CSE 303 PRACTICE FINAL SOLUTIONS

FOR FINAL study Practice Final (minus PUMPING LEMMA and Turing
Machines) and Problems from Q1 — @4, Practice Q1 — @4, and Midterm
and Practice midterm. I will choose some of these problems for your FI-
NAL TEST.

THE FINAL TEST will also contain YES/NO questions from the questions
below, Q1 — Q4, Practice quizzes and Midterm and Practice Midterm.
There will be more questions from the second part of the semester then
from the first.

PART 1: Yes/No Questions Circle the correct answer. Write ONE-SENTENCE
justification.

1. There is a set A and an equivalence relation defined on A that is an
order relation with 2 Maximal elements.
Justify: A= {a,b},R="="

2. (abUa*b)* is a regular language.
Justify: this is a regular expression

3. Let ¥ = ¢, there is L # ¢ over X.
Justify: 0* = {e} and L = {e} C *

4. A is uncountable iff | A | = ¢ (continuum).
Justify: 22 R real numbers, is uncountable and [2%| > ¢

5. There are uncountably many languages over ¥ = {a}.
Justify: |[{a}*| = No and [2{%}7| = ¢ and any set of cardinality c is
uncountable.

6. Let RE be a set of regular expressions. L C ¥* is regular iff L =
L(r),r € RE.
Justify: definition

7. L* ={w e X* : Jper(s,w) b3, (g,e)}.
Justify: this is definition of L(M), not L*
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(a*bU ¢*) is a regular expression.
Justify: definition

{a}*{b} U {ab} is a regular language
Justify: it is a union of two regular languages, and hence is regular

Let L be a language defined by (a*bUab), i.e (shorthand) L = a*bUab.
Then L C {a,b}*.
Justify: definition

Y = {a}, there are c (continuum) languages over X.
Justify: 219} =¢

L* = L% — {e}.
Justify: only when e € L

L*={w;...wp,w; € Lyi=1,...,n}.
Justify: i =0,1,...,n}

For any languages L1, Lo, Ls C ¥*L1,U(LaNL3) = (L1 ULy)N (L1 U
Ls).
Justify: languages are sets

For any languages L1, Lo C X*, if L1 C Lo, then (L; U Lo)* = L3.
Justify: languages are sets, so (L1 U Ly) = L}

((¢* Na)U (¢ Ub*)) N ¢* represents a language L = {e}.

Justify: (({e} N{a}) U{b}7) N{e} = {b}"N{e} = {e}

L= ((¢* Ub)N (b* U¢)) (shorthand) has only one element.
Justify: {e,b} N {b}* = {e, b}

LM)={weX*:(qw) k3 (s,e)}.
Justify: only when ¢ € F

If M is a FA, then L(M) # ¢.
Justify: take M with ¥ = ¢

If M is a nondeterministic FA, then L(M) # ¢.
Justify: take M with X =¢ or F = ¢
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L(My) = L(M,) iff My and M, are finite automata.
Justify: take as M; any automata such that L(Mp) # ¢ and My
such that L(Ms) = ¢

A language is regular iff L = L(M) and M is a deterministic automa-
ton.
Justify: M is a finite automata

If L is regular, then there is a nondeterministic M, such that L =
L(M).
Justify: a finite automata

Any finite language is CF.
Justify: any finite language is regular and RL C CFL

Intersection of any two regular languages is CF language.
Justify: Regular languages are closed under intersection and RL C
CFL

Union of a regular and a CF language is a CF language.
Justify: RL C CFL and FCL are closed under union

L, is regular, Ly is CF, Ly, Ly C ¥*, then Ly N Ly C ¥* is CF.
Justify: theorem

If L is regular, there is a PDA M such that L = L(M).
Justify: FA is a PDA operating on an empty stock

If L is regular, there is a CF grammar G, such that L = L(G).
Justify: RL C CFL

L ={a™"c" :n >0} is CF.
Justify: is not CF, as proved by Pumping Lemma for CF languages

L= {a"b":n>0}is CF.
Justify: L = L(G) for G with R = {S — aSb|e}

Let ¥ = {a}, then for any w € ¥*, wfw € ©*.
Justify: af' = a and wf* = w for w € {a}*

A— Az, A e V,z € ¥* is a rule of a regular grammar.
Justify: this is a rule of a left-linear grammar and we defined regular
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grammar as a right-linear

Regular grammar has only rules A — A, A > x,z € ¥*, AV -3,
Justify: not only, A — xB for B # A is also a rule of a regular
grammar

Let G = ({S,(,))},{(,)},R,S) for R = {S — SS | (9)}. L(G) is
regular.
Justify: L(G) = 0 and hence regular

The grammar with rules S — AB, B — b | bB, A — e | aAb generates
a language L = {a"V’ : k < j}.

