
STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Fundamentals of Computer
Graphics: Concepts, Theory,
Algorithms, and Applications

Hong Qin

Department of Computer Science

Stony Brook University (SUNY at Stony Brook)

Stony Brook, New York 11794-4400

Tel: (631)632-8450; Fax: (631)632-8334

qin@cs.sunysb.edu

http://www.cs.sunysb.edu/~qin

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Hidden Surface Removal

???

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

No Lines Removed

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Hidden Lines Removed

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Hidden Surfaces Removed

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Hidden Surface Removal
(a.k.a. Visibility)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Motivation
 Suppose that we have the polyhedron which has 3 totally visible

surfaces, 4 totally invisible/hidden surfaces, and 1 partially
visible/hidden surface.

 Obviously, invisible/hidden surfaces do not contribute to the final
image during graphics production.

 The procedure that distinguishes between visible surfaces from
invisible/hidden surfaces is called visible-surface determination,
which is often called hidden-surface removal.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Motivation

• Surfaces may be back-facing:

• Surfaces may be occluding:

Viewer

Back-Facing

Polygon

Viewer
Occluding

Polygon

Occluded

Polygon

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Motivation

• Surfaces may be overlapping:

• Surfaces may be intersecting:

Viewer

Viewer

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Occlusion: Full, Partial, None

Full Partial None

• The rectangle is closer than the triangle

• Should appear in front of the triangle

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Hidden Surface Removal

• Motivation

• Algorithms for Hidden Surface Removal

– Back-face detection

– Painter’s algorithm

– Ray casting

– Scan-line

– Z-buffer

– Area subdivision

• Tradeoffs when comparing different techniques

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Image or Object Space Algorithms

• Ideally an object space method converts the 3D

scene into a list of 2D areas to be painted

• Image space decides for each pixel which

surface to paint

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Hidden Surface Removal
• In 3D we must be concerned with whether or not

objects are obscured by other objects

• Most objects are opaque so they should obscure/block

things behind them

• Also Known As: visible surface detection methods or

hidden surface elimination methods

• Related problem : Hidden Line Removal

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Visibility
• Basic assumption: All polygons are opaque

• What polygons are visible with respect to your view frustum?

 Outside: View Frustum Clipping

 Remove polygons outside of the view volume

 For example, Liang-Barsky 3D Clipping

 Inside: Hidden Surface Removal

 Backface culling

 Polygons facing away from the viewer

 Occlusion

 Polygons farther away are obscured by closer polygons

 Full or partially occluded portions

• Why should we remove these polygons?

 Avoid unnecessary expensive operations on these polygons later

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Visibility Culling

• Culling techniques

– View-frustum culling

• Reject geometry

outside the viewing

volume

– Back-face culling

• Reject geometry

facing away from

the observer

– Occlusion culling

• Reject objects

occluded by others

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Back Face Culling
 Performance goals in real-time rendering

 frame rate: 60-72 frames/sec?

 resolution: 1600x1200?

 photorealism (if necessary): undistinguishable from real
scene!

 Unfortunately, there is no real upper limit on the scene
complexity.

 We should cull those portions of the scene that are not
considered to contribute to the final image as early as possible,
and process only the rest of the scene.

 The simplest is back-face culling, which distinguishes between
front faces (faces towards the viewer) and back faces (faces
away from the viewer).

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Backface Culling
• Avoid drawing polygons facing away from the viewer

 Front-facing polygons occlude these polygons in a closed

polyhedron

• Test if a polygon is front- or back-facing?

front-facing

back-facing

Ideas?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

x

y

z
n

p

(p - n).n = 0

Which Side of a Plane?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Detecting Back-face Polygons
• The polygon normal of a …

 front-facing polygon points towards the viewer

 back-facing polygon points away from the viewer

If (n  v) > 0  “back-face”

If (n  v) ≤ 0  “front-face”

v = view vector

• Eye-space test … EASY!
 “back-face” if nz < 0

• glCullFace(GL_BACK)

back

front

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Polygon Normals

• Let polygon vertices v0, v1, v2,..., vn - 1 be in

counterclockwise order and co-planar

• Calculate normal with cross product:

n = (v1 - v0) X (vn - 1 - v0)

• Normalize to unit vector with n/║n║

v0
v1

v2

v3

v4

n

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Normal Direction

• Vertices counterclockwise  Front-facing

• Vertices clockwise  Back-facing

0

1

2

0

2

1

Front facing Back facing

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Back Face Culling
 Back-face culling works as a preprocessing step for hidden

surface removal, and is very powerful in that almost half of
polygons of an object are discarded as back faces.

