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Basic Definition

« Deformation: A transformation/mapping of the
positions of every particle in the original object to
those In the deformed body

» Each particle represented by a point p Is moved by
Q)
p—> ¢ (L p)

where p represents the original position and #(t, p)
represents the position at time t
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Deformation Applications
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Deforming Objects

* Changing an object’s shape
— Usually refers to non-simulated algorithms
— Usually relies on user guidance

« Easiest when the number of faces and vertices of
a shape Is preserved, and the shape topology Is
not changed either

— Define the movements of vertices
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Deformation

* Modify Geometry

-------------
.

e Space Transformation

N
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| Defining Vertex Functions

o |If vertex 1 Is displaced by (X, y, z) units

— Displace each neighbor, j, of 1 by
* (XY, 2)*1(1,J)

o f(1,]) Is typically a function of distance
— Euclidean distance
— Number of edges from 1 to |
— Distance along surface (i.e., geodesics)
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Moving Vertices

* Time consuming to define the trajectory through

space of all vertices
Original Mesh e———— Destination Mesh

»y P
Destination Mesh =i 0riginal Mesh ) )
» |nstead, control a few seed vertices which In turn

affect nearby vertices
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Warping




Vertex Displacement Function

* 11s the (shortest) number of
edges between I and |

e nIsthe max number of edges
affected

e (k=0) = linear; (k<0) = rigid;
(k>0) = elastic

Warping effects by using
power functions

For attenuating warping
effects
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2-D Grid Deformation

1974 film “Hunger”
Draw object on grid
Deform grid points

nositions on deformed grid

Use bilinear interpolation to re-compute vertex
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w 2D Grid-based Deformation

local x

global x
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2D Grid-based Deformation

= (1—WPyo + UPyp

= {1_LI}P|:|.-| + UP'|1
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w 2D Grid-based Deformation
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o local x
global x
_ >

X

Figure 3.57 Initial 2D coordinate grid

P00 + u- P10

POl + u- P11

Pu0 + v+ Pul

(1=2)-P00+(1—u)-v- POl +u-(1—v)- P10+ u-v- P11

P00

Figure 3.58 Bilinear interpolation
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Polyline Deformation (Skeleton)

» Draw a piecewise linear line (polyline) passing through
the geometry

\/\

 For each vertex compute
— Closest polyline segment
— Distance to segment
— Relative distance along this segment

» Deform polyline and re-compute vertex paositions
e The earlier version of skeleton-based deformation
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Bulging & Bending

Bending
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Hierarchicg
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Working at a finer level




FFDs — as tools to design shapes

Undeformed object Deformed object
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| Object Modification/Deformation

» Modify the vertices directly
— Vertex warping

* OR

» Modify the space the vertices lie In
— 2D grid-based deformation
— Skeletal bending
— Global transformations
— Free-form deformations

Department of Computer Science ST NYBR® K
enter for Vi i



Global Deformations

e Alan Barr, SIGGRAPH ’84

o A 3x3 transformation matrix affects all vertices
— P’=M(P) .dot. P
* M(P) can taper, twist, bend...
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w Global Transformations
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Global Transformations
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Global Transformations
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w Global Transformations
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Figure 3.63 Global tapering
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Figure 3.64 Twist about an axis
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Figure 3.65 Global bend operation
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Compound global deformations Examples from Barr [2)

UCILSENEEIEREE  Figure 3.66 Examples of global deformations
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Nonlinear Global Deformation
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Nonlinear Global Deformation

Good for modeling [Barr 87]

Animation I1s harder
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Space Warping

« Deformation the object by deforming the space it
IS residing In

e Two main technigues:

» Nonlinear deformation

 Free Form Deformation (FFD)
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Nonlinear Global Deformation

« Objects are defined in a local object space
» Deform this space by using a combination of:
» Non-uniform scaling

» Tapering
 Twisting
 Bending
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What is “Free-Form™?

« Parametric surfaces are free-form surfaces.

= The flexibility in this technique of deformation allows us
deform the model in a free-form manner.
v Any surface patches
v" Global or local deformation
v" Continuity in local deformation
v Volume preservation
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W Free-Form Deformations

e Embed object in uniform grid

 Represent each point In space as a weighted
combination of grid vertices

i
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W Free-Form Deformations

e Embed object in uniform grid

 Represent each point In space as a weighted
combination of grid vertices

» Assume x; are equally spaced and use Bernstein
basis functions
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W Free-Form Deformations

e Embed object in uniform grid

 Represent each point In space as a weighted
combination of grid vertices

» Assume x; are equally spaced and use Bernstein
basis functions
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W Free-Form Deformations

e Embed object in uniform grid

 Represent each point In space as a weighted
combination of grid vertices

» Assume x; are equally spaced and use Bernstein
basis functions
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| 2D Example
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| 2D Example
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| 2D Example

wlhm
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| 2D Example

wlhm
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| 2D Example
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| 2D Example
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| Applying the Deformation
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| Applying the Deformation




| Applying the Deformation




FFD Contributions

« Smooth deformations of arbitrary shapes
e Local control of deformation
» Performing deformation Is fast