Justify: the rule A — e | aAb produces the same amount of a’s and
b’s, the rule B — bB adds only b’s.

More formally, let’s look at the derivations

S=AB= ... = a"V"B = ... = a"b"b*B = a"b"b*

S=AB = ...=a"b"B = a"b"b

we get a"b"t* € L(G) and n < n + k, and a"b"T! € L(G) and
n<n+1

L= {w € {a,b}* : w = w!} is regular.

Justify: we use Pumping Lemma; while pumping the string a*ba*
with y containing only a’s we get that zy?z & L

We can always show that L is regular using Pumping Lemma.
Justify: we use Pumping Lemma to prove (if possible) that L is not
regular

((p,e,B),(q,7)) € A means: read nothing, move from p to g
Justify: and replace v by 8 on the top of the stack

L ={a"b"c" :n,m € N} is CF.
Justify: when n =m we get L = {a"b"c" : n € N} that is not CF

If L is regular, then there is a CF grammar G, such that L = L(G).
Justify: RL C CF

There is countably many non CF languages over ¥ # ¢
Justify: contradicts the fact that |X*| = ¢, i.e. is uncountable

Every subset of a regular language is a language.
Justify: subset of a set is a set

Yy

Yy
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A parse tree is always finite.
Justify: derivations are finite

Any regular language is accepted by some PD automata.
Justify: RL=FA FAC PDA

Class of context-free languages is closed under intersection.
Justify: L; = {a"b"c¢™,n,m > 0} is CF, L = {a™b"c",n,m > 0}
is CF, but Ly N Ly = {a™b"c",n > 0} is not CF

There is countably many non-regular languages.
Justify: contradicts the fact that |X*| = c, i.e. is uncountable

Every subset of a regular language is a regular language.
Justify:L = {a"b" : n > 0} C a*b* and L is not regular

A CF language is a regular language.
Justify: L = {a"b" : n > 0} is CF and not regular

Class of regular languages is closed under intersection.
Justify: theorem

A regular language is a CF language.
Justify: Regular grammar is a special case of a context-free grammar

. Every subset of a regular language is a regular language.

Justify: L; = a™b" is a non-regular subset of a regular language
L2 = a*b*.

. Any regular language is accepted by some PD automata.

Justify: Any regular language is accepted by a finite automata, and
a finite automaton is a PD automaton (that never operates on the
stock).

A parse tree is always finite.

Justify: Any derivation of w in a CF grammar is finite.

Parse trees are equivalence classes.
Justify: represent equivalence classes.

For all languages, all grammars are ambiguous.
Justify: programming languages are never inherently ambiguous.

A CF grammar G is called ambiguous if there is w € L(G) with at
least two distinct parse trees.
Justify: definition



o8.

99.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

A CF language L is inherently ambiguous iff all context-free gram-
mars G, such that L(G) = L are ambiguous.
Justify: definition

Programming languages are sometimes inherently ambiguous.
Justify: never

The largest number of symbols on the right-hand side of any rule of
a CF grammar G is called called a fanout and denoted by ¢(G).
Justify: definition

The Pumping Lemma for CF languages uses the notion of the fanout.
Justify: condition on the length of w € L

Turing Machines are as powerful as today’s computers.
Justify: thesis

It is proved that everything computable (algorithm) is computable
by a Turing Machine and vice versa.
Justify: this is Church - Turing Hypothesis, not a theorem

Church’s Thesis says that Turing Machines are the most powerful.
Justify: We adopt a Turing Machine that halts on all inputs as a
formal notion of ”an algorithm”.

Turing Machines can read and write.
Justify: by definition

A configuration of a Turing machine M = (K,X,6,s,H) is any el-
ement of a set K x X* x (X*(Z — {#}) U {e}), where # denotes a
blanc symbol.

Justify: a configuration is an element of a set K x >X* x (£*(X —

{#}) U {e})

A computation of a Turing machine can start at any position of
w € 3. Justify: by definition

A computation of a Turing machine can start at any state.
Justify: definition

In Turing machines, words w € ¥* can’t contain blanc symbols.
Justify: 3 contains the blanc symbol

A Turing machine M decides a language L C ¥*, if for any word
w € 3* the following is true.

If w e L, then M accepts w; and if w ¢ L then M rejects w.
Justify: any word w € Yo", for ¥y = X — {#}

PART 2: PROBLEMS

y

Yy



QUESTION 1 Let X be any alphabet, L1, Lo two languages over X such that
e € L1 and e € Ly. Show that

(L1 X¥ L) =%~
Solution : By definition, L; C ¥*, Ly C ¥* and ¥* C X*. Hence
(L1X* Ly)* C X
We have to show that also
¥*C (L1 X" Lo)™.