 Especially, for a single convex polyhedron, the back-face culling
does the entire job of hidden-surface removal.

 Hidden-surface removal is applied to only the remaining front
faces.

single convex polyhedron convex, but not a single polyhedron

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Face Normal
 The normal of a triangle <p1, p2, p3> is computed as v1 X v2 where v1 is the

vector connecting p1 and p2, and v2 connects p1 and p3.

 If the vertices of every polygon are ordered consistently (CCW or CW), we
can make every polygon’s normal point out of the polyhedron. All mesh data
used in this class have triangles of CCW vertex ordering.

p

q

r

s

t1 = (p, q, r)

t2 = (s, q, p)

t1’s normal = (q-p)X(r-p)

t2’s normal = (q-s)X(p-s)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Dot Product (revisited)

x

y

c=(1,1)b=(0,1)a=(-1,1)

d=(-1,0)

a·d = (-1,1)·(-1,0) = 1 > 0

b·d = (0,1)·(-1,0) = 0

c·d = (1,1)·(-1,0) = -1 < 0

 Recall the dot product of two vectors vi & vj .

 If vi•vj = 0, vi & vj are orthogonal/perpendicular.

 If vi•vj > 0, angle < 90

 If vi•vj < 0, angle > 90

 The same applies to 3D.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Dot Product for Back Face Culling
 Determining if a polygon is a front face or a back face

 Generate a vector C connecting COP and a vertex of the polygon.

 Take the dot product C•N of the vector C and the polygon’s normal N.

 If C•N > 0, it’s a back face.

 If C•N < 0, it’s a front face.

 If C•N = 0, it’s a face that is projected as an edge/silhouette on the screen.

C2•N2 > 0

C3•N3 < 0

COP

C1

N1

N2

N3

C1•N1 = 0

C2

C3

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Back Face Removal (Culling)

• Used to remove unseen polygons from convex,

closed polyhedron (Cube, Sphere)

• Does not completely solve hidden surface

problem since one polyhedron may obscure

another

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Backface Culling
• For all polygons Pi

– Find Polygon Normal n

– Find Viewer Direction v

– IF

• Then CULL Pi

• Does not work well for:

– Overlapping front faces due to

• Multiple objects

• Concave objects

– Non-polygonal models

– Non-closed Objects

)0( vn

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Painter’s Algorithm
• Basic Idea

 A painter creates a picture by

drawing background scene

elements before foreground

ones

• Requirements

 Draw polygons in back-to-

front order

 Need to sort the polygons by

depth order to get a correct

image
from Shirley

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Painter’s Algorithm
1. Sort all objects’ zmin and zmax

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Painter’s Algorithm
1. Sort all objects’ zmin and zmax

2. If an object is uninterrupted (its zmin and zmax are

adjacent in the sorted list), it is fine

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Painter’s Algorithm
1. Sort all objects’ zmin and zmax

2. If an object is uninterrupted (its zmin and zmax are

adjacent in the sorted list), it is fine

3. If 2 objects DO overlap

3.1 Check if they overlap in x

- If not, they are fine

3.2 Check if they overlap in y

- If not, they are fine

- If yes, need to split one

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Painter’s Algorithm

• The splitting step is the tough one
- Need to find a plane to split one polygon so that each new

polygon is entirely in front of or entirely behind the other

- Polygons may actually intersect, so then need to split each

polygon by the other

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Painter’s Algorithm

• The splitting step is the tough one
- Need to find a plane to split one polygon so that each new

polygon is entirely in front of or entirely behind the other

- Polygons may actually intersect, so then need to split each

polygon by the other

• After splitting, you can resort the list and should

be fine

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Painter’s Algorithm-Summary

• Advantages

– Simple algorithm for ordering polygons

• Disadvantages

– Sorting criteria difficult to produce

– Redraws same pixel many times

– Sorting can also be expensive

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Painter’s Algorithm

• Compute zmin ranges for each polygon

• Project polygons with furthest zmin first

(z) depth

zmin

zmin

zmin

zmin

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Depth Sorting
• The painter’s algorithm:

draw from back to front

• Depth-sort hidden surface removal:

– sort display list by z-coordinate from back to front

– render/display

• Drawbacks

– it takes some time (especially with bubble sort!)

