
Hong Qin
Department of Computer Science
Stony Brook University (SUNY at Stony Brook)
Stony Brook, New York 11794-2424
Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.stonybrook.edu
http://www.cs.stonybrook.edu/~qin
Scan Conversion

- The earlier task allows us to draw line segments, polylines, curves, is it sufficient for 2D graphics?
- What are still missing for the rasterization task?
- Wireframe geometry and display is NOT enough
- We must have drawing routines to support the solid-shaded appearance (not only boundaries, but also all interior points of polygons)
- Scan conversion is achieving such goal
Scan Conversion
Simple Algorithms

• We start from a simple triangle \(T: a = (x_1, y_1), b = (x_2, y_2), \) and \(c = (x_3, y_3) \)

• The task is to find all pixels inside \(T \)

• Naïve algorithm (the worst algorithm)
 – For each pixel \(p \) do
 – If \(p \) is inside \(T \), then draw-point\((p)\) end if
 – End for

• For a single triangle, we MUST traverse all pixels, the worst performance
Slight Improvement

- We start from a simple triangle T: $v_1=(x_1,y_1)$, $v_2=(x_2,y_2)$, and $v_3=(x_3,y_3)$

- We compute its bounding box B (later we will investigate the hierarchical modeling for the bounding volume hierarchy) first
 - For each pixel p that is inside B do
 - If p is inside T, then draw-point(p) end if
 - End for

- Essentially, the scan conversion MUST solve this problem, given a T and a pixel (or point in general), can we determine: p is a part of T
Ray Casting (Ray Firing)

- We start from a simple triangle T: $v_1=(x_1,y_1)$, $v_2=(x_2,y_2)$, and $v_3=(x_3,y_3)$ and a point
 - (1) draw a ray from p outward along any direction
 - (2) count the number of intersections of this ray with triangular boundaries for T
 - (3) If ODD, then p is inside T, otherwise, p is not a part of T
- Is this method correct?
Polygon Scan Conversion
Scan Conversion

- What happens if the ray pass through a vertex of a simple triangle T: \((x_1, y_1), (x_2, y_2), \text{ and } (x_3, y_3)\)
- How do you actually count the number of intersections with a triangular boundary?
- How do you actually compute the intersection?
Computing Intersections

• Mathematically speaking: \(f(x,y) = 0; \ g(x,y) = 0 \), simple solve them for possible solutions

• In reality (computer graphics), we don’t really do the above way!

• Why?

• How do we handle this in computer graphics?
Computing Intersections

- First, consider a boundary of a polygon, we do NOT use its explicit representation at all. Instead, we use \(f(x,y) = ax + by + c = 0 \);

- Second, consider a ray geometry, once again, we do NOT use its explicit representation at all. Instead we are using its parametric representation: \(\text{ray}(p, v) = p + v \cdot t \), where \(t \) is a spatial parameter. \(\text{ray}(p, v) \) works for \((x, y)\) simultaneously!
Computing Intersections

- **Parametric equation**
 \[x(t) = x_0 + t(x_1 - x_0) \]
 \[y(t) = y_0 + t(y_1 - y_0) \]

- **Vector expression**
 \[p(t) = p_0 + t(p_1 - p_0) \]
 \[p(t) = (1 - t)p_0 + tp_1 \]

- The parameter is between 0 and 1 to describe a line segment, the ray can be expressed in the same way.
Computing Intersections

- Combine the two equations together (one is the implicit equation, another one is the parametric equation), \(f(\text{ray}(p,v)) = 0 \), where \(t \) is the ONLY parameter (to be solved).
- What is the geometric meaning of \(t \)?
- We are going to have more mathematically rigorous process on the parametric representation and its power and potential later in this course!
Scan Conversion

• We start from a simple triangle T: $v_1=(x_1,y_1)$, $v_2=(x_2,y_2)$, and $v_3=(x_3,y_3)$ and a point

• Consider the edge (v_1v_2) and formulate the implicit expression for this line

$$l_{1,2}(x, y) = a_{1,2}x + b_{1,2}y + c_{1,2}$$

• Pick a sign so that the evaluation of v_3 is negative!

• This defines a half-plane

$$h_{1,2} = \{(x, y) : l_{1,2}(x, y) \leq 0\}$$
Scan Conversion

- We start from a simple triangle T: $v_1=(x_1,y_1)$, $v_2=(x_2,y_2)$, and $v_3=(x_3,y_3)$ and a point.
- Repeat the similar process for two other edges (v_1v_2) and (v_2v_3).

$$T = h_{1,2} \cap h_{1,3} \cap h_{2,3}$$

- It is equivalent to say, a pixel (point) is a part of a triangle if this point belongs to three half-planes simultaneously.

