Type Analysis

Is an operator applied to an “incompatible” operand?
Type checking:

@ Static: Check for type compatibility at compile time
@ Dynamic: Check for type compatibility at run time

Type analysis phase also used to resolve fields in a structure:

Example: 1list.element

Compilers Types CSE 304/504

Type Checking vs. Type Inference

@ A Type Checker only verifies that the given declarations are
consistent with their use.
Examples: type checkers for Pascal, C.

1/25

@ A Type Inference system generates consistent type declarations from

information implicit in the program.
Examples: Type inference in SML, Scheme.
Given y = 3.1415 * x * x, we can infer that y is a float.

Compilers Types CSE 304/504

2/ 25

Why Static Type Checking?

@ Catch errors at compile time instead of run time.

@ Determine which operators to apply.
Example: In x + y, “4" is integer addition if x and y are both
integers.

@ Recognize when to convert from one representation to another (Type
Coercion).
Example: In x + y, if x is a float while y is an integer, convert y to a
float value before adding.

Compilers Types CSE 304/504 3/25

Type Checking: An Example

E — int_const { E.type = int; }
E — float_const { E.type = float; }
E — El + E2 {
if E1.type == E,.type == int
E.type = int;
else

E .type = float;

}

Compilers Types CSE 304/504 4 /25

Type Checking: Another Example

—— int_const
float_const
— id

— E1+E2

mmMmmm
|

Compilers

Types

{ E.type = int; }
{ E.type = float; }
{ E.type = sym_lookup(id.entry, type); }
{
if (E1.type ¢ {int, float}) OR
(Ep.type ¢ {int, float})

E .type = error;
else if Eq.type == E,.type == int

E .type = int;
else

}

E .type = float;

Types CSE 304/504

@ Base types: atomic types with no internal structure.

Examples: int, char.

5/ 25

@ Structured types: Types that combine (collect together) elements of

other types.

e Arrays:

Characterized by dimensions, index range in each dimension, and

type of elements.

e Records: (structs and unions)
Characterized by fields in the record and their types.

Compilers

Types CSE 304/504

6/ 25

Type Expressions

Language to define types.

Type —

Compilers

int | float | char ...
void

error

name

array(Type)

record((name, Type)*)
pointer(Type)

supLe((Type)")
arrow(Type, Type)

Types

Examples of Type Expressions

@ float xform[3] [3];
xform € array(array(float))

@ char *string;
string € pointer(char)

CSE 304/504

@ struct list { int element; struct list *next; } 1;

list = record((element, int), (next, pointer(list)))

1 € list

@ int max(int, int);

max € arrow(tuple(int, int), int)

Compilers

Types

CSE 304/504

7/25

8/ 25

Type Checking with Type Expressions

E — E;[Ey] {if Ei.type == array(T) AND
E,.type == int

Etype=T
else
E.type = error }
E — xE { if E1.type == pointer(T)
E.type =T
else
E.type = error }
E — &E { E.type = pointer(E;.type) }
Compilers Types CSE 304/504

Functions and Operators

Functions and Operators have Arrow types.

@ max: Int X int — int

@ sort: numlist — numlist

Functions and operators are applied to operands.

@ max(x,y):

max : int X int — int
X int
y int
X,Y) int X int
max(x,y) int

Compilers Types CSE 304/504

9/25

10 /25

Function Application

E — E;E { if E1.type = arrou(S, T) AND
E,.type = S
E.type =T
else

E.type = error }

E — (Ey, E;) { E.type = tuple(E;.type, E;.type) }

Compilers Types CSE 304/504 11 / 25

Type Equivalence

When are two types “equal”?

type Vector = array [1..10] of real;
type Weights = array [1..10] of real;

var x, y: Vector;
z: Weight;

e Name Equivalence: When they have the same name.
x and y have same type, but z has different type.

@ Structural Equivalence: When they have the same structure.
x, y and z have same type.

Compilers Types CSE 304/504 12 /25

Structural Equivalence

S =T iff:

@ S and T are the same basic type;

@ S =array(5;), T = array(Ty), and 51 = T;.

@ S = pointer(S;), T = pointer(Ty), and 51 = T;.
S = tuple(S51,S52) , T = tuple(Ty, T2), and S; = T7 and S = To.
S = arrow($51,S52) , T = arrow(Ty, T2), and S1 = T7 and S = To.

