
1

1

CSE 304

Expression Evaluation,
Runtime Environments

2

Expression evaluation
Order of evaluation
For the abstract syntax tree

+

+ 5

+ +

x 3 2 4
the equivalent expression is

(x + 3) + (2 + 4) + 5

3

Expression evaluation (Contd.)
One possible semantics:
• evaluate AST bottom-up, left-to-right.

Problem:
• constrains optimizations based on mathematical

properties, e.g., commutativity and associativity
• Consider (x+0)+(y+3)+(z+4)
• Using associativity and commutativity, the compiler

can simplify this to x+y+z+7 (3 additions at
runtime)

• A strict left-to-right evaluation would require 5
addition operations at runtime.

4

Expression evaluation (Contd.)
Some languages leave order of eval unspecified.
Problem:
• Semantics of expressions with side-effects, e.g., (x++) + x
• If initial value of x is 5, left-to-right evaluation yields 11 as

answer, but right-to-left evaluation yields 10

So, languages that allow expressions with side-
effects are forced to specify order of evaluation
Still, it is bad programming practice to use
expressions where different orders of evaluation
can lead to different results
• Impacts readability (and maintainability) of programs

2

5

Evaluation of Boolean Expressions
Left-to-right evaluation with short-circuit
semantics is appropriate for boolean
expressions.
•In e1&&e2, e2 is evaluated only if e1 evaluates to true.
•In e1||e2, e2 is evaluated only if e1 evaluates to false.

This semantics is convenient in programming:
•Consider statement: if ((i<n) && a[i]!=0)
•With short-circuiting, a[i] never accessed if i>= n
•Another example: if((p!=NULL) && p->value>0)

6

Switch Statement
switch (<expr>) {

case <value> :
case <value> :
...

default :
}

Evaluate <expr> to get value v.
Evaluate the case that corresponds to v.
Restrictions:
• <value> has to be constant, of an ordinal type e.g., int

• Why?

7

Implementation of Switch statement
Naive algorithm:
Sequential comparison of value v with case labels.
This is simple, but inefficient. It involves O(N) comparisons.

switch (e) {
case 0 : s0 ;
case 1 : s1 ;
case 2 : s2 ;
default: s3 ; }

can be translated as
v = e ;
if (v == 0) s0 ;
else if (v == 1) s1 ;
else if (v == 2) s2 ;
else s3 ;

8

Implementation of switch statement
(Contd.)

Binary search:
O(log N) comparisons, a drastic improvement
over sequential search for large N.
Using this, the above case statement can be
translated as

v = e;
if (v <= 1)

if(v == 0) s0;
else if (v == 1) s1;

else if (v == 2) s2 ;
else s3 ;

3

9

Implementation of switch statement (Contd.)

Another technique is to use hash tables.
This maps the value v to the case label that
corresponds to the value v.
This takes constant time (average case).

10

Loops
while:
• Consider the statement: while C do S
• Its semantics is equivalent to: if C then {S; s1}

repeat:
• Consider: repeat S until C
• Its semantics is equivalent to S; if (!C) then S2

for:
• Semantics of “for (S2; C; S3) S” is the

same as that of “S2; while C do {S; S3}”

11

Control Statements (contd.)
Procedure calls:
• Communication between the calling and the called

procedures takes place via parameters.

Semantics:
• substitute formal parameters with actual

parameters
• rename local variables so that they are unique in

the program
• replace procedure call with the body of called

procedure

12

Parameter-passing semantics
Call-by-value
Call-by-reference
Call-by-value-result
Call-by-need
• Differences with macros

4

13

Call-by-value
Evaluate the actual parameters
Assign them to corresponding formal parameters
Execute the body of the procedure.
We need to ensure that the names of local
variables and formal parameters of callee do not
clash with the variable names visible in the caller
• If they do, the variables in the callee should be renamed

to avoid any clash.

