Storage Areas

Abstract machines usually offer the following storage areas:

e Code: Instructions for the program. (Usually static: does not change
after the program is loaded into memory).

e Static Area: Space for variables with global scope (lifetime is same
as that of the program).

@ Stack: Space for variables/data structures that are created at
run-time (whose lifetime is same as the procedure where they were
created).

@ Heap: Space for data structures that can be dynamically allocated or
deallocated (whose lifetime is different from the procedure where they
were created).

Compilers Storage Organization CSE 304/504 1/12

Variables and Storage

Consider the following program to compute the factorial function:

int fact(int n) {

if (n == 0)
return 1;
else

return n * fact(n-1);

3

How many different variables are used in the evaluation of fact(10)7?

Compilers Storage Organization CSE 304/504 2/12



Stack Storage

@ Stack space is used for variables that are local to a procedure
(including formal parameters).

@ Stack variables allocated for a procedure are visible during the
execution of the procedure
and can be safely de-allocated upon exit from the procedure
@ Advantages:

e Same space can be used for two procedure calls whose durations do not
overlap in time

e Local variables can be accessed at a “fixed offset” from a point on
stack (use of relative addressing)

e Non-local variables can also be accessed using relative addressing
(more on this later).

Compilers Storage Organization CSE 304/504 3/12

Nesting of Procedure Calls: Quicksort

int a[10];

int partition(int m, int n) { //Choose a pivot value "v", and
// reorder sub-array a[m..n] such that al[m..p-1] are all < v,

// alpl] = v, and al[p+l...n] are all >= v; return p
.
void quicksort(int m, int n) {
int 1i;
if (n > m) {

i = partition(m, n);
quicksort(m, i-1);
quicksort(i+1, n);

Compilers Storage Organization CSE 304/504 4 /12



Activation Tree

@ Nodes of the tree are all procedure calls done in one execution of a
program

@ Root of the tree is the call to main
@ g is a descendant of p if a call to p results in a call to g.

@ The sequence of procedure calls = pre-order traversal of activation
tree.

@ The sequence of returns = post-order traversal of activation tree.

Compilers Storage Organization CSE 304/504 5/ 12

Activation Tree: QuickSort

Activation tree for one execution of quicksort:

gs(1,9)
T
p(1,9) gs(1,3) gs(5,9)
p(1,3) gs(1,0) as (2, 3) p(5,9) as(5,5) as(7,9)
/R
p(7,9) gas(7,7) as(9,9)

Compilers Storage Organization CSE 304/504 6 /12



Activation Stack

Stack of current activations

@ If a procedure p has been called, but has not yet returned, then that
activation of p is “live”.

@ If control is in one activation, say N of a procedure, then all
activations on the path from root to N of the activation tree are
“live”.

@ The information regarding the live activations are kept on a stack,
with the most recent call on top of the stack.

Compilers Storage Organization CSE 304/504 7/12

Activation Record

Information about a single activation of a procedure:

@ Actual parameters of the procedure

@ Space for return value

Book-keeping information (more on this later)
Saved machine status (volatile registers)

Local data (space for local variables)

Temporaries (data not placed in variables/registers)

Compilers Storage Organization CSE 304/504 8 /12



Book-keeping in Activation Records

@ Control Link: a link to the previous activation record on stack.
Example: in x86, the following code is commonly found at the
beginning of every procedure:

pushl %ebp
movl Yesp, %ebp

The Base Pointer ebp points to the current activation record.

When a call is made, the pointer to old activation record is first saved
on stack (forming the control link). Then ebp is made to point to the
current activation record (which is on top of stack)

@ Access Link: a link used to access non-local variables (more on this
later).

Compilers Storage Organization CSE 304/504 9/12

Space for variables

@ Space for formal parameters and local variables of a procedure is
allocated in the activation record.

@ These variables are accessed using relative addressing
(relative to the "base” of the activation record)

@ Space for global variables is allocated in Static Area.

Compilers Storage Organization CSE 304/504 10 / 12



Nested Procedure Definitions

@ In languages like C, procedures are all defined at the “global” level.

@ In languages like Pascal and SML, procedure definitions can

themselves be nested.
For example:
proc p(int i) {

int x;
proc q(int j) {
int y;
. some expression with x ...

}

call q
+
Compilers Storage Organization CSE 304/504

Access Link

proc p(int i) {

int x;
proc q(int j) { in p's activation record.
int y; @ g's activation record contains a
- use of x ... link to p's activation record, called
¥ its access link.
ca11 q @ This link is used as the base
} address for x.

Compilers Storage Organization CSE 304/504

@ Note that g can access x, which is

11 /12

12 /12



	 

