
Overview

Course Objectives

To learn the process of translating a modern high-level language to
executable code.

Learn the fundamental techniques from lectures, text book and
exercises from the book.

Apply these techniques in practice to construct a fully working
compiler for a non-trivial subset of Java called “Decaf”.

In the end, you should be able to compile small Java-like programs with
your compiler, and see it actually work!

Compilers Introduction CSE 304/504 1 / 20

Overview

What is a Compiler?

Programming problems are easier to solve in high-level languages

High-level languages are closer to the problem domain
E.g. Java, Python, SQL, Tcl/Tk, . . .

Solutions have to be executed by a machine

Instructions to a machine are specified in a language that reflects to
the cycle-by-cycle working of a processor

Compilers are the bridges:

Software that translates programs written in high-level languages to
efficient executable code.

Compilers Introduction CSE 304/504 2 / 20

Overview

An Example

int gcd(int m, int n)

{

if (m == 0)

return n;

else if (m > n)

return gcd(n, m);

else

return gcd(n%m, m);

}

gcd:

pushl %ebp

movl %esp,%ebp

cmpl $0,8(%ebp)

jne .L2

movl 12(%ebp),%eax

jmp .L1

.align 16

jmp .L3

.align 16

.L2:

movl 8(%ebp),%eax

cmpl %eax,12(%ebp)

jge .L4

movl 8(%ebp),%eax

pushl %eax

...

Compilers Introduction CSE 304/504 3 / 20

Overview

Example (contd.)

gcd:

pushl %ebp

movl %esp,%ebp

pushl %esi

pushl %ebx

movl 8(%ebp),%esi

movl 12(%ebp),%ebx

.L11:

testl %esi,%esi

jne .L8

movl %ebx,%eax

jmp .L13

.align 16

.L8:

cmpl %ebx,%esi

jg .L14

movl %ebx,%eax

cltd

idivl %esi

movl %edx,%ebx

.L14:

movl %esi,%ecx

movl %ebx,%esi

movl %ecx,%ebx

jmp .L11

.align 16

.L13:

leal -8(%ebp),%esp

popl %ebx

popl %esi

movl %ebp,%esp

popl %ebp

ret

Compilers Introduction CSE 304/504 4 / 20

Overview

Requirements

In order to translate statements in a language, one needs to
understand both

the structure of the language: the way “sentences” are constructed in
the language, and
the meaning of the language: what each “sentence” stands for.

Terminology:

Structure ≡ Syntax
Meaning ≡ Semantics

Compilers Introduction CSE 304/504 5 / 20

Overview

Translation Strategy

Classic Software Engineering Problem

Objective: Translate a program in a high level language into efficient
executable code.

Strategy: Divide translation process into a series of phases
Each phase manages some particular aspect of translation.

Interfaces between phases governed by specific intermediate forms.

Compilers Introduction CSE 304/504 6 / 20

Phases of Translation

Translation Process

Syntax
Tree

Abstract

Program
Target

Program
Source

Syntax
Analysis

Processing
Semantic

Compilers Introduction CSE 304/504 7 / 20

Phases of Translation

Syntax Analysis

Analysis
Lexical

Syntax
Tree

Abstract

Parsing

Stream
Token

Program
Source

Compilers Introduction CSE 304/504 8 / 20

Phases of Translation

Semantic Processing

Syntax
Tree

Abstract

Final Code
Generation

Intermediate
Code

Generation

Program
Target

Type
Checking

Semantic

Analysis

Code

Generation

Optimization
Code

Compilers Introduction CSE 304/504 9 / 20

Phases of Translation

Translation Steps

Syntax Analysis Phase: Recognizes “sentences” in the program
using the syntax of the language

Semantic Analysis Phase: Infers information about the program
using the semantics of the language

Intermediate Code Generation Phase: Generates “abstract” code
based on the syntactic structure of the program and the semantic
information from Phase 2.

Optimization Phase: Refines the generated code using a series of
optimizing transformations.

Final Code Generation Phase: Translates the abstract intermediate
code into specific machine instructions.

Compilers Introduction CSE 304/504 10 / 20

Phases of Translation

Lexical Analysis

First step of syntax analysis

Objective: Convert the stream of characters representing input
program into a sequence of tokens.

Tokens are the “words” of the programming language.

Examples:

The sequence of characters “static int” is recognized as two tokens,
representing the two words “static” and “int”.
The sequence of characters “*x++” is recognized as three tokens,
representing “*”, “x” and “++”.

Compilers Introduction CSE 304/504 11 / 20

Phases of Translation

Parsing

Second step of syntax analysis

Objective: Uncover the structure of a sentence in the program from
a stream of tokens.

For instance, the phrase “x = +y”, which is recognized as four
tokens, representing “x”, “=” and “+” and “y”, has the structure
=(x, +(y)), i.e., an assignment expression, that operates on “x” and
the expression “+(y)”.

Output: A tree called abstract syntax tree that reflects the structure
of the input sentence.

Compilers Introduction CSE 304/504 12 / 20

Phases of Translation

Abstract Syntax Tree (AST)

Represents the syntactic structure of the program, hiding a few
details that are irrelevent to later phases of compilation.

For instance, consider a statement of the form: “if (m == 0) S1
else S2” where S1 and S2 stand for some block of statements.
A possible AST for this statement is:

If−then−else

AST for S2AST for S1

==

0m

Compilers Introduction CSE 304/504 13 / 20

Phases of Translation

Type Checking

A instance of “Semantic Analysis”

Objective: Decorate the AST with semantic information that is
necessary in later phases of translation.

For instance, the AST

If−then−else

AST for S2AST for S1

==

0m

is transformed into

If−then−else

AST for S1 AST for S20

== : boolean

: integer : integerm

Compilers Introduction CSE 304/504 14 / 20

Phases of Translation

Intermediate Code Generation

Objective: Translate each sub-tree of the decorated AST into
intermediate code.

Intermediate code hides many machine-level details, but has
instruction-level mapping to many assembly languages.

Main motivation for using an intermediate code is portability.

Compilers Introduction CSE 304/504 15 / 20

Phases of Translation

Intermediate Code Generation, an Example

If−then−else

AST for S1 AST for S20

== : boolean

: integer : integerm

=⇒

loadint m

loadimmed 0

intequal

jmpz .L1

jmp .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

jmp .L3

.L3:

Compilers Introduction CSE 304/504 16 / 20

Phases of Translation

Code Optimization

Objective: Improve the time and space efficiency of the generated
code.

Usual strategy is to perform a series of transformations to the
intermediate code, with each step representing some efficiency
improvement.

Peephole optimizations: generate new instructions by
combining/expanding on a small number of consecutive instructions.

Global optimizations: reorder, remove or add instructions to change
the structure of generated code.

Compilers Introduction CSE 304/504 17 / 20

Phases of Translation

Code Optimization, an Example

loadint m

loadimmed 0

intequal

jmpz .L1

jmp .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

jmp .L3

.L3:

=⇒ loadint m

jmpnz .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

.L3:

Compilers Introduction CSE 304/504 18 / 20

Phases of Translation

Final Code Generation

Objective: Map instructions in the intermediate code to specific
machine instructions.

Supports standard object file formats.

Generates sufficient information to enable symbolic debugging.

Compilers Introduction CSE 304/504 19 / 20

Phases of Translation

Final Code Generation, an Example

loadint m

jmpnz .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

.L3:

=⇒ movl 8(%ebp), %esi

testl %esi, %esi

jne .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

.L3:

Compilers Introduction CSE 304/504 20 / 20

	Overview
	Phases of Translation