14

Call-By-Value (Contd.)
Example:

int z;
void p(int x) { main() {

z = 2*x; int y;
} ==> int x = y;
main() { z = 2*x;

int y; }
p(y);

}

15

Call-By-Value-Result
In addition to the steps in CBV, add:
• assignment statements to copy values of formal parameters to

actuals at the end of callee code

int z; main() {
void p(int x) { int y;

z = 2*x; int x = y;
} ==> z = 2*x;
main() { y = x;

int y; }
p(y);

}
16

Call-By-Reference
Works like CBV, with one important difference:
• l-values (rather than r-values) are passed in.

int z;
void p(int x) { main() {
z = 2*x; int y;

} ==> int& x = y;
main() { z = 2*x;
int y; }
p(y);

}
Call-by-reference supported in C++ but not C
• Effect realized in C by explicitly passing l-values of parameters

using the “&” operator

5

17

Call-by-reference (contd.)
Explicit simulation in C provides a clearer understanding
of the semantics of call-by-reference:

int p(int *x) {
*x = *x + 1;
return *x;

}
...
int z;
y = p(&z);

18

CBVR Vs CBR
Consider
void p(int x, int y) {

x = x+1; y = y+1;
}
...
int a = 3; p (a, a);

With CBVR, a will have the value 4
With CBR, a will have the value 5

19

Call-by-Name
Instead of assigning l-values or r-values, CBN
works by substituting actual parameter expressions
in place of formal parameters in the body of callee

int z;
void p(int x,y) { main() {
z = x+x+y; int z1;

} ==>
main() { z = (y++)+(y++)
int y=0; +(y--);
p(y++, y--); }

}

20

Macros
Macros work like CBN, with one important
difference:
• no renaming of “local” variables

This means that possible name clashes
between actual parameters and variables in
the body of the macro will lead to
unexpected results.

6

21

Macros(Contd.)
given
#define sixtimes(y) {int z=0; z = 2*y; y = 3*z;}
main() {
int x = 5, z = 3;
sixtimes(z);}

After macro substitution, we get the program:
main() {

int x = 5, z = 3;
{

int z=0;
z = 2*z;
z = 3*z;

}
}

22

Macros(Contd.)
It is different from what we would have got with CBN
parameter passing.
In particular, the name confusion between the local
variable z and the actual parameter z would have been
avoided, leading to the following result:
main() {

int x = 5, z = 3;
{

int z1=0; // z replaced by z1
z1 = 2*z;
z = 3*z1;

}
}

23

Difficulties in Using the Parameter
Passing Mechanisms

CBV: Easiest to understand, no difficulties or
unexpected results.
CBVR:
• When the same parameter is passed in twice, the

end result can differ depending on the order.
void p(int x, int y) {

x = x+1; y = y+2;
}
...
int a = 3; p (a, a); // a=4 or a=5?
• Otherwise, relatively easy to understand.

24

Difficulties in Using CBR
Aliasing can create problems.
int arev(int a[], int b[], int size) {

for (int i = 0; i < size; i++)
a[i] = b[size-i-1];

}
The above procedure will normally copy b into a,
while reversing the order of elements in b.
However, if a and b are the same, as in an
invocation arev(c,c,4), the result is quite different.
If c is {1,2,3,4} at the point of call, then its value
on exit from arev will be {4,3,3,4}.

7

25

Difficulties in Using CBN
CBN is probably the most complicated of the
parameter passing mechanisms, and can be
quite confusing in the presence of side-effects:
void f(int x) {

int y = x;
int z = x;}

main() {
int y = 0;
f(y++); }

Note that after a call to f, y's value will be 2 rather
than 1.

26

Difficulties in Using CBN(Contd.)
If the same variable is used in multiple
parameters.
void swap(int x, int y) {

int tp = x;
x = y;
y = x;

}
main() {

int a[] = {1, 1, 0};
int i = 2;
swap(i, a[i]);

}
With CBN, by replacing the call to swap by the
body of swap: i will be 0, and a will be {0, 1, 0}.

27

Difficulties in Using Macro
Macros share all of the problems associated
with CBN.
In addition, macro substitution does not
perform renaming of local variables,
leading to additional problems.

28

Components of
Runtime Environment (RTE)

Static area allocated at load/startup time.
• Examples: global/static variables
• Variables mapped to absolute addresses at compile time

Stack area for execution-time data that obeys a
last-in first-out lifetime rule.
• Examples: local variables, parameters, temporary vars

Heap area for "fully dynamic" data, i.e. data that
doesn’t obey LIFO rule.
• Examples: objects in Java, lists in Scheme.

8

29

Languages and Environments
Languages differ on where activation records
must go in the environment:
• (Old) Fortran is static: all data, including activation

records, are statically allocated.
• Each function has only one activation record—no

recursion!
• Functional languages (Scheme,ML) and some OO

languages (Smalltalk) are heap-oriented:
• almost all data, including AR, allocated dynamically.

• Most languages are in between: data can go
anywhere (depending on its properties)

• ARs go on the stack.
30

Stack Allocation
An Activation Record (AR) is created for
each invocation of a procedure
Structure of AR:

Direction of stack
growth

Return address

Actual parameters

Saved BP (control link)

Temporary variables

Base
Pointer

Return value

Local variables

31

Simple stack-based allocation
Local variables are allocated at a fixed offset on the stack
• Accessed using this constant offset from BP

• Example: to load a local variable at offset 8 into the EBX
register (x86 architecture)

mov 0x8(%ebp), %ebx
Example:
{ int x; int y;
{ int z;
}
{ int w;
}

}

32

Steps involved in a procedure call
Caller
• Save registers
• Evaluate actual parameters, push on the stack

• Push l-values for CBR, r-values in the case of CBV
• Allocate space for return value on stack
• Save return address
• Jump to the beginning of called function

Callee
• Save BP (control link field in AR)
• Move SP to BP
• Allocate storage for locals and temporaries (Decrement SP)
• Local variables accessed as [FP+k], parameters using [FP-l]

9

33

Steps in return
Callee
• Copy return value into its location on AR
• Increment SP to deallocate locals/temporaries
• Restore BP from Control link
• Jump to return address on stack

Caller
• Copy return values
• Pop parameters from stack
• Restore saved registers

34

Example (C):
int x;
void p(int y)
{ int i = x;
char c; ...

}
void q (int a)
{ int x;
p(1);

}
main()
{ q(2);
return 0;

}

35

Non-local variable access
Requires that the environment be able to identify
frames representing enclosing scopes.
Using the control link results in dynamic scope
(and also kills the fixed-offset property).
If procedures can't be nested (C), the enclosing
scope is always locatable:
• it is global/static (accessed directly)

If procedures can be nested (Ada, Pascal), to
maintain lexical scope a new link must be added
to each frame:
• access link, pointing to the activation of the defining

environment of each procedure.

36

Implementation Aspects of OO-Languages
Allocation of space for data members: The space for data
members is laid out the same way it is done for structures
in C or other languages. Specifically:
• The data members are allocated next to each other.
• Some padding may be required in between fields, if the underlying

machine architecture requires primitive types to be aligned at
certain addresses.

• At runtime, there is no need to look up the name of a field and
identify the corresponding offset into a structure; instead, we can
statically translate field names into relative addresses, with
respect to the beginning of the object.

• Data members for a derived class immediately follow the data
members of the base class

• Multiple inheritance requires more complicated handling, we will
not discuss it here

10

37

Implementation Aspects of OO-Languages
class B {

int i; double d;
char c; float f; }

0 // Integer requires 4 bytes
4 // pad,

8 // Double requires 8 bytes

16 // char needs 1 byte, 3 are padded
20 // float to be aligned on 4-byte

// require 4-bytes of space

float f
char c|XXXXX

double d
XXXXXXXXXXX

int i

38

Implementation Aspects of OO-Languages
class C { 0

int k, l; B b;
} 4

8

12

16

24

28
float f

char c|XXXXX

double d

XXXXXXXXXXX

int i

int l

int k

39

Implementation Aspects of OO-Languages
class D: public C { 0

double x;
} 4

8

12
16

24

28
32 double x

float f

char c|XXXXX

double d

XXXXXXXXXXX

int i

int l

int k

40

Implementation of Virtual Functions
Approach 1:
• Lookup type info at runtime, and then call the

function defined by that type.
• Problem: very expensive, require type info to

be maintained at runtime.

11

41

Implementation of Virtual
Functions(Contd.)

Approach 2:
• Treat function members like data members:

• Allocate storage for them within the object.
• Put a pointer to the function in this location, and translate calls

to the function to make an indirection through this field.
• Benefit:

• No need to maintain type info at runtime.
• Implementation of virtual methods is fast.

• Problem:
• Potentially lot of space is wasted for each object.
• Even though all objects of the same class have identical

values for the table.

42

Implementation of Virtual
Functions(Contd.)

Approach 3:
• Introduce additional indirection into approach

2.
• Store a pointer to a table in the object, and this

table holds the actual pointers to virtual
functions.

• Now we use only one word of storage in each
object.

43

Implementation of Virtual
Functions(Contd.)

class B {
int i ;
char c ;
virtual void g();
virtual void h();

}
B b1, b2;

i

c

VMT ptr

i

c

VMT ptr

Ptr to B’s g

Ptr to B’s h

44

Impact of subtype principle on
Implementation

The subtype principle requires that any piece of code
that operates on an object of type B can work "as is"
when given an object belonging to a subclass of B.
This implies that runtime representation used for
objects of a subtype A must be compatible with those
for objects of the base type B.
Note that the way the fields of an object are accessed
at runtime is using an offset from the start address for
the object.
• For instance, b1.i will be accessed using an expression

of the form *(&b1+0), where 0 is the offset
corresponding to the field i.

• Similarly, the field b1.c will be accessed using the
expression *(&b1+1)

12

45

Impact of subtype principle on
Implementation (Contd.)

an invocation of the virtual member function
b1.h() will be implemented at runtime using
an instruction of the form:
call *(*(&b1+2)+1)
• &b1+2 gives the location where the VMT ptr is

located
• *(&b1+2) gives the value of the VMT ptr, which

corresponds to the location of the VMT table
• *(&b1+2) + 1 yields the location within the VMT

table where the pointer to virtual function h is
stored.

46

Impact of subtype principle on
Implementation (Contd.)

The subtype principle imposes the following
constraint:
• Any field of an object of type B must be stored at

the same offset from the base of any object that
belongs to a subtype of B.

• The VMT ptr must be present at the same offset
from the base of any object of type B or one of its
subclasses.

• The location of virtual function pointers within the
VMT should remain the same for all virtual
functions of B across all subclasses of B.

47

Impact of subtype principle on
Implementation (Contd.)

We must use the following layout for an object of type A
defined as follows:
class A: public B {

float f;
void h(); // reuses implementation of G from B;
virtual void k();}

A a;

Float f
VMT ptr

c
i

a’s layout

Ptr to A’s k
Ptr to A’s h
Ptr to B’s g

Virtual Method Table
(VMT)for class A

48

Impact of subtype principle on
Implementation (Contd.)

In order to satisfy the constraint that VMT ptr
appear at the same position in objects of type A
and B, it is necessary for the data field f in A to
appear after the VMT field.
A couple of other points:
• a) non-virtual functions are statically dispatched, so

they do not appear in the VMT table
• b) when a virtual function f is NOT redefined in a

subclass, the VMT table for that class is initialized with
an entry to the function f defined its superclass.