Let w € ¥* we have that also w € (L13*La)* because w = ewe and e € Ly
and e € Ls.

QUESTION 2 Use book or lecture definition (specify which are you using) to
construct a non-deterministic finite automaton M, such that

L(M) = (ab)*(ba)*.

Draw a state diagram and specify all components K, 3, A, s, F of M. Jus-
tify your construction by listing some strings accepted by the state dia-
gram.

Solution 1 We use the lecture definition.

Components of M are: ¥ = {a,b}, K = {g,a1}, s = @0, F = {go, 1 }-
We define A as follows.
A= {(q07 abv (]0)» (qO; €, CI1)7 (CII» ba7 (I1)}

Strings accepted : ab, abab, abba, ababba, ababbaba, ....
Solution 2 We use the book definition.

Components of M are: ¥ = {avb}v K = {QO»(]17Q2»(13}7 8§ = qo, F= {QQ}
We define A as follows.

A= {(q07 a, QI)v (Q17 b7 qo)a (qu €, Q2)7 (Q27 b7 Q3)7 (q37 a, q2)}
Strings accepted : ab, abab, abba, ababba, ababbaba, ....

QUESTION 3 Given a Regular grammar G = (V,X, R, S), where
V ={a,b,S, A}, ¥ ={a,b},
R={S—aS|Ale, A— abA la|b}.



1. Construct a finite automaton M, such that L(G) = L(M).

Solution We construct a non-deterministic finite automata
M= (K,X A s F)
as follows:
K=(V-X)U{f}, 2=%,s=5, F={f},
A ={(S,a,5),(S,e,A),(S,e, f),(A,ab, A), (A, a, f), (A )}

2. Trace a transitions of M that lead to the acceptance of the string aaaababa,
and compare with a derivation of the same string in G.

Solution

The accepting computation is:
(S, aaaababa) by (S, aaababa) ur (S, aababa) bpy (S, ababa) by (A, ababa)
Far (A aba) Far (Aya) Far (f,€)
G derivation is:

S = aS = aaS = aaaS = aaaA = aaaabA = aaaababA = aaaababa

QUESTION 4 Construct a context-free grammar G such that
L(G) = {w € {a,b}" : w=w"}.
Justify your answer.
Solution G = (V, %, R, S), where
V ={a,b,5}, ¥ ={a,b},
R={S—aSa |bSb|a|b]|e}.

Derivation example: S = aSa = abSba = ababa
ababa® = ((ab)a(ba))® = (ba)a’(ab)® = ababa.

Observation 1 We proved in class that for any =,y € ©*, (zy)f = yfazf.

From this we have that

(2y2)" = ((2y)2)" = 2" (ay)" = 2"y "al



Grammar correctness justification: observe that the rules S — aSa |bSb | e
generate the language L; = {ww® : w € ¥*}. With additional rules
S — a | bwe get hence the language L = Ly U{waw® : w € ¥*}U{wbw? :
w € ¥*}. Now we are ready to prove that

L=LG)={we {a,b}": w=uw?)

R R

Proof Let w € L, i.e. w = zz or w = zaz® or w = zbz®. We show that in

each case w = w as follows.

cl: wh = (22) = (2™) 2" = z2™ = w (used property: (z)" = z).
c2: w? = (vaw
properties: (x

R)RR)

() BaB2l = zazx® = w (used Observation 1 and
=z and off = a).

=

c3: wlt = (2b2®)F = (2B)BpE2R = 2b2® = w (used Observation 1 and
properties: (z7)F =z and b = b).

QUESTION 5 Construct a pushdown automaton M such that
L(M) = {w € {a,b}* : w=w’}

Solution 1 We define M as follows: M = (K, X, A, s, F)

M components are

K ={sf},% ={a,b},T = {a,b}, F = {f}

A ={((s,a,¢€),(s,a)), ((s,b,€),(s,)), ((s,e,€),(f,€)), ((s,a,¢€),(f,a)),
((S, bye), (f, b))v ((f,a,a),(f,e)), ((f,0,0),(f, 6))}
Trace a transitions of M that lead to the acceptance of the string ababa.

Solution
ababa e

S

S baba a
S aba ba
f ba ba
f a a
f

e e



QUESTION 6 Construct a PDA M, such that

L(M) = {b"a* :n > 0}.
Solution M = (K,%,T, A, s, F) for
K ={s,f},X={a, b}, ={a}, s, F = {f},
A ={((s,b,¢€),(s,aa)), ((s,e,€),(f,€)), ((f,a,a),(f,€))}
Explain the construction. Write motivation.