– it doesn’t work

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Depth Sorting

•Requires ordering of polygons first

–O(n log n) calculation for ordering

–Not every polygon is either in front or behind all other

polygons

• Order polygons and deal with

easy cases first, harder later
Polygons sorted by

distance from COP

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Easy Cases

•A lies behind all other polygons

–Can render

•Polygons overlap in z but not in either x or y

–Can render independently

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Depth Sorting Example

• Painter’s Algorithm:

– Sort surfaces in order of decreasing maximum depth

– Scan convert surfaces in order starting with ones of

greatest depth, reordering as necessary based on

overlaps

Viewer

View
Plane

Depth Sort

A

B

C

D E

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Painter’s Example

z = 0.7

z = 0.3

z = 0.1

Sort by depth:
Green rect

Red circle

Blue tri

z = 0

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Hard Cases

Overlap in all directions

but can one be fully on

one side of the other

cyclic overlap

penetration

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Painter’s Algorithm

• Problem: Can you get a total sorting?

zmin

zmin

zmin

zmin

Correct?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Depth-sorting Difficulties
• Polygons with overlapping

projections

• Cyclic overlap

• Interpenetrating polygons

• What to do?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Painter’s Algorithm
• Cyclic Overlap

 How do we sort these three polygons?

• Sorting is nontrivial

 Split polygons in order to get a total ordering

 Not easy to do in general

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Depth Sorting

• Completely in front – put in front

• Not overlapping in x, y – either

• Intersecting – divide along intersection

• overlapping – divide along plane of one polygon.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Depth Sorting

• Cyclically overlapping surfaces that alternately

obscure one another

• We can divide the surfaces to eliminate the

cyclic overlaps

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Painter’s Algorithm

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

x

y

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

The Painters Algorithm
• Sort polygons according to their z values and render

from back to front

• Ends up drawing over the polygons in the back (more or

less)

• Problems arise when polygons overlap or are allowed to

pierce one another

• Heedless Painter’s Algorithm: sort by “farthest” point

and draw in order

• Depth sort improves on this by splitting up overlapping

polygons into less ambiguous pieces

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Visibility

• How do we ensure that closer polygons

overwrite further ones in general?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Image Space Approach

•Look at each projection (nm for an n x m frame

buffer) and find closest of k polygons

•Complexity O(nmk)

•Ray tracing

•z-buffer

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Ray Casting

• Algorithm:

– Cast ray from viewpoint through each pixel to find

front-most surface

Viewer

View
Plane

A

B

C

D E

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

The Z-buffer Algorithm
• The most widely-used hidden surface removal algorithm

• Relatively easy to implement in hardware or software

• An image-space algorithm which traverses scene and operates per

polygon rather than per pixels

• We rasterize polygon by polygon and determine which (parts of)

polygons get drawn on the screen

• Relies on a Secondary Buffer called the z-buffer or depth buffer

• Depth buffer has same width and height as the frame-buffer

• Each cell contains the z-value (distance from viewer) of the

object at that pixel position

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Z-Buffer
• Depth buffer (Z-Buffer)

A secondary image buffer that holds depth values

 Same pixel resolution as the color buffer

Why is it called a Z-Buffer?

After eye space, depth is simply the z-coordinate

• Sorting is done at the pixel level

Rule: Only draw a polygon at a pixel if it is closer
than a polygon that has already been drawn to this
pixel

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Z-Buffer Algorithm

• Visibility testing is done during rasterization

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

The Z-buffer Algorithm
1. Initialize all depth(x,y) to 0

and refresh(x,y) to

background color

2. For each pixel

1. Get current value depth(x,y)

2. Evaluate depth value z

if z > depth(x,y)

then

{

depth(x,y) = z

refresh(x,y) = Is (x,y)

} z

x

y

z2 z1

B

A

Calculate this using shading
algorithm/illumination/fill

color/texture

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Z-buffer: A Secondary Buffer

Color buffer Depth buffer

http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zcolor.avi
http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zbuf.avi

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Z-Buffer
• How do we calculate the depth values on the polygon

interior?

P1

P2

P3

P4

ys za zp zb

Scanline order
)(

)(
)(

)(

)(
)(

)(

)(
)(

ba

pa

abap

s

b

s

a

xx

xx
zzzz

yy

yy
zzzz

yy

yy
zzzz
















21

1

121

41

1

141

Bilinear Interpolation

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

Z-buffer

Screen

Example

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures



 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

  

 



  

 



Parallel with

the image plane

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures







   

   

   

  

 



 



   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

Not Parallel

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Z-Buffer Algorithm

• Algorithm easily handles this case

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Z-buffering in OpenGL
• Create depth buffer by setting GLUT_DEPTH flag in

glutInitDisplayMode()or the

appropriate flag in the

PIXELFORMATDESCRIPTOR

• Enable per-pixel depth testing with

glEnable(GL_DEPTH_TEST)

• Clear depth buffer by setting

GL_DEPTH_BUFFER_BIT in glClear()

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Alternatively we could cull the front

faces to see inside the solid

Without Hidden surface removal the wrong

polygons can be drawn over

With Backface culling

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

No hidden surface removal Backface Culling only: correct in some

places but not adequate for objects which

have holes, are non convex or multiple

objects

Depth Testing Only

Culling can reduce workload for depth testing but we

need to ensure that objects are proper solids. This teapot

is not quite a proper solid and as a result the image is

incorrect. However, combining backface culling with

more expensive depth-testing is usually a good practice.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Line Algorithm
• Similar in some respects to the z-buffer method but

handles the image scan-line by scan-line

• Due to coherency in data, this can be relatively efficient.

i

j

1. Rasterize all polygon boundaries (edges)

2. Scanning across each scan line we determine
the color of each pixel

a. By default color everything as background

b. If we encounter the edge of one polygon,
start evaluating polygon color at each point
and shade the scanline it accordingly

c. For multiple edges do depth evaluation to
see which polygon “wins”

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Line Algorithm
• Work one scan line at a time

• Compute intersections of faces along scanline

• Keep track of all “open segments” and draw the closest

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Line Algorithm

•Can combine shading and hsr through scan line

algorithm

scan line i: no need for depth

information, can only be in no

or one polygon

scan line j: need depth

information only when in

more than one polygon

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion

• At this point in the pipeline, we have only

polygons and line segments. Render!

• To render, convert to pixels (“fragments”) with

integer screen coordinates (ix, iy), depth, and

color

• Send fragments into fragment-processing

pipeline

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Hidden Surface Removal

• Object-space vs. Image space

• The main image-space algorithm: z-buffer

• Drawbacks

– Aliasing

– Rendering invisible objects

• How would object-space hidden surface removal

work?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Visibility Testing

• In many real-time applications, such as games, we

want to eliminate as many objects as possible

within the application

–Reduce burden on pipeline

–Reduce traffic on bus

•Partition space with Binary Spatial Partition

(BSP) Tree

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Simple Example

consider 6 parallel polygons

top view

The plane of A separates B and C from D, E and F

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Painter’s Algorithm with BSP Trees

• Building the tree

– May need to split some polygons

– Slow, but done only once

• Traverse back-to-front or front-to-back

– Order is viewer-direction dependent

– However, the tree is viewer-independent

– What is front and what is back of each line changes

– Determine order on the fly

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Divide Scene with a Plane

• Everything on the same side of that plane as the

eye is in front of everything else.

• Divide front and back with more planes.

• If necessary split polygons by planes.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Details of Painter’s Algorithm
• Each face has form Ax + By + Cz + D = 0

• Plug in coordinates and determine

– Positive: front side

– Zero: on plane

– Negative: back side

• Back-to-front: inorder traversal, farther child first

• Front-to-back: inorder traversal, near child first

• Do backface culling with same sign test

• Clip against visible portion of space (portals)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Binary Space Partition Trees(1979)
• BSP tree: organize all of space (hence

partition) into a binary tree

- Preprocess: overlay a binary tree on objects in the

scene

- Runtime: correctly traversing this tree enumerates

objects from back to front

- Idea: divide space recursively into half-spaces by

choosing splitting planes

• Splitting planes can be arbitrarily oriented

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP trees

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP Tree
• Split space with any line (2D) or plane (3D)

• Applications

– Painters algorithm for hidden surface removal

– Ray casting

– Solid modeling

• Inherent spatial ordering given viewpoint

– Left subtree: in front

– right subtree: behind

• Problem: finding good space partitions

– Proper ordering for the tree

– Balance tree

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP Tree

•Can continue recursively

–Plane of C separates B from A

–Plane of D separates E and F

•Can put this information in a BSP tree

–Use for visibility and occlusion testing

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Building BSP Trees
• Use hidden surface removal as intuition

• Using line 1 or line 2 as root is easy

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Building BSP Trees

• Using line 3 as root requires splitting

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Building a Good Tree
• Naive partitioning of n polygons yields O(n 3)

polygons (in 3D)

• Algorithms with O(n 2) increase exist

– Try all, use polygon with fewest splits

– Do not need to split exactly along polygon planes

• Should balance tree

– More splits allow easier balancing

– Rebalancing?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Binary Space Partitioning Trees

• Basic idea: Objects in the half space opposite of

the viewpoint do not obscure objects in the half

space containing the viewpoint; thus, one can

safely render them without covering foreground

objects

1

2

3

4 5

6

7

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Binary Space Partitioning Trees
• Basic Idea: Objects in the half space opposite of the viewpoint do

not obscure objects in the half space containing the viewpoint;

thus, one can safely render them without covering foreground

objects

1

2

3

4 5

6

7

If we want to draw 5 correctly

- we need draw 6 and 7 first,

- then draw 5,

- then draw 1,2,3,4

+

-

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Binary Space Partitioning Trees
• Basic principle: Objects in the half space opposite of the

viewpoint do not obscure objects in the half space containing the

viewpoint; thus, one can safely render them without covering

foreground objects

1

2

3

4 5

6

7
If we want to draw 5 correctly

- we need draw 6 and 7 first,

- then draw 5,

- then draw 1,2,3,4

+

-

We need to do this for every polygon

Can we do this efficiently?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Binary Space Partition Trees
• BSP tree: organize all of space (hence partition) into a

binary tree

- Preprocess: overlay a binary tree on objects in the

scene

- Runtime: correctly traversing this tree enumerates

objects from back to front

- Idea: divide space recursively into half-spaces by

choosing splitting planes

• Splitting planes can be arbitrarily oriented

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP-Trees

• Binary Space Partition Trees
•Split space along planes

•Allows fast queries of some spatial relations

• Simple construction algorithm
•Select a plane as sub-tree root

•Everything on one side to one child

•Everything on the other side to other child

•Use random polygon for splitting plane

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP-Trees

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP-Trees

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP-Trees

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP-Trees

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP-Trees

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP-Trees

+ -

+ - + -

+ +

+

+
+

+

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

How Do We Traverse BSP Tree?

• Visibility traversal based on BSP tree

• Variation of in-order-traversal
»Child one

»Sub-tree root

»Child two

• Select “child one” based on location of viewpoint

– Child one on same side of sub-tree root as viewpoint

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP-Trees

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP-Trees

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP Trees: Another Example

1 2 3

4
5

6 7
8

9

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

+

-

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

+

-

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

When to stop the recursion?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Object Splitting

• No bunnies were harmed in my example

• But what if a splitting plane passes through an

object?
- Split the object; give half to each node:

- Worst case: can create up to O(n3) objects!

Ouch

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Polygons: BSP Tree Construction

• Split along the plane containing any polygon

• Classify all polygons into positive or negative

half-space of the plane

– If a polygon intersects plane, split it into two

• Recursion down the negative half-space

• Recursion down the positive half-space

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

865 6

1

3
2

2 4 7 9

-+

-+ -+

+ + -+- -

+ - + -

Traversal order?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP Trees: Objects

1 2 3

4
5

6 7
8

9

865 6

1

3
2

2 4 7 9

-+

-+ -+

+ + -+- -

+ - + -

Traversal order:

8->9->7->6->5->3->4->2->1

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Building a BSP Tree for Polygons
• Choose a splitting polygon