Compilers Types CSE 304/504 13 / 25

Subtyping

Object-oriented languages permit subtyping.

class Rectangle {
private int X,y;
int area() { ... }
+

class Square extends Rectangle {

¥

Square is a subclass of Rectangle.
Since all methods on Rectangle are inherited by Square (unless explicitly
overridden)

Square is a subtype of Rectangle.

Compilers Types CSE 304/504 14 / 25

Inheritance

class Circle {
float x, y; // center
float r; // radius
float area() {
return 3.1415 *x r * r;
}
}

class ColoredCircle extends Circle {
Color c;

}

class Test{
static main() {
ColoredCircle t;
. t.area()

Compilers Types CSE 304/504 15 / 25

Resolving Names

What entity is represented by t.area()?
(assume no overloading)

@ Determine the type of t.
t has to be of type user(c).

@ If ¢ has a method of name area, we are done.
Otherwise, if the superclass of ¢ has a method of name area, we are
done.
Otherwise, if the superclass of superclass of c...

— Determine the nearest superclass of class ¢ that has a
method with name area.

Compilers Types CSE 304/504 16 / 25

Overloading

class Rectangle {
int x,y; // top lh corner
int 1, w; // length and width

Rectangle move() {

X =X + 5; y=y +5;
return this;

+

Rectangle move(int dx, int dy) {
X = x + dx; y =y + dy;
return this;

+

t

Compilers Types CSE 304/504 17 / 25

Resolving Overloaded Names

What entity is represented by move in r.move(3, 10)7

@ Determine the type of r.
r has to be of type user(c).

@ Determine the nearest superclass of class ¢ that has a method with
name move

such that move is a method that takes two int
parameters.

Compilers Types CSE 304/504 18 / 25

Structural Subtyping

S CTiff:

S and T are the same basic type.

S = user(type;), T = user(type,) and type; C type,.

S = array(S5;1), T = array(7Ti1), and 51 C Ty;

S = pointer(S;) , T = pointer(T;y), and 51 C Ty;

S = tuple(51,S5,) , T = tuple(Ty, T2), and S C Ty and S, C Ty;
@ S =arrow(5;,5), T =arrow(Ty, T2),and S; C T and Tr = S,.

Compilers Types CSE 304/504 19 / 25

Inheritance and Overloading

What entity is represented by f in E.f(a1, a», ..., an)?

@ Let the type of E be user(c).

@ f is the method in the nearest superclass of class ¢ such that type of
f is a supertype of type(a) x --- type(a1) — L.

Compilers Types CSE 304/504 20 / 25

Inheritance: Another Example

graphical object

translate
scale

/—\

polyline closed graphical
length area
polygon ellipse
area
rectangle triangle
area

Compilers Types CSE 304/504 21 /25

Abstract objects and Concrete Representations

Abstract classes declare methods, but do not define them.
Example:

@ closed_graphical declares “area” method, but cannot define the
method.

@ The different “area” methods are defined when the object’s
representations are concrete: in rectangle, ellipse, etc.

When “area” method is applied to an object of class closed_graphical,
we method to be called is the one defined in rectangle, triangle,
ellipse, etc.

. which can be resolved only at run-time!

Compilers Types CSE 304/504 22 /25

Types in OO Languages: The Whole Story

Decaf implements a small part of the type system for an OO language.

@ Subtype rule: Wherever an object of type t is required (as a
parameter of a method, return value, or rhs of assignments), object of
any subtype s of t can be used.

Compilers Types CSE 304/504 23 /25

Types in OO Languages: The Whole Story (contd.)

@ Method Selection rule: If class B inherits from class tt A and
overwrites method m, then for any B object b, method m of B must be
used, even if b us used as an A object.

class A { class B extends A {
int m() { ... } int m() { ... }
+ +
class C{
int £(B b) {
A a;
a = b;
. a.m()
+

Compilers Types CSE 304/504 24 /25

Types in OO Languages: The Whole Story (contd.)

@ Dynamic Binding rule: A method of object obj, which can be
potentially overwritten in a subclass has to be bound dynamically if
the compiler cannot determine the runtime type of obj.

Compilers Types CSE 304/504 25 /25

