t?

• We are going to have more mathematically 

rigorous process on the parametric representation 

and its power and potential later in this course!

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion
• We start from a simple triangle T: v1=(x1,y1), 

v2=(x2,y2), and v3=(x3,y3) and a point

• Consider the edge (v1v2) and formulate the implicit 

expression for this line

• Pick a sign so that the evaluation of v3 is negative!

• This defines a half-plane

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion
• We start from a simple triangle T: v1=(x1,y1), v2=(x2,y2), and 

v3=(x3,y3) and a point

• Repeat the similar process for two other edges (v1v2) and (v2v3)

• It is equivalent to say, a pixel (point) is a part of a triangle if this 

point belongs to three half-planes simultaneously

• What about Concave polygon?

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Convex

Not Convex



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Convex

• A polygon is convex if…

– A line segment connecting any two points on the 

polygon is contained in the polygon.

– If you can wrap a rubber band around the polygon 

and touch all of the sides, the polygon is convex



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Concave Polygon

• We now consider a concave polygon T: (x1,y1), 

(x2,y2), (x3,y3), …… (xn, yn)

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Scan-Converting a Polygon

• General approach: any ideas?

• One idea: flood fill
– Draw polygon edges

– Pick a point (x,y) inside and flood fill with DFS

flood_fill(x,y) {

if (read_pixel(x,y)==white) {

write_pixel(x,y,black);

flood_fill(x-1,y);

flood_fill(x+1,y);

flood_fill(x,y-1);

flood_fill(x,y+1);

} }



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Polygon Classification
• Simple convex

• Simple concave

• Non-simple (with self-intersection)

• Once again, a bounding box can help, and the idea of 

using ray-casting is also GOOD!

• However, these approaches would NOT take advantage 

of (spatial) coherence

• Adjacent pixels in the image space are likely sharing the 

similar graphics properties such as color and appearance

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Sweeping Lines

• Our observation – spatial coherence

• Idea

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Sweep-line Algorithm

• Algorithm

• Question:

• Answer: please recall our line-drawing algorithm! 

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Polygon Classification

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion
• We must speed up the edge intersection detection

• Data structure for efficient implementation

– A sorted edge table

– The active edge list

– From bottom to the top

• Practical polygon scan conversion – based on polygon 

triangulation

• Extremely easy to handle for convex polygons

• Triangles are often particularly nice to work with because 

they are always planar and simple
CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Special Cases

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Scan-Line Approach
• More efficient way: use a scan-line rasterization 

algorithm

• For each y value, compute x

intersections. Fill according 

to winding rule

• How to compute intersection

points?

• How to handle shading?

• Some hardware can handle 

multiple scanlines in parallel



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Singularities (Special Cases)
• If a vertex lies on a scanline,

does that count as 0, 1, or 2 

crossings?

• How to handle singularities?

• One approach: don’t allow. 

Perturb vertex coordinates

• OpenGL’s approach: place pixel

centers half way between 

integers (e.g. 3.5, 7.5), so

scanlines never hit vertices



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Winding Test

• Most common way to tell if a point is in a 

polygon: the winding test

– Define “winding number” w for a point: signed 

number of revolutions around the point when 

traversing boundary of polygon once

– When is a point “inside” the polygon?



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Rasterizing Polygons (Scan Conversion 

• Polygons may be or may not be simple, convex, 

or even flat. How to render them?

• The most critical thing is to perform inside-

outside testing: how to tell if a point is in a 

polygon? 



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Winding Rules



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

OpenGL and Concave polygons
• OpenGL guarantees correct rendering only for simple, 

convex, planar polygons

• OpenGL tessellates concave polygons

• Tessellation depends on winding rule you tell OpenGL 

to use: Odd, Nonzero, Pos, Neg, ABS_GEQ_TWO



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Scan Conversion

• At this point in the pipeline, we have only 

polygons and line segments. Render!

• To render, convert to pixels (“fragments”) with 

integer screen coordinates (ix, iy), depth, and 

color

• Send fragments into fragment-processing 

pipeline



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures


