
Decaf Language Reference Manual

C. R. Ramakrishnan
Department of Computer Science

SUNY at Stony Brook
Stony Brook, NY 11794-4400

cram@cs.sunysb.edu

February 20, 2008

Decaf is a small object oriented language with arrays, overloading, inheritance, and static method
and field resolution. It is inspired by the Javatm programming language, and inherits many features
of Java. This language was designed for use in Programming Languages and Compilers courses.
It is small enough that a complete compiler/interpreter can be built for it in a single semester.
Nevertheless, it has sufficiently rich set of features for writing a large set of object-oriented programs.

This manual outlines the syntax and semantics of the language constructs in Decaf. The syntax
is described in Extended Backus-Naur Form (EBNF) notation. In EBNF, which combines regular-
expression-like notation with grammars, x ∗ stands for a sequence of zero or more x ’s; x+ stands for
a sequence of one or more x ’s; (x | y) stands for choice between x and y ; and x ? stands an optional
occurrence (i.e., zero or one) of x . In the following, symbols in bold face represent reserved words
and special characters: i.e., tokens with unique lexemes, such as while. Symbols in italics are
either nonterminal grammar symbols, or terminal symbols with attributes, such as int const .

1 Lexical Issues

Decaf is case-sensitive; for example, for and For are treated as distinct lexical entities.

White Space and Comments

Whitespace (blanks, newlines and tabs) serve to separate tokens; otherwise they are ignored.
Whitespace may not appear within any token except a string constant (see below).

Decaf supports two styles of comments:

• Multi-line (C-style) comments that begin with “/*” and end with “*/”. These comments
may not be nested.

• Single-line comments that start with “//” and terminate at the end of line.

Comments may appear wherever a whitespace may appear.

1

Reserved words

The following are reserved words.

boolean break continue class do else
extends false float for if int
new null private public return static
super this true void while

Constants

There are three types of constants supported by Decaf: integer, floating point and string constants.
Integer constants are made up of one or more digits, each digit ranging from 0 thru 9.
Floating point constants contain a decimal point (e.g., 3.14159) with an optional signed integer

exponent part (e.g., 1.61E-19, 6.022E23, 3.0E+8). The character “e” that separates the mantissa
and exponent parts may be in upper or lower case. If a floating point number has an exponent,
its mantissa need not contain a decimal point. For instance, 2e32, 3e+8, 2e-16 are also a valid
floating point constants. If a floating point constant contains a decimal point, then there must be
at least one digit before and after the decimal point.

String constants begin and end with a double quote ("). Newlines may not appear within a
string. If the string itself contains a double quote, it is “escaped” with a backslash (\) as in the
example string: "\"What?\" she exclaimed.". Escape sequences, such as \n and \t are used to
place special characters such as newlines and tabs in a string. If the string contains a backslash,
that is escaped too (e.g., "The computer simply responded with \"A:\\>\""). Strings must be
contained within a single line.

Decaf does not support character constants.
Integer, floating point and string constants are denoted in the syntax descriptions below, by

int const , float const and string const respectively.

Identifiers

Letters denote the upper and lower case elements of the English alphabet (a thru z and A thru Z).
An identifier is a sequence of letters, digits and underscore (), starting with a letter, that is

not one of the reserved words. Identifiers are denoted by the symbol id .

2 Declarations

A Decaf program is a sequence of class declarations.
program ::= class decl∗

Class Declarations

A class declaration associates a set of fields, methods and constructors to a class name. Its syntax
is:

2

class decl ::= class id (extends id)?

{ class body decl+ }
class body decl ::= field decl

| method decl
| constructor decl

Each class declaration (e.g., class foo ...) creates a new class with the given name (e.g., foo).
The extends option is used to specify a superclass, from which the current class inherits its fields
and methods. Field declarations specify the fields that objects in this class will have; method decla-
rations specify the methods that can be used on objects in this class; and constructor declarations
are used to specify any initialization that needs to be done when a new object in this class is
created.

