
Intermediate Code

“Abstract” code generated from AST

Motivation for use: Simplicity and Portability

Machine independent code.

Enables common optimizations on intermediate code.

Machine-dependent code optimizations postponed to last phase.

Compilers Abstract Machines CSE 304/504 1 / 15

Intermediate Forms

Stack machine code:
Code for a “postfix” stack machine.

Two address code:
Code of the form “add r1, r2”

Three address code:
Code of the form “add src1, src2, dest”
Quadruples and Triples: Representations for three-address code.

Compilers Abstract Machines CSE 304/504 2 / 15

Quadruples

Explicit representation of three-address code.
Example: a := a + b * -c;

Instr Operation Arg 1 Arg 2 Result

(0) uminus c t1
(1) mult b t1 t2
(2) add a t2 t3
(3) move t3 a

Compilers Abstract Machines CSE 304/504 3 / 15

Triples

Representation of three-address code with implicit destination argument.
Example: a := a + b * -c;

Instr Operation Arg 1 Arg 2

(0) uminus c
(1) mult b (0)
(2) add a (1)
(3) move a (2)

Compilers Abstract Machines CSE 304/504 4 / 15

Intermediate Forms

Choice depends on convenience of further processing

Stack code is simplest to generate for expressions.

Quadruples are most general, permitting most optimizations including
code motion.

Triples permit optimizations such as common subexpression
elimination, but code motion is difficult.

Compilers Abstract Machines CSE 304/504 5 / 15

Runtime Storage Organization

Storage for code and data.

Code Area: Procedures, functions, methods.

Static Data Area: “Permanent” data with statically known size.

Stack: Temporary Data with known lifetime.

Heap: Temporary Data with unknown lifetime (dynamically
allocated).

Compilers Abstract Machines CSE 304/504 6 / 15

Issues in Storage Organization

Recursion

Block structure and nesting (nested procedures).

Parameter passing (by value, reference, name).

Higher order procedures (procedures as parameters to other
procedures).

Dynamic Storage Management (malloc, free).

Compilers Abstract Machines CSE 304/504 7 / 15

Storage Areas

Storage Organization for a typical procedural language.

CODE

STATIC DATA

STACK

HEAP

Compilers Abstract Machines CSE 304/504 8 / 15

Recursion

void qsort(int m, int n)
{

int i;

if (n > m) {
i = part(m, n);
qsort(m, i-1);
qsort(i+1, n);

}
}

Compilers Abstract Machines CSE 304/504 9 / 15

Activation Trees

qsort(1,9)

part(1,9) qsort(1,3) qsort(5,9)

part(1,3) qsort(1,0) qsort(2,3) part(5,9) qsort(5,5)qsort(7,9)

part(2,3) qsort(2,1) qsort(3,3)

Compilers Abstract Machines CSE 304/504 10 / 15

Activation Records

All information local to a single invocation of a procedure is kept in an
Activation Record.

Return Address

Arguments

Return Value

Local variables

Temporaries

Other control information

Compilers Abstract Machines CSE 304/504 11 / 15

Activation Records: An Example

Local variables

Low memory

High memory

bp

ep

sp

Operand Area

Operand Area

Old bp

Old ep

Argument 0

Argument 1

Argument n

of caller

(Temporaries)

Compilers Abstract Machines CSE 304/504 12 / 15

Organizing Activation Records

Control information for accessing different areas in an activation record:

Base Pointer: Beginning of activation record.
Arguments are accessed as offsets from base pointer.

Environment Pointer: Pointer to the most recent activation record.
Usually a fixed offset from base pointer.

Stack Pointer: Top of activation record stack.
Temporaries are allocated on top of stack.

Compilers Abstract Machines CSE 304/504 13 / 15

Managing Activation Records

int m(int k)
{

int i;

i = k + 15 * n(3);
return l(i);

}

Compilers Abstract Machines CSE 304/504 14 / 15

Managing Activation Records (contd.)

_m:
pushl %ebp
movl %esp,%ebp

.. code for m

movl %ebp, %esp
popl %ebp
ret

Compilers Abstract Machines CSE 304/504 15 / 15