Solution M operates as follows: A pushes aa on the top of the stock while M
is reading b, switches to f (final state) non-deterministically; and pops a
while reading a (all in final state). M puts on the stock two a’s for each
b, and then remove all a’s from the stock comparing them with a’s in the
word while in the final state.

Trace a transitions of M that leads to the acceptance of the string bbaaaa.

Solution The accepting computation is:

(s,bbaaaa, e) Far (s,baaaa, aa) Fas (s, aaaa, aaaa) by (f, acaa, acaa)

Far (f, aaa, aaa) Far (f,aa,aa) o (fya,a) Far (e e)

Solution 2 M = (K, X, T, A, s, F) for
K ={s, 1,5 ={a,b}, I = {b},s, F = {f},

A ={((s,b,€),(s,0)), (s, €, €), (f,€)), ((f,aa,b), (f,€))}

QUESTION 7 Use PUMPING LEMMA to prove that
L={ww: we{a,b}"}
in NOT regular. Consider ALL cases.

Solution Assume L is regular, then by PM Lemma there is & > 0 such that
the Condition holds for all w € L. Take w = a*ba*b. Observe that |w| =
2k +2 > k, and so |w| > k. So there are x,y,z € ¥*, such that y # e,
w = zyz and |zy| < k.

Observe that y can’t contain first (or the second) b. If y = b then x = a*
and |zy| = k+ 1 > k. Argument for the second b, and any location
between first and the second b is the same. It proves that x = a’,y =
al,z = a™ba*b, for i >0,m >0,7>0and j+i+m=k.

BY PM Lemma zy"z € L for all n > 0. Consider zy?z = a’a®a™ba*b.
Observe that xy?z € L iff j +2i +m = k. On the other hand we had that
j+i+m =k, and it gives 2¢ = 7. This contradiction proves that L is not
regular.

10



Question 8 Use Pumping Lemma to prove that
L:{a"2 :n > 0}}
is not CF.

Solution look at the solutions to hmk 4.

QUESTION 9 Here is the definition:

Let L C ¥*. For any z,y € ¥* we define an equivalence relation on X* as
follows.
xrpy iff VzeX*(zze L& yzelL).

Let now
L = (aabU ab)*.
FIND all equivalence classes of x ~, y.

Write all definitions and show work.

Solution We evaluate the equivalence classes as follows.
] ={ye¥: Vze¥X'(z€Leyzec L)} =L

Observe that the main operator of L construction is *, hence yz € L iff
z,y € L.

[a] ={yeX*: VzeX*(az € L yz € L)} = La.

Observe that az € L iff z € bL (z begins with b), or z € aL (z begins with
a). Let z € bL, hence when yz € L, we get that y € Laa or y € La (y ends
with aa, or a). But the case y € Laa is impossible, as for y = aa(e € L)
we get Vz € ¥*(az € L < aaz € L) what is not true for z = ab; aab € L
and aaab & L.

Let now z € aL we get yz € L iff y € La.

[aa) ={y e " : Vze X*(aaz € L& yz € L)} = Laa.

Observe that aaz € L iff z € bL (z begins with b), and hence yz € L
iff y € Laa or y € La (y ends with aa, or a). But the case y € La is
impossible, as for y = a we get Vz € ¥*(aaz € L & az € L) what is not
true for z = ab.

Now observe that bb & L,aaa ¢ L and L can’t contain any word in which
bb or aaa appear. So we evaluate, as the next step [bb] and [aa].

[aga] ={y € ¥*: Vze X" (aaaz € L & yz € L)}
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[bb] ={yex": VzeX*(bbze L& yze L)}

Observe that the statements: aaaz € L,bbz € L are false for all z and
hence we are looking for y € ¥* such that the statement yz € L is false
for all z € ¥*. So y is any word from ¥* that must contain at least one
appearance of aaa or bb. It means that y € ¥*(aaa U bb)X* and

[aaa] = [bb] = X*(aaa U bb)X*.
We have hence 4 equivalence classes:
L, La, Laa, ¥*(aaa U bb)¥".

Question 10 Show that the following language L in NOT CF.

L ={w € {a,b,c}* : all numbers of accurences of a,b,cinw are dif ferent}.

Solution First we represent L as L = L1 U Ly U L3, for Ly = {w € {a,b,c}* :
#a # #bin w} - CF;
Lo ={w € {a,b,c}* : #b # #c in w} - CF;
Ly ={w € {a,b,c}* : #c # #a in w} - CF;
and use the closure of CF languages under union.
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