Intermediate Code

“Abstract” code generated from AST

Motivation for use: Simplicity and Portability

@ Machine independent code.
@ Enables common optimizations on intermediate code.

@ Machine-dependent code optimizations postponed to last phase.

Compilers Abstract Machines CSE 304/504 1/15

Intermediate Forms

@ Stack machine code:
Code for a “postfix” stack machine.

@ Two address code:
Code of the form “add ri, "

@ Three address code:
Code of the form “add srcq, srca, dest”
Quadruples and Triples: Representations for three-address code.

Compilers Abstract Machines CSE 304/504 2 /15

Quadruples

Explicit representation of three-address code.

Example: a := a + b * -c;

Instr | Operation | Arg 1 | Arg 2 | Result

(0) | uminus c t1

(].) mult b t tr

(2) add a tr t3

(3) move t3 a

Compilers Abstract Machines CSE 304/504

Triples

3/15

Representation of three-address code with implicit destination argument.

Example: a := a + b * -c;
Instr | Operation | Arg 1 | Arg 2
(0) | uminus c
(1) mult b (0)
(2) add a (1)
(3) move a (2)

Compilers

Abstract Machines CSE 304/504

4 /15

Intermediate Forms

Choice depends on convenience of further processing

@ Stack code is simplest to generate for expressions.

@ Quadruples are most general, permitting most optimizations including

code motion.

@ Triples permit optimizations such as common subexpression
elimination, but code motion is difficult.

Compilers Abstract Machines CSE 304/504

Runtime Storage Organization

Storage for code and data.
@ Code Area: Procedures, functions, methods.
e Static Data Area: “Permanent” data with statically known size.
@ Stack: Temporary Data with known lifetime.

@ Heap: Temporary Data with unknown lifetime (dynamically
allocated).

Compilers Abstract Machines CSE 304/504

5/15

6/ 15

Issues in Storage Organization

Recursion

o
@ Block structure and nesting (nested procedures).
@ Parameter passing (by value, reference, name).
°

Higher order procedures (procedures as parameters to other
procedures).

@ Dynamic Storage Management (malloc, free).

Compilers Abstract Machines CSE 304/504 7/ 15

Storage Areas

Storage Organization for a typical procedural language.

CODE

STATIC DATA

Compilers Abstract Machines CSE 304/504 8/ 15

Recursion

void gsort(int m, int n)
{

int 1i;

if (n > m) {
i = part(m, n);
gsort(m, i-1);
gsort(i+l, n);

¥

Compilers Abstract Machines CSE 304/504 9 /15

Activation Trees

gsort(1,9)
part(1,9) gsort (1, 3) gsort(5,9)
part(1,3) gsort(1,0) gsort(2,3) part(5,9) qgsort(5, S)qsort‘_(7,9

47N
part(2,3) gsort(2,1) gsort(3,3)

Compilers Abstract Machines CSE 304/504 10 / 15

Activation Records

All information local to a single invocation of a procedure is kept in an

Activation Record.

@ Return Address
Arguments
Return Value

°
°

@ Local variables
@ Temporaries

°

Other control information

Compilers Abstract Machines

Activation Records: An Example

Low memory
Operand Area

of caller

CSE 304/504 11/15

Argument O

< bp

Argument 1

Argument n

Local variables

old bp

Old ep

Operand Area
(Temporaries)

Highmemory
|

Compilers Abstract Machines

CSE 304/504 12/15

Organizing Activation Records

Control information for accessing different areas in an activation record:

e Base Pointer: Beginning of activation record.
Arguments are accessed as offsets from base pointer.

@ Environment Pointer: Pointer to the most recent activation record.

Usually a fixed offset from base pointer.

@ Stack Pointer: Top of activation record stack.
Temporaries are allocated on top of stack.

Compilers Abstract Machines

Managing Activation Records

int m(int k)

{
int i;
i =k+ 15 *x n(3);
return 1(i);

+

Compilers Abstract Machines

CSE 304/504

CSE 304/504

13/ 15

14 /15

Managing Activation Records (contd.)

pushl 7%ebp
movl %esp,%ebp

code for m
movl %ebp, %esp

popl %ebp
ret

Compilers Abstract Machines CSE 304/504 15 /15

