1 YES/NO questions

1.	For any function f from $A \neq \emptyset$ onto A , f has property $f(a) \neq a$ for certain $a \in A$. Justify: $f(x) = x$ is always "onto".	n
2.	All infinite sets have the same cardinality. Justify : $ N \neq R $ and N (natural numbers) and R (real numbers) are infinite sets.	n
3.	$\{\{a,b\}\} \in 2^{\{a,b,\{a,b\}\}}$ Justify: $\{\{a,b\}\} \subseteq \{a,b,\{a,b\}\}.$	у
4.	For any binary relation $R \subseteq A \times A$, R^{-1} exists. Justify : The set $R^{-1} = \{(b, a) : (a, b) \in R\}$ always exists.	у
5.	Regular language is a regular expression. Justify : Regular language is a language defined by a regular expression.	n
6.	$L^+ = \{w_1w_n : w_i \in L, i = 1, 2,n, n \ge 1\}.$ Justify: definition	у
7.	$L^+ = L^* - \{e\}.$ Justify : only when $e \notin L$. When $e \in L$ we get that $e \in L^+$ and $e \notin L^* - \{e\}.$	n
8.	For any languages L_1 , L_2 , $(L_1 \cap L_2) \cup L_2 = L_2$. Justify : $L_1 \cap L_2 \subseteq L_2$ and languages are sets.	у
9.	$(\emptyset^* \cap b^*) \cup \emptyset^*$ describes a language with only one element. Justify : $(\{e\} \cap \{b\}^*) \cup \{e\} = \{e\}$	у
10.	For any $M, L(M) \neq \emptyset$ iff the set F of its final states is non-empty. Justify : Let M be such that $\Sigma = \emptyset, F \neq \emptyset, s \notin F$, we get $L(M) = \emptyset$.	n
11.	A configuration of any finite automaton $M = (K, \Sigma, \Delta, s, F)$ is any element of $K \times \Sigma^* \times K$. Justify : it is element of $K \times \Sigma^*$ (lecture definition)	n
12.	If $M = (K, \Sigma, \Delta, s, F)$ is a non-deterministic as defined in the book, then M is also non-deterministic, as defined in the lecture. Justify : $\Sigma \cup \{e\} \subseteq \Sigma^*$	У
13.	Let M be a finite state automaton, $L(M) = \{\omega \in \Sigma^* : (s, \omega) \xrightarrow{*, M} (q, e)\}.$ Justify : only when $q \in F$	n
14.	$L(M_1) = L(M_2)$ iff M_1 , M_2 are finite automata. Justify : one can have 2 automata that accept different languages.	n
15.	DFA and NDFA recognize the same class of languages. Justify : theorem proved in class	у

2 Two definitions of a non-deterministic automaton

BOOK DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when

$$\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K$$

OBSERVE that Δ is always finite because K, Σ are finite sets.

LECTURE DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when Δ is finite and

$$\Delta \subseteq K \times \Sigma^* \times K$$

OBSERVE that we have to say in this case that Δ is finite because Σ^* is infinite.

SOLVING PROBLEMS you can use any of these definitions.

3 Very short questions (25pts)

For all state diagrams below do the following.

- 1. Determine whether it defines a finite state automaton.
- 2. Determine whether it is a deterministic / non-deterministic automaton.
- **3.** Write full definition of *M* by listing all its components.
- 4. Describe the language by writing a regular expression or a property that defines it.
- **Q1 Solution:** $M = (K, \Sigma, s, \Delta, F)$ for $K = \{q_0\} = F$, $s = q_0, \Sigma = \emptyset, \Delta = \emptyset$. M is deterministic and

$$L(M) = \{e\} \neq \emptyset$$

Q2 Solution: $M = (K, \Sigma, s, \Delta, F)$ for $\Sigma = \{a, b\}, K = \{q_0, q_1\}, s = q_0, F = \{q_0\}, \Delta = \{(q_0, a, q_1), (q_1, b, q_0)\}$. *M* is non deterministic; Δ is not a function on $K \times \Sigma$.

$$L(M) = (ab)^*$$

- **Q3 Solution:** $M = (K, \Sigma, s, \Delta, F)$ for $\Sigma = \{a, b\}, K = \{q_0, q_1, q_2\}, F = \{q_1\}, \Delta = \{(q_0, a, q_1), (q_0, b, q_1), (q_1, a, q_1), (q_1, e, q_2), (q_2, ab, q_2)\}$. It is NOT an automaton. It has no initial state.
- **Q4** $M = (K, \Sigma, s, \Delta, F)$ for $\Sigma = \{a, b\}, K = \{q_0, q_1, q_2, q_3\}, s = q_0, F = \emptyset,$ $\Delta = \{(q_0, a, q_1), (q_1, b, q_2), (q_2, a, q_1), (q_0, e, q_3), (q_2, a, q_3)\}.$ *M* is non deterministic; $\Delta \subseteq K \times \Sigma \cup \{e\} \times K.$

$$L(M) = \emptyset$$

$$L(M) = (ab)^+$$

4 Problems

Problem 1 Let L be a language defines as follows

 $L = \{w \in \{a, b\}^* : between any two a's in w there is an even number of consequitive b's.\}$.