- What about Concave polygon?

$$l_{1,2}(p_x, p_y) \leq 0$$
$$l_{1,3}(p_x, p_y) \leq 0$$
$$l_{2,3}(p_x, p_y) \leq 0$$
Convex

Not Convex
Convex

• A polygon is convex if...
 – A line segment connecting any two points on the polygon is contained in the polygon.
 – If you can wrap a rubber band around the polygon and touch all of the sides, the polygon is convex.
Concave Polygon

- We now consider a concave polygon T: $(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, (x_n, y_n)$
Scan-Converting a Polygon

• General approach: any ideas?

• One idea: *flood fill*

 – Draw polygon edges

 – Pick a point \((x, y)\) inside and *flood fill* with DFS

```c
flood_fill(x, y) {
    if (read_pixel(x, y)==white) {
        write_pixel(x, y, black);
        flood_fill(x-1, y);
        flood_fill(x+1, y);
        flood_fill(x, y-1);
        flood_fill(x, y+1);
    }
}
```
Polygon Classification

- Simple convex
- Simple concave
- Non-simple (with self-intersection)
- Once again, a bounding box can help, and the idea of using ray-casting is also GOOD!
- However, these approaches would NOT take advantage of (spatial) coherence
- Adjacent pixels in the image space are likely sharing the similar graphics properties such as color and appearance
Sweeping Lines

• **Our observation – spatial coherence**

 If $p \in T$, then neighboring pixels are probably in the triangle, too
 (Coherence)

• **Idea**

 1. sweep from top to bottom
 2. maintain intersections of T and sweep-line “span”
 3. paint pixels in the span
Sweep-line Algorithm

- **Algorithm**

 Initialize x_l and x_r
 For each scan line covered by T do
 Paint pixels $(x_l, y), \ldots, (x_r, y)$ on the current span
 Incrementally update x_l and x_r
 End for

- **Question:** how do we update x_l and x_r?

- **Answer:** please recall our line-drawing algorithm!
Polygon Classification
Scan Conversion

More efficient algorithm
For each scanline
Identify all intersections $x_0, x_1, \ldots, x_{k-1}$
Sort intersections from left to right
Fill pixels between consecutive pairs of intersection

$$(x_{2i}, y), (x_{2i+1}, y)$$

We must deal with “special cases”!

- horizontal lines
- intersecting a vertex (double intersection)
- unwanted intersection
Scan Conversion

• We must speed up the edge intersection detection
• Data structure for efficient implementation
 – A sorted edge table
 – The active edge list
 – From bottom to the top
• Practical polygon scan conversion – based on polygon triangulation
• Extremely easy to handle for convex polygons
• Triangles are often particularly nice to work with because they are always planar and simple
Special Cases
Scan-Line Approach

- More efficient way: use a scan-line rasterization algorithm
- For each y value, compute x intersections. Fill according to winding rule
- How to compute intersection points?
- How to handle shading?
- Some hardware can handle multiple scanlines in parallel
Singularities (Special Cases)

- If a vertex lies on a scanline, does that count as 0, 1, or 2 crossings?
- How to handle singularities?
- One approach: don’t allow. **Perturb** vertex coordinates.
- OpenGL’s approach: place pixel centers half way between integers (e.g. 3.5, 7.5), so scanlines never hit vertices.
Winding Test

- **Most common way to tell if a point is in a polygon: the winding test**
 - Define “winding number” \(w \) for a point: signed number of revolutions around the point when traversing boundary of polygon once
 - When is a point “inside” the polygon?
Rasterizing Polygons (Scan Conversion)

- Polygons may be or may not be simple, convex, or even flat. How to render them?
- The most critical thing is to perform inside-outside testing: how to tell if a point is in a polygon?
Winding Rules

- Odd
- Nonzero
- Positive
- Negative
- Unfilled
- ABS_GEQ_TWO
- Unfilled
OpenGL and Concave polygons

- OpenGL guarantees correct rendering only for simple, convex, planar polygons.
- OpenGL tessellates concave polygons.
- Tessellation depends on winding rule you tell OpenGL to use: Odd, Nonzero, Pos, Neg, ABS_GEQ_TWO.
Scan Conversion

- At this point in the pipeline, we have only polygons and line segments. Render!
- To render, convert to pixels ("fragments") with integer screen coordinates \((ix, iy)\), depth, and color
- Send fragments into fragment-processing pipeline