Structure of a Language

Grammars: Notation to succinctly represent the structure of a language. Example:

Stmt	\longrightarrow	if Expr then Stmt else Stmt
Stmt	\longrightarrow	while Expr do Stmt
Stmt	\longrightarrow	do Stmt until Expr
\vdots		
Expr	\longrightarrow	Expr + Expr
\vdots		

Grammars

Stmt \longrightarrow if Expr then Stmt else Stmt

- Terminal symbols: if, then, else
- Terminal symbols represent group of characters in input language: Tokens.
- Analogous to words.
- Nonterminal symbols: Stmt, Expr
- Nonterminal symbols represent a sequence of terminal symbols.
- Analogous to sentences.

Phases of Syntax Analysis

(1) Identify the words: Lexical Analysis.

Converts a stream of characters (input program) into a stream of tokens.
Also called Scanning or Tokenizing.
(2) Identify the sentences: Parsing.

Derive the structure of sentences: construct parse trees from a stream of tokens.

Convert a stream of characters into a stream of tokens.

- Simplicity: Conventions about "words" are often different from conventions about "sentences".
- Efficiency: Word identification problem has a much more efficient solution than sentence identification problem.
- Portability: Character set, special characters, device features.

Terminology

- Token: Name given to a family of words. e.g., integer_constant
- Lexeme: Actual sequence of characters representing a word. e.g., 32894
- Pattern: Notation used to identify the set of lexemes represented by a token.
e.g., $[0-9]+$

Terminology

A few more examples:

Token	Sample Lexemes	Pattern
while	while	while
integer_constant	$32894,-1093,0$	$[0-9]+$
identifier	buffer_size	$[a-z A-Z]+$

Patterns

How do we compactly represent the set of all lexemes corresponding to a token?
For instance:
The token integer_constant represents the set of all integers: that is, all sequences of digits (0-9), preceded by an optional sign (+ or -).

Obviously, we cannot simply enumerate all lexemes.

Use Regular Expressions.

Regular Expressions

Notation to represent (potentially) infinite sets of strings over alphabet Σ.

- a: stands for the set $\{a\}$ that contains a single string a.
- $a \mid b$: stands for the set $\{a, b\}$ that contains two strings a and b.
- Analogous to Union.
- $a b$: stands for the set $\{\mathrm{ab}\}$ that contains a single string ab .
- Analogous to Product.
- $(a \mid b)(a \mid b)$: stands for the set $\{a \mathrm{a}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}\}$.
- a^{*} : stands for the set $\{\epsilon, \mathrm{a}, \mathrm{aa}$, aaa,$\ldots\}$ that contains all strings of zero or more a's.
- Analogous to closure of the product operation.
ϵ stands for the empty string.

Regular Expressions

Examples of Regular Expressions over $\{\mathrm{a}, \mathrm{b}\}$:

- $(a \mid b)^{*}$: Set of strings with zero or more a's and zero or more b's:
$\{\epsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}$
- ($\left.a^{*} b^{*}\right)$: Set of strings with zero or more a's and zero or more b's such that all a's occur before any b:
$\{\epsilon, a, b, a a, a b, b b, a a a, a a b, a b b, \ldots\}$
- $\left(a^{*} b^{*}\right)^{*}$: Set of strings with zero or more a's and zero or more b's:
$\{\epsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}$

Language of Regular Expressions

Let R be the set of all regular expressions over Σ. Then,

- Empty String: $\epsilon \in R$
- Unit Strings: $\alpha \in \Sigma \Rightarrow \alpha \in R$
- Concatenation: $r_{1}, r_{2} \in R \Rightarrow r_{1} r_{2} \in R$
- Alternative: $r_{1}, r_{2} \in R \Rightarrow\left(r_{1} \mid r_{2}\right) \in R$
- Kleene Closure: $r \in R \Rightarrow r^{*} \in R$

Regular Expressions

Example: $(a \mid b)^{*}$

$$
\begin{aligned}
L_{0} & =\{\epsilon\} \\
L_{1} & =L_{0} \cdot\{\mathrm{a}, \mathrm{~b}\} \\
& =\{\epsilon\} \cdot\{\mathrm{a}, \mathrm{~b}\} \\
& =\{\mathrm{a}, \mathrm{~b}\} \\
L_{2} & =L_{1} \cdot\{\mathrm{a}, \mathrm{~b}\} \\
& =\{\mathrm{a}, \mathrm{~b}\} \cdot\{\mathrm{a}, \mathrm{~b}\} \\
& =\{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}\} \\
L_{3} & =L_{2} \cdot\{\mathrm{a}, \mathrm{~b}\} \\
\vdots & \\
L=\bigcup_{i=0}^{\infty} L_{i} & =\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \ldots\}
\end{aligned}
$$

Semantics of Regular Expressions

Semantic Function \mathcal{L} : Maps regular expressions to sets of strings.

$$
\begin{aligned}
\mathcal{L}(\epsilon) & =\{\epsilon\} \\
\mathcal{L}(\alpha) & =\{\alpha\} \quad(\alpha \in \Sigma) \\
\mathcal{L}\left(r_{1} \mid r_{2}\right) & =\mathcal{L}\left(r_{1}\right) \cup \mathcal{L}\left(r_{2}\right) \\
\mathcal{L}\left(r_{1} r_{2}\right) & =\mathcal{L}\left(r_{1}\right) \cdot \mathcal{L}\left(r_{2}\right) \\
\mathcal{L}\left(r^{*}\right) & =\{\epsilon\} \cup\left(\mathcal{L}(r) \cdot \mathcal{L}\left(r^{*}\right)\right)
\end{aligned}
$$

Computing the Semantics

$$
\begin{aligned}
\mathcal{L}(a) & =\{a\} \\
\mathcal{L}(a \mid b) & =\mathcal{L}(a) \cup \mathcal{L}(b) \\
& =\{a\} \cup\{b\} \\
& =\{a, b\} \\
\mathcal{L}(a b) & =\mathcal{L}(a) \cdot \mathcal{L}(b) \\
& =\{a\} \cdot\{b\} \\
& =\{a b\} \\
\mathcal{L}((a \mid b)(a \mid b)) & =\mathcal{L}(a \mid b) \cdot \mathcal{L}(a \mid b) \\
& =\{a, b\} \cdot\{a, b\} \\
& =\{a a, a b, b a, b b\}
\end{aligned}
$$

Computing the Semantics of Closure

Example: $\mathcal{L}\left((a \mid b)^{*}\right)$

$$
\begin{aligned}
&=\{\epsilon\} \cup\left(\mathcal{L}\left(a^{\prime} \mid b\right) \cdot \mathcal{L}\left((a \mid b)^{*}\right)\right) \\
& L_{0}=\{\epsilon\} \quad \text { Base case } \\
& L_{1}=\{\epsilon\} \cup\left(\{\mathrm{a}, \mathrm{~b}\} \cdot L_{0}\right) \\
&=\{\epsilon\} \cup(\{\mathrm{a}, \mathrm{~b}\} \cdot\{\epsilon\}) \\
&=\{\epsilon, \mathrm{a}, \mathrm{~b}\} \\
& L_{2}=\{\epsilon\} \cup\left(\{\mathrm{a}, \mathrm{~b}\} \cdot L_{1}\right) \\
&=\{\epsilon\} \cup(\{\mathrm{a}, \mathrm{~b}\} \cdot\{\epsilon, \mathrm{a}, \mathrm{~b}\}) \\
&=\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}\}
\end{aligned}
$$

$$
\mathcal{L}\left((\mathrm{a} \mid b)^{*}\right)=L_{\infty}=\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \ldots\}
$$

Another Example $\mathcal{L}\left(\left(a^{*} \mathbf{b}^{*}\right)^{*}\right):$

$$
\begin{aligned}
\mathcal{L}\left(a^{*}\right)= & \{\epsilon, \mathrm{a}, \mathrm{aa}, \ldots\} \\
\mathcal{L}\left(b^{*}\right)= & \{\epsilon, \mathrm{b}, \mathrm{bb}, \ldots\} \\
\mathcal{L}\left(a^{*} b^{*}\right)= & \{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{bb}, \\
\mathcal{L}\left(\left(\mathrm{a}^{*} b^{*}\right)^{*}\right)= & \text { aaa, aab, abb, bbb}, \ldots\} \\
& \{\epsilon\} \\
& \cup\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{bb}, \\
& \quad \text { aaa, aab, abb, bbb }, \ldots\} \\
& \cup\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \\
& \quad \text { aaa, aab, aba }, \mathrm{abb}, \mathrm{baa}, \mathrm{bab}, \mathrm{bba}, \mathrm{bbb}, \ldots\} \\
& \vdots \\
= & \{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \ldots\}
\end{aligned}
$$

Regular Definitions

Assign "names" to regular expressions.
For example,

$$
\begin{aligned}
& \text { digit } \longrightarrow \\
& \text { natural } \longrightarrow \quad 1|\cdots| 9 \\
& \text { digit digit* }
\end{aligned}
$$

Shorthands:

- a^{+}: Set of strings with one or more occurrences of a.
- $a^{\text {? }}$: Set of strings with zero or one occurrences of a.

Example:

$$
\text { integer } \longrightarrow \quad(+\mid-)^{?} d^{2 g i t}{ }^{+}
$$

Regular Definitions: Examples

float \longrightarrow integer. fraction
integer $\longrightarrow(+\mid-)^{?}$ no_leading_zero
no_leading_zero \longrightarrow (nonzero_digit digit*)|0 fraction \longrightarrow no_trailing_zero exponent?
no_trailing_zero \longrightarrow (digit* nonzero_digit)|0
exponent $\longrightarrow(\mathrm{E} \mid \mathrm{e})$ integer
digit $\longrightarrow 0|1| \cdots \mid 9$
nonzero_digit $\longrightarrow 1|2| \cdots \mid 9$

Regular Definitions and Lexical Analysis

Regular Expressions and Definitions specify sets of strings over an input alphabet.

- They can hence be used to specify the set of lexemes associated with a token.
- That is, regular expressions and definitions can be used as the pattern language

How do we decide whether an input string belongs to the set of strings specified by a regular expression?

Using Regular Definitions for Lexical Analysis

Q: Is ababbaabbb in $\mathcal{L}\left(\left(\left(a^{*} b^{*}\right)^{*}\right)\right.$?
A: Hm. Well. Let's see.

$$
\begin{aligned}
& \mathcal{L}\left(\left(a^{*} b^{*}\right)^{*}\right)=\{\epsilon\} \\
& \cup\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{bb}, \\
&\quad \mathrm{aaa}, \mathrm{aab}, \mathrm{abb}, \mathrm{bbb}, \ldots\} \\
& \cup\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \\
&\quad \text { aaa, aab, aba, abb, baa, bab, bba, bbb }, \ldots\} \\
& \vdots \\
&= ? ? ?
\end{aligned}
$$

Recognizers

Construct automata that recognize strings belonging to a language.

- Finite State Automata \Rightarrow Regular Languages
- Finite State \rightarrow cannot maintain arbitrary counts.
- Push Down Automata \Rightarrow Context-free Languages
- Stack is used to maintain counter, but only one counter can go arbitrarily high.

Recognizing Finite Sets of Strings

- Identifying words from a small, finite, fixed vocabulary is straightforward.
- For instance, consider a stack machine with push, pop, and add operations with two constants: 0 and 1.
- We can use the automaton:

Finite State Automata

Represented by a labeled directed graph.

- A finite set of states (vertices).
- Transitions between states (edges).
- Labels on transitions are drawn from $\Sigma \cup\{\epsilon\}$.
- One distinguished start state.
- One or more distinguished final states.

Finite State Automata: An Example

Consider the Regular Expression (a|b)*a(a|b). $\mathcal{L}\left((a \mid b)^{*} a(a \mid b)\right)=\{a a, a b, a a a, a a b, b a a, b a b$, aaaa, aaab, abaa, abab, baaa, ...\}.
The following automaton determines whether an input string belongs to $\mathcal{L}\left((a \mid b)^{*} a(a \mid b):\right.$

Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x
... if beginning from the start state
... we can trace some path through the automaton
... such that the sequence of edge labels spells x
... and end in a final state.

Recognition with an NFA

Is abab $\in \mathcal{L}((\mathbf{a} \mid \mathrm{b}) * \mathbf{a}(\mathbf{a} \mid \mathrm{b}))$?

Regular Expressions to NFA

Thompson's Construction: For every regular expression r, derive an NFA $N(r)$ with unique start and final states.

Regular Expressions to NFA (contd.)

Compilers
Lexical Analysis

Finite State Automata Recognizers

Example

(a $\mid \mathbf{b})^{*} \mathbf{a}(\mathbf{a} \mid \mathbf{b}):$

Recognition with an NFA

Is $\underline{\text { abab }} \in \mathcal{L}\left((\mathbf{a} \mid \mathbf{b})^{*} \mathbf{a}(\mathbf{a} \mid \mathrm{b})\right)$?

Input:		a	b	a	b	Accept?
Path 1:	1	1	1	1	1	
Path 2:	1	1	1	2	3	Accept
Path 3:	1	2	3	\perp	\perp	
All Paths	$\{1\}$	$\{1,2\}$	$\{1,3\}$	$\{1,2\}$	$\{1,3\}$	Accept

Recognition with an NFA (contd.)

Is aaab $\in \mathcal{L}((\mathbf{a} \mid \mathbf{b}) * \mathbf{a}(\mathbf{a} \mid \mathbf{b}))$?

Input:		a	a	a	b	Accept?
Path 1:	1	1	1	1	1	
Path 2:	1	1	1	1	2	
Path 3:	1	1	1	2	3	Accept
Path 4:	1	1	2	3	\perp	
Path 5:	1	2	3	\perp	\perp	
All Paths	$\{1\}$	$\{1,2\}$	$\{1,2,3\}$	$\{1,2,3\}$	$\{1,2,3\}$	Accept

Recognition with an NFA (contd.)

Is $\underline{\text { aabb }} \in \mathcal{L}((\mathbf{a} \mid \mathbf{b}) * \mathbf{a}(\mathbf{a} \mid \mathrm{b}))$?

Input:		a	a	a	b	Accept?
Path 1:	1	1	1	1	1	
Path 2:	1	1	2	3	\perp	
Path 3:	1	2	3	\perp	\perp	
All Paths	$\{1\}$	$\{1,2\}$	$\{1,2,3\}$	$\{1,3\}$	$\{1\}$	REJECT

Finite State Automata DFA \& NFA

Determinism

(a|b)*a(a|b):

Nondeterministic:
(NFA)

Recognition with a DFA

Is $\underline{\text { abab }} \in \mathcal{L}\left((\mathbf{a} \mid \mathrm{b})^{*} \mathbf{a}(\mathbf{a} \mid \mathrm{b})\right)$?

NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

- NFA may have transitions labeled by ϵ.
(Spontaneous transitions)
- All transition labels in a DFA belong to Σ.
- For some string x, there may be many accepting paths in an NFA.
- For all strings x, there is one unique accepting path in a DFA.
- Usually, an input string can be recognized faster with a DFA.
- NFAs are typically smaller than the corresponding DFAs.

NFA vs. DFA (contd.)
$R=$ Size of Regular Expression
$N=$ Length of Input String

	NFA	DFA
Size of Automaton	$O(R)$	$O\left(2^{R}\right)$
Recognition time per input string	$O(N \times R)$	$O(N)$

Converting NFA to DFA

Subset construction
Given a set S of NFA states,

- compute $S_{\epsilon}=\epsilon$-closure $(S): S_{\epsilon}$ is the set of all NFA states reachable by zero or more ϵ-transitions from S.
- compute $S_{\alpha}=\operatorname{goto}(S, \alpha)$:
- S^{\prime} is the set of all NFA states reachable from S by taking a transition labeled α.
- $S_{\alpha}=\epsilon$-closure $\left(S^{\prime}\right)$.

Converting NFA to DFA (contd).

- Each state in DFA corresponds to a set of states in NFA.
- Start state of DFA $=\epsilon$-closure(start state of NFA).
- From a state s in DFA that corresponds to a set of states S in NFA:
- let $S^{\prime}=\operatorname{goto}(S, \alpha)$ such that S^{\prime} is non-empty.
- add an α-transition to state s^{\prime} that corresponds S^{\prime} in NFA,
- S contains a final NFA state, and s is the corresponding DFA state $\Rightarrow s$ is a final state of DFA

$$
\begin{array}{lllll}
\epsilon \text {-closure }(\{1\}) & =\{1\} & & \\
\operatorname{goto}(\{1\}, \mathrm{a}) & =\{1,2\} & \operatorname{goto}(\{1,2,3\}, \mathrm{a}) & =\{1,2,3\} \\
\operatorname{goto}(\{1\}, \mathrm{b}) & =\{1\} & \operatorname{goto}(\{1,2,3\}, \mathrm{b}) & =\{1,3\} \\
\operatorname{goto}(\{1,2\}, \mathrm{a}) & =\{1,2,3\} & \operatorname{goto}(\{1,3\}, \mathrm{a}) & =\{1,2\} \\
\operatorname{goto}(\{1,2\}, \mathrm{b}) & =\{1,3\} & \operatorname{goto}(\{1,3\}, \mathrm{b}) & =\{1\}
\end{array}
$$

NFA \rightarrow DFA: An Example (contd.)

$$
\begin{array}{lllll}
\epsilon-\operatorname{closure}(\{1\}) & =\{1\} & & \\
\operatorname{goto}(\{1\}, \mathrm{a}) & =\{1,2\} & \operatorname{goto}(\{1,2,3\}, \mathrm{a}) & =\{1,2,3\} \\
\operatorname{goto}(\{1\}, \mathrm{b}) & =\{1\} & \operatorname{goto}(\{1,2,3\}, \mathrm{b}) & =\{1,3\} \\
\operatorname{goto}(\{1,2\}, \mathrm{a}) & =\{1,2,3\} & \operatorname{goto}(\{1,3\}, \mathrm{a}) & =\{1,2\} \\
\operatorname{goto}(\{1,2\}, \mathrm{b}) & =\{1,3\} & \operatorname{goto}(\{1,3\}, \mathrm{b}) & =\{1\}
\end{array}
$$

Construction of a Lexical Analyzer

- Regular Expressions and Definitions are used to specify the set of strings (lexemes) corresponding to a token.
- An automaton (DFA/NFA) is built from the above specifications.
- Each final state is associated with an action: emit the corresponding token.

Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence of digits separated by a decimal point).

$[0-9]+$	$\{$ emit(INTEGER_CONSTANT); \}
$[0-9]+" . "[0-9]+$	$\{$ emit(FLOAT_CONSTANT); \}

Compilers
Lexical Analysis
CSE 304/504 $41 / 54$

Generating Lexical Analyzers
Lex

- Tool for building lexical analyzers.
- Input: lexical specifications (. 1 file)
- Output: C function (yylex) that returns a token on each invocation.
- Example:

$$
\begin{array}{ll}
\begin{array}{l}
\% \% \\
{[0-9]+}
\end{array} & \{\text { return(INTEGER_CONSTANT); \}} \\
{[0-9]+" . "[0-9]+} & \{\text { return(FLOAT_CONSTANT) ; \} }
\end{array}
$$

- Tokens are simply integers (\#define's).

Lex Specifications

```
%{
    C header statements for inclusion
%}
    Regular Definitions e.g.:
    digit [0-9]
%%
    Token Specifications
        {digit}+ { return(INTEGER_CONSTANT); }
%%
    Support functions in C
```

Adds "syntactic sugar" to regular expressions:

- Range: [0-7]: Integers from 0 through 7 (inclusive) [a-nx-zA-Q]: Letters a thru n, x thru z and A thru Q .
- Exception: [^/]: Any character other than /.
- Definition: \{digit\}: Use the previously specified regular definition digit.
- Special characters: Connectives of regular expression, convenience features.
e.g.: | * ~

Special Characters in Lex

$l *+? ~(~) ~$ []	Same as in regular expressions Enclose ranges and exceptions
\{ \}	Enclose "names" of regular definitions
	Used to negate a specified range (in Exception)
.	Match any single character except newline
\backslash	Escape the next character
$\backslash \mathrm{n}, \backslash \mathrm{t}$	Newline and Tab

For literal matching, enclose special characters in double quotes (") e.g.: "*"
Or use " \backslash " to escape. e.g.: *

Generating Lexical Analyzers

Examples

for	Sequence of $\mathrm{f}, \mathrm{o}, \mathrm{r}$		
"\\|	"	C-style OR operator (two vert. bars)	
$*$	Sequence of non-newline characters		
$\left[{ }^{\wedge} * /\right]+$	Sequence of characters except $*$ and /		
$\backslash "[\wedge "] * \backslash "$	Sequence of non-quote characters beginning and ending with a quote		
$(\{$ letter $\} \mid "-")(\{$ letter $\} \mid\{$ digit $\} \mid "-") *$			
C-style identifiers			

A Complete Example

```
%{
#include <stdio.h>
#include "tokens.h"
%}
digit [0-9]
hexdigit [0-9a-f]
%%
"+" { return(PLUS); }
"-" { return(MINUS); }
{digit}+ { return(INTEGER_CONSTANT); }
{digit}+"."{digit}+ { return(FLOAT_CONSTANT); }
. { return(SYNTAX_ERROR); }
%%
```


Actions

Actions are attached to final states.

- Distinguish the different final states.
- Used to return tokens.
- Can be used to set attribute values.
- Fragment of C code (blocks enclosed by '\{' and '\}').

Attributes

Additional information about a token's lexeme.

- Stored in variable yylval
- Type of attributes (usually a union) specified by YYSTYPE
- Additional variables:
- yytext: Lexeme (Actual text string)
- yyleng: length of string in yytext
- yylineno: Current line number (number of ' $\backslash n$ ' seen thus far) - enabled by \%option yylineno

Priority of matching

What if an input string matches more than one pattern?

"if"	\{ return(TOKEN_IF); \}
\{letter\}+	\{ return(TOKEN_ID); \}
"while"	\{ return(TOKEN_WHILE); \}

- A pattern that matches the longest string is chosen. Example: if1 is matched with an identifier, not the keyword if.
- Of patterns that match strings of same length, the first (from the top of file) is chosen.
Example: while is matched as an identifier, not the keyword while.

Constructing Scanners using (f)lex

- Scanner specifications: specifications. 1

> (f)lex
specifications.l \longrightarrow lex.yy.c

- Generated scanner in lex.yy.c
(g) cc
lex.yy.c \longrightarrow executable
- yywrap(): hook for signalling end of file.
- Use -lfl (flex) or -ll (lex) flags at link time to include default function yywrap() that always returns 1.

Generating Lexical Analyzers

Implementing a Scanner

```
transition : state }\times\Sigma->\mathrm{ state
    algorithm scanner() {
        current_state = start state;
        while (1) {
            c = getc(); /* on end of file, ... */
            if defined(transition(current_state, c))
                current_state = transition(current_state, c);
            else
                return s;
    }
}
```

Implementing a Scanner (contd.)

Implementing the transition function:

- Simplest: 2-D array.

Space inefficient.

- Traditionally compressed using row/colum equivalence. (default on (f) lex)

Good space-time tradeoff.

- Further table compression using various techniques:
- Example: RDM (Row Displacement Method):

Store rows in overlapping manner using 2 1-D arrays.
Smaller tables, but longer access times.

Lexical Analysis: Summary

Convert a stream of characters into a stream of tokens.

- Make rest of compiler independent of character set
- Strip off comments
- Recognize line numbers
- Ignore white space characters
- Process macros (definitions and uses)
- Interface with symbol table (also called "name table").