1. Describe a regular expression r such that $\mathcal{L}(r) = L$.

Solution Remark that 0 is an even number, hence $a^* \in L$,

$$r = b^* \cup b^* a b^* \cup b^* (a(bb)^* a)^* b^* = b^* a b^* \cup b * (a(bb)^* a)^* b^*$$

2. Construct a finite state automata M, such that L(M) = L.

Solution 1

Components of M are:

$$\begin{split} \Sigma &= \{a, b\}, K = \{q_0, q_1, q_2, q_3\}, s = q_0, F = \{q_0, q_2, q_3\}, \\ \Delta &= \{(q_0, b, q_0), (q_0, a, q_3), (q_0, a, q_1), (q_1, bb, q_1), (q_1, a, q_2), (q_2, e, q_0), (q_3, b, q_3)\} \end{split}$$

Some elements of L(M) as defined by the state diagram are:

 $a, aaa, bbb, aaaabbb, bbbaaaa, abba, abbabbbba, abbbbbbabba, \dots$

Solution 2

Components of M are:

$$\Sigma = \{a, b\}, K = \{q_0, q_1, q_2\}, s = q_0, F = \{q_0, q_1, q_2\},$$
$$\Delta = \{(q_0, b, q_0), (q_0, e, q_1), (q_1, bb, q_1), (q_1, a, q_1), (q_1, e, q_2), (q_2, b, q_2)\}$$

Problem 2 Let

$$M = (K, \Sigma, s, \Delta, F)$$

for $K = \{q_0\}, \ s = q_0, \ \Sigma = \{a, b\}, \ F = \{q_0\}$ and

$$\Delta = \{ (q_0, aba, q_0), (q_0, ab, q_0) \}$$

1. List some elements of L(M).

Solution

 $e, ab, abab, ababa, ababaaba, \dots$

2. Write a regular expression for the language accepted by *M*. **Solution**

$$L = (ab \cup aba)^*$$

Problem 3 We know that for any deterministic finite automaton $M = (K, \Sigma, s, \delta, F)$ the following is true:

$$e \in L(M)$$
 iff $s \in F$.

Show that the above is not true for all non-deterministic automata.

Solution Let $M = (K, \Sigma, s, \Delta, F)$ for $K = \{q_0, q_1\}, s = q_0, \Sigma = \emptyset, F = \{q_1\}, \text{ and } \Delta = \{(q_0, e, q_1\}, L(M) = \{e\} and s \notin F.$

Problem 4 For M defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

for $K = \{q_0, q_1, q_2, q_3\}, s = q_0$ $\Sigma = \{a, b\}, F = \{q_2, q_3\}$ and

$$\Delta = \{(q_0, a, q_1), (q_0, e, q_1), (q_0, b, q_2), (q_1, b, q_3), (q_1, e, q_3), (q_2, b, q_2), (q_2, e, q_3), (q_3, a, q_3)\}$$

Write a regular expression describing L(M)).

Solution Regular expression (not simplified) describing L(M) is:

$$aa^* \cup a^* \cup aba^* \cup ba^* \cup bb^* \cup bb^*a^*$$

- Write 4 steps of the general method of transformation the NDFA M, into an equivalent deterministic M'.
 - $\begin{array}{l} \underline{\operatorname{Reminder:}} \ E(q) = \{ p \in K : (q,e) \stackrel{*,M}{\longmapsto} (p,e) \} \mbox{ and } \\ \delta(Q,\sigma) = \bigcup \{ E(p) : \exists q \in Q, \ (q,\sigma,p) \in \Delta \}. \end{array}$

Solution Step 1:

$$E(q_0) = \{q_0, q_1, q_3\}, \ E(q_1) = \{q_1, q_3\}, \ E(q_2) = \{q_2, q_3\}, \ E(q_3) = \{q_3\}$$

Solution Step 2:

$$\delta(E(q_0), a) = \delta(\{q_0, q_1, q_3\}, a) = E(q_1) \cup E(q_3) = \{q_1, q_3\} \in F_{q_1}$$

$$\delta(E(q_0), b) = \delta(\{q_0, q_1, q_3\}, b) = E(q_2) \cup E(q_3) \cup \emptyset = \{q_2, q_3\} \in F_{q_2}$$

Solution Step 3:

$$\delta(\{q_1, q_3\}, a) = \emptyset \cup E(q_3) = \{q_3\} \in F,$$

$$\delta(\{q_1, q_3\}, b) = E(q_3) \cup \emptyset = \{q_3\} \in F,$$

$$\delta(\{q_2, q_3\}, a) = \emptyset \cup E(q_3) = \{q_3\} \in F,$$

$$\delta(\{q_2, q_3\}, b) = E(_2) = \{q_2, q_3\}$$

Solution Step 4:

$$\delta(\{q_3\}, a) = E(q_3) = \{q_3\} \in F, \quad \delta(\{q_3\}, b) = \emptyset,$$
$$\delta(\emptyset, a) = \emptyset, \quad \delta(\emptyset, b) = \emptyset.$$

End of the construction.