• Sort all other polygons as
– Front

– Behind

– Crossing

– On

• Add “front” polygons to front child, “behind” to back
child

• Split “crossing” polygons with infinite plane

• Add “on” polygons to root

• Recursion

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Building a BSP Tree

1 2

3

4

5

6

7

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Building a BSP Tree

1 2

3

4

5

6

7

2,34,5,6,7

1
b

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Building a BSP Tree

1 2

3

4

5

6

7

2,34,5,6,7

1
b

How to divide 2,3,4,5,6,7?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

3

Building a BSP Tree

1 2

3

4

6

7-2

1

7-2, 6,5-22,4,5-1,7-1

7-1

5-2

5-1

b

bf

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

3

Building a BSP Tree

1 2

3

4

6

7-2

1

7-2, 6,5-22,4,5-1,7-1

7-1

5-2

5-1

b

bf

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

b

Building a BSP Tree

1 2

3

4

6

1

4,5-1

7-2, 6,5-2

2

3
7-1

7-2

7-1

5-2

5-1

b

bf

f

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Building a BSP Tree

1 2

3

4

6

1

4

7-2, 6,5-2

5-1

3

7-1

7-2

7-1

5-2

5-1

2

b

b

b

b

f

f

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Building a BSP Tree

1 2

3

4

6

4

7-2, 6,5-2

5-1

3
7-1

1

7-2

7-1

5-2

5-1

2

b

b

b

b

f

f

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Building a BSP Tree

1 2

3

4

6

4

7-2, 6,5-2

2

5-1

3
7-1

1

7-2

7-1

5-2

5-1

b

b

b

b

f

f

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

4

7-2

Building a BSP Tree

1 2

3

4

6

2

5-1

3
7-1

6,5-2

1

7-2

7-1

5-2

5-1

b

b

bb

b

f

f

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

6

Building a BSP Tree

1 2

3

4

6

2

7-2

5-1

3
7-1

4

5-2

1

7-2

7-1

5-2

5-1

b

b

bb

b f

f

f

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

5-2

2

7-2

1

Building a BSP Tree

1 2

3

4

6

5-1

3
7-1

4 6

1

7-2

7-1

5-2

5-1

b

b

bb

b f

f

f

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

5-2

2

7-2

1

Building a BSP Tree

1 2

3

4

6

5-1

3
7-1

4 6

1

7-2

7-1

5-2

5-1

b

b

bb

b f

f

f

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Rendering with a BSP Tree
• If eye is in front of plane

– Draw “back” polygons

– Draw “on” polygons

– Draw “front” polygons

• If eye is behind plane
– Draw “front” polygons

– Draw “on” polygons

– Draw “back” polygons

• Else eye is on plane
– Draw “front” polygons

– Draw “back” polygons

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

5-2

2

7-2

1

Building a BSP Tree

1 2

3

4

6

5-1

3
7-1

4 6

1

7-2

7-1

5-2

5-1

Traversal order:

b

b

bb

b f

f

f

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

5-2

2

7-2

1

Building a BSP Tree

1 2

3

4

6

5-1

3
7-1

4 6

1

7-2

7-1

5-2

5-1

Traversal order:

6->(5-2)->(7-2)->3->(5-1)->4->(7-1)->2->1

b

b

bb

b f

f

f

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

5-2

2

7-2

1

Building a BSP Tree

1 2

3

4

6

5-1

3
7-1

4 6

1

7-2

7-1

5-2

5-1

Traversal order:

b

b

bb

b f

f

f

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

5-2

2

7-2

1

Building a BSP Tree

1 2

3

4

6

5-1

3
7-1

4 6

1

7-2

7-1

5-2

5-1

Traversal order:

1->2->(7-1)->4->(5-1)->3->(7-2)->(5-2)->6

b

b

b

b

b f

f

f

b

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

5-2

2

7-2

1

Building a BSP Tree

1 2

3

4

6

5-1

3
7-1

4 6

1

7-2

7-1

5-2

5-1

Traversal order?

b

b

b f

f

f

b

b

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Summary: BSP Trees

• Pros:

– Simple, elegant scheme

– No depth comparisons needed

– Polygons split and ordered automatically

– Only writes to framebuffer (i.e., painters algorithm)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Summary: BSP Trees

• Cons:

– Computationally intense preprocess stage restricts

algorithm to static scenes

– Splitting increases polygon count

– Redraws the same pixel many times

– Choosing splitting plane not an exact science

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Improved BSP Rendering

• Take advantage of view direction to cull away

polygons behind viewer

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Improved BSP Rendering

• Take advantage of view direction to cull away

polygons behind viewer

View frustum

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Efficiency

• BSP trees are order n log(n) in the number of

polygons.

• Good for VR ‘walkthrough’ because you only

re-compute when the eye crosses a separating

plane.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Z-Buffer

• Record r, g, b and z (depth) for each pixel.

• Process each polygon line by line and if closer

replace r,g,b,z in the buffer.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Line in Screen Space

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Area Subdivision

• Fill area if:
• All surfaces are outside

• Only one surface intersects

• One surface occludes other surfaces within area.

• Otherwise, subdivide

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

The Warnock’s Algorithm

• The Warnock algorithm divides the screen into smaller

areas and sorts triangles within these. If there is

ambiguity (i.e., polygons overlap in depth extent within

these areas), then further subdivision occurs. At the

limit, subdivision may occur down to the pixel level.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Warnock Algorithm

• Takes advantage of area coherence: divide the

display area into successively smaller rectangles

until the entire rectangle can be filled with a

single color

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Finding the Depth

• Plane equation is Ax + By + Cz + D = 0

• z = - (Ax + By + D)/C

• replace x by x+1

• z' = - (A(x+1) + By + D)/C

 Dz = z' - z = -A/C

• New z is found by adding a constant.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