» Widely used
— Game/Movie Iindustry
— Part of nearly every 3D modeling package
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Challenges in Deformation

 Large meshes — millions of polygons

» Need efficient techniques for computing and
specifying the deformation
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Deformation Handles

 Low-resolution auxiliary shape controls
deformation of high-resolution model
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Deformation Handles

 Low-resolution auxiliary shape controls
deformation of high-resolution model
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Deformation Handles

 Low-resolution auxiliary shape controls
deformation of high-resolution model
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Deformation Handles

 Low-resolution auxiliary shape controls
deformation of high-resolution model

Q‘ . \\f;a 4 %
1@&”@?‘@




Free-Form Deformation (FFD)

» Sederberg, SIGGRAPH ’86
 Place geometric object inside Iocal coordlnate
Space P Jr—ad 7

e Build local
coordinate
representation

» Deform local coordinate space and thus deform
geometry
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Free-Form Deformation (FFD)

» Basic idea: deform space by deforming a lattice
around an object

» The deformation is defined by moving the
control points of the lattice

 |Imagine it as If the object were enclosed by
rubber

» The key Is how to define
— |LLocal coordinate system
— The mapping
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W Free-Form Deformation

« Similar to 2-D grid deformation
» Define 3-D lattice surrounding geometry

» Move grid points of lattice and deform geometry
accordingly

o |_ocal coordinate system is initially defined by
three (perhaps non orthogonal) vectors
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Trilinear Interpolation

e LetS, T, and U (with origin P, define local
coordinate axes of bounding box that encloses

geometry
» A vertex, P’s, coordinates are:
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W Volumetric Control Points

e Eachof S, T, and U axes are
subdivided by control points

» A lattice of control points Is
constructed

» Bezier interpolation of move control points define new

vertex positions
P=P +s-S+t-T+u-U
k

Pi = PO+1-S+i-T +—-U
I m n

be-ors (8o
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Free-Form Deformation (FFD)

Q(u,v,w) = Zpijk B(u)B(v)B(w)

ijk




The FFD Process - Example

Point in a cell is repositioned within the corresponding
cell in the deformed lattice, in the same relative
position within the cell.
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Smoothness of Deformation

 Constraining Bezier control points controls
smoothness
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Smooth the deformed surface

Can be done by properly set the lattice position and
(I, m, n) dimension
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Free-Form Deformations

e Continuities

Colinear control points
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Volume Preservation

» Must ensure that the jacobian of the deformation

IS 1 everﬁhere
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FFD: Examples
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FFD: Examples
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FFD: Examples
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| Advantages

» Smooth deformation of arbitrary shapes

» Local control of deformations

« Computing the deformation
IS easy

» Deformations are very fast
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| Disadvantages

e Must use cubical cells for deformation

» Restricted to uniform grid

» Deformation warps space... not surface

— Does not take Into account geometry/topology of
surface

» May need many FFD’s to achieve a simple
deformation

ST NYBR® K
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FFD Example
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FFD Example
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Free-Form Deformation

» Widely used deformation technique

 Fast, easy to compute

» Some control over volume
preservation/smoothness

» Uniform grids are restrictive
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w Use FFDs to Animate

 Build control point lattice
that 1s smaller than
geometry

» Move lattice through
geometry so It affects
different regions In
sequence

» Animate mouse under the
rug, or subdermals (alien
under your skin), etc.

Figure 3.74 Deformation by translating the deformation tool relative to an object
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w Use FFDs to Animate

» Build FFD lattice that is
larger than geometry

 Translate geometry
within lattice so new
deformations affect it
with each move

» Change shape of object
to move along a path
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FFD Animation

reference

e
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FFD Animation

reference
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Animating the FFD

» Create Interface for efficient manipulation of
lattice control points over time

— Connect lattices to rigid limbs of human skeleton
— Physically simulate control points
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Application: Skin, Muscle, and Bone
W Animation

Exo-muscular system
Skeleton -> changes FFD -> changes skin
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Figure 3.76 Using an FFD to animate a figure’s head

Surface distorted after joint articulation

Figure 3.77 Using FFD to deform a surface around an articulated joint
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FFD for Human Animation
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Free-Form Deformation
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Non-Tensor-Product Grid Structure
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W Arbitrary Grid Structure (Star-Shape)
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Volume defined by Arbitrary Lattices

» The volumetric regions of space results from
Catmull-Clark subdivision method.

s
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Modified Refinement Rules

» Green: boundary edges.
 Red: sharp edges.
* Yellow: corner vertices




Arbitrary Topology

 Previous method can only handle a
parallelepiped lattice.

» A new method allows lattices of arbitrary
topology.
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| Arbitrary Topology FFDs

* The concept of FFDs was later extended to allow an
arbitrary topology control volume to be used

Department of Computer Science ST NYBR K

Center for Visual Computing . STATEUNIVERSITY OF NEW YORK



Results
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Results

 Deform a monster’s arm
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