Fields

The syntax of field declarations in Decaf is:
field decl ::= modifier var decl

modifier ::= (public | private)? (static)?

var decl ::= type variables ;

type ::= int
| float
| boolean
| id

variables ::= variable (, variable)∗

variable ::= id ([])∗
Field declarations may be prefixed with modifiers as specified by the above syntax. A public

field is a variable that can be accessed from methods defined in any other class. A private field is
variable that can be accessed only from methods defined in the same class. If a field is not explicitly
specified as private or public, it is assumed to be private.

Fields that are declared static are called class variables; fields that are not declared static are
called instance variables. Each instance of a class gets its own private copy of all instance variables
declared in the class. However, all instance of a class share a single copy of the class variables
declared in the class.

A field may be one of the predefined types (int, float, boolean) or it may be an object in a
user-defined class.

Multiple fields, all of same type, may be declared in a single statement; in this case, field names
are separated by commas.

Array fields are defined by specifying [] after the field name. The number of []’s specify the
number of dimensions of the array. Note that, as in Java, this only declares the array, and does
not create one, i.e., allocate space for it. The array will be created, dynamically, using the new
construct, described later in this manual.

Inheritance: All objects of a class c contain instance fields defined in c as well as instance fields
defined in all superclasses of c. A class may contain a new field whose name is identical to one in

3

a superclass. However, only one field of a given name can be defined in a class, irrespective of the
types.

Methods and Constructors

Methods in a class encapsulate procedures for manipulating objects belonging to a class. Construc-
tors in a class are used to initialize objects of the class whenever they are created. The syntax of
method and constructor declarations is as follows:

method decl ::= modifier (type | void) id (formals?) block

constructor decl ::= modifier id (formals?) block

formals ::= formal param (, formal param)∗

formal param ::= type variable
The public and private modifiers are used to specify whether the given method can be accessed

from methods in other classes. Methods declared static are called class methods and those not
declared static are called instance methods. Instance methods always operate on a specific instance
of the class, whereas class methods operate on the class as a whole and not on individual instances.
A method that returns nothing (i.e., a procedure) has a return type of void. Methods may take a
list of arguments, the name and type of which are given by a list of formal parameters.

There may be multiple methods of the same name defined within a class, as long as they can
be distinguished on the basis of the number or types of parameters.

The name of a constructor must be same as that of the parent class. Constructors may also
take a list of arguments, again specified as by the list of formal parameters.

The body of a method or constructor is specified by a block of statements, described below.

3 Statements

Decaf supports a small but expressive set of control primitives to specify procedures for manipu-
lating the objects.

The syntax of Decaf statements is:
block ::= { stmt∗ }

stmt ::= if (expr) stmt (else stmt)?

| while (expr) stmt
| for (stmt expr? ; expr? ; stmt expr?) stmt
| return expr? ;
| stmt expr ;
| break ;
| continue ;
| block
| var decl
| ;

A block of statements is comprised of a (possibly empty) set of declarations for variables local
to that block, followed by a sequence of statements.

If statement: An if-statement of the form if (expr) stmt evaluates the boolean expression expr ;
if the expression evaluates to true, then the statement stmt is executed. When the optional

4

else part is present, of the form else stmt ′, then the statement stmt ′ is executed if the
expression evaluates to false.

While statement: A while-statement of the form while (expr) stmt loops, evaluating expr
first and executing stmt as long as expr is true. The loop is exited when expr evaluates to
false.

For statement: A for-statement of the form for (s1 ; e2 ; s3) stmt4 has four components: an
initializer s1, which is evaluated on entry to the statement; the boolean expression e2, which
is evaluated at the beginning of each iteration through the loop; an update part s3, which
is executed at the end of each iteration through the loop; and statement stmt4, which is
executed as long as e2 evaluates to true. The loop is exited when e2 evaluates to false.

Return statement: A return statement signifies the end of control in a method. The expression
expr is evaluated and is returned to the caller of the method. Thus the declared return type
of the method must be compatible with the type of expr . If the return type of the method is
void, then the expr part of the return statement is omitted.

Expression statement: Certain expressions, such as assignments and post-increment operations,
denoted by stmt expr , can be stand-alone statements. See Section 4 for syntax of stmt expr .

Block statement: A block of statements can themselves be used wherever a statement is used.
When a block statement is executed, the local variables declared in that block are freshly
created, and the sequence of statements in that block are executed in order.

Empty statement: An empty statement is specified simply by ‘;’. It has no effect on execution.

4 Expressions

Objects and their values are manipluated using a variety of expressions. The simplest form of
expressions are literal constants:

literal ::= int const
| float const
| string const
| null
| true
| false

In the following, the nonterminal grammar symbol expr is used to denote the set of all expres-
sions allowed in Decaf. Literal constants, creation of new instances of objects, access of object
fields and arrays, and method invocation are among the basic set of expressions used in Decaf,
called primary expressions, the syntax of which is given below:

5

primary ::= literal
| this
| super
| (expr)
| new id (arguments?)
| lhs
| method invocation

arguments ::= expr (, expr)∗

lhs ::= field access
| array access

field access ::= primary . id
| id

array access ::= primary [expr]

method invocation ::= field access (arguments?)

The reserved word this is used to represent the current object, i.e., the object on which the
method containing the current expression is applied. The reserved word super is used to explicitly
access fields or methods in the superclass; this construct is primarily used when names alone are
insufficient to distinguish fields and methods in a class from those of its superclass.

A new object is created using the reserved word new. The arguments supplied with the name
of the class correspond to parameters of the constructor to be used to initialize the new object.

An lhs expression is an expression that can occur on the left hand side of an assignment: either
referring to a field of an object, or to an element of an array.

A field in an object of class c can be accessed by simply using the name of the field, provided it
is being accessed from a method defined in class c. If there are multiple objects of class c, or if the
field is accessed from a method defined in a different class, the field is specified using the notation
“object.field”. A method invocation takes the form “object.method(args)”. If a method invocation
does not explicitly specify an object, then this is assumed as the default object.

The syntax of array access resembles that of array accesses in C: array[index]. Multidimensional
arrays are accessed by specifying a sequence of indices, each index enclosed in square brackets. An
array is assumed to be created before it is accessed.

Other expressions in Decaf are defined using the primary expressions described above.

6

expr ::= primary
| assign
| new array
| expr arith op expr
| expr bool op expr
| unary op expr

assign ::= lhs = expr
| lhs ++
| ++ lhs
| lhs −−
| −− lhs

new array ::= new type ([expr])+ ([])∗

arith op ∈ {+, −, *, / }

bool op ∈ { &&, ||, ==, !=, <, >, <=, >= }

unary op ∈ {+, −, !}
An assignment expression can be an explicit assignment, specified using the assignment operator

=, or an implicit assignment, specified by the pre- or post- increment (++) or decrement (−−)
operators. An array is created with the new operator by specifying the type of array and the
sizes along its different dimensions. The sizes are, in general, integer expressions (not just integer
constants).

Decaf provides a set of commonly used arithmetic and relational operators. Binary arithmetic
operators include addition (+), subtraction (−), multiplication (*) and division (/), which operate
on integers or floating point numbers. Boolean operators include:

• equality and disequality operations (==, !=) that can be applied, in addition to integer and
floating point expressions, to objects of any type, as long as both objects being compared are
of the same type;

• common relational operations (>, <, >= and <=) on integer and floating point expressions;
and

• logical operations conjunction (&&) and disjunction (||).

Unary operators include unary plus (+), minus (−) that operates on integer and floating point
expressions and negation (!) that operates on boolean expressions.

The explicit assignment (=) associates to the right. Relational operators (>, <, >= and
<=) are nonassociative. All other binary operators associate to the left. Hence, the expression
a + b + c + d is treated as ((a + b) + c) + d, while the expression a = b = c = d is treated as
a = (b = (c = d)). The precedence of the operators is defined in Table 1 which lists the operators
from highest to lowest precedence.

Finally, statement expressions are those, such as assignments and method invocations, that can
occur as stand-alone statements. Their syntax is defined by the following rule:

stmt expr ::= assign
| method invocation

7

highest precedence !

*, /

+, −

<, >, <=, >=

==, !=

&&

||
lowest precedence =

Table 1: Precedence of binary operators in Decaf

5 Standard Objects and Methods

Decaf provides two standard objects: Out which represents the standard output file (the console)
and In which represents the standard input file (the keyboard). The methods that can be used on
these objects are:

1. print(expr): This is an overloaded method, which can take objects of any primitive type
(integers, floating point numbers and booleans) as well as string constants, and writes their
values to the given file.

The method is usually applied to Out and returns void.

2. scan int(): This method, usually applied to In, reads a stream of characters from file that
represent an integer and returns the corresponding integer value.

3. scan float(): Similar to scan int(), this method is used to read a floating point value from
the given file.

Entry Point

A class whose name is same as the filename of the program is the “main” object of the program.
For instance, if the program is in file foo.decaf, then class foo is the main class in the program.
A static, public, parameterless method called main in class foo is the entry point of the program
in foo.decaf. That is, when invoked from the command line, main() will be the first method
invoked from the operating system.

6 Sample Decaf Programs

Following are four sample programs of varying complexity written in Decaf.

8

hello world.decaf

This program prints "Hello World!" on the console and exits.

class hello_world{
public static void main() {

Out.print("Hello World!\n");
}

}

nrfib.decaf

The following program computes and prints the nth Fibonacci number, given n as
the input. The Fibonacci number is computed using a nonrecursive procedure.

class nrfib{
public static void main() {

int n, i, fn, fn_prev;

n = In.scan_int();

fn = 1;
fn_1 = 0;

for(i=1; i<n; i=i+1) {
fn = fn_prev + fn;
fn_prev = fn - fn_prev;

}
Out.print("Fib = ");
Out.print(fn);
Out.print("\n");

}
}

9

rfib.decaf

The following program computes and prints the nth Fibonacci number, given n as
the input. The Fibonacci number is computed using a recursive procedure.

class rfib{
static int fib(int n) {

if (n <= 2)
return 1;

else
return fib(n-1) + fib(n-2);

}

public static void main() {
int n;

n = In.scan_int();

Out.print("Fib = ");
Out.print(fib(n));
Out.print("\n");

}
}

10

IntList.decaf

This program implements an abstract datatype of (singly-linked) list with integer
elements, with operations of insertion, search and length.

class IntList{
int value;
IntList next;

public static IntList create_list(int v) {
IntList new_element;

new_element = new IntList();
new_element.value = v;
new_element.next = null;
return new_element;

}

public IntList insert(int v) {
IntList new_element;

new_element = create_list(v);
new_element.next = this;

return new_element;
}

public boolean search(int v) {
if (this.value == v)
{ /* head of list matches */
return true;

}
else
/* not at head, so search rest of list */
if (next == null)
{ /* end of list, so search fails */
return false;

}
else
/* search rest of the list */
return next.search(v);

}

public int length() {
if (next == null) return 1;
else return 1 + next.length();

}
}

11

Acknowledgements

Decaf was first used as the source language for the Compiler Design course in Fall’96. Many thanks
are due to those students who gracefully put up with the inconsistencies of the first version. Based
on that version of Decaf, R. Sekar (then of Iowa State University) defined Espresso, also used in
a Compilers course; his design was used to remove some irregularities from Decaf. Kevin Kreeger
(Fall’96 class) also suggested several simplifications of Decaf’s grammar that have been included
in the current version. Many thanks are due also to Tord Johnson (Fall’98 class) for finding and
reporting many errors in an early draft of this manual.

12

