cse303
ELEMENTS OF THE THEORY OF
COMPUTATION

Professor Anita Wasilewska
LECTURE 8
CHAPTER 2
FINITE AUTOMATA

4. Languages that are Not Regular
5. State Minimization
CHAPTER 2
PART 4: Languages that are not Regular
Languages that are Not Regular

We know that there are uncountably many and exactly C of all languages over any alphabet $\Sigma \neq \emptyset$
We also know that there are only \aleph_0, i.e. infinitely countably many regular languages

It means that we have uncountably many and exactly C languages that are not regular

Reminder
A language $L \subseteq \Sigma^*$ is regular if and only if there is a regular expression $r \in \mathcal{R}$ that represents L, i.e. such that

$$L = \mathcal{L}(r)$$
Regular or not Regular Languages

We look now at some simple examples of languages that might be, or not be regular

E1 The language \(L_1 = a^*b^* \) is regular because is defined by a regular expression

E2 The language

\[L_2 = \{ a^n b^n : n \geq 0 \} \subseteq L_1 \]

is not regular

We will prove prove it using a very important theorem to be proved that is called **Pumping Lemma**
Regular or not Regular Languages

Intuitively we can see that

\[L_2 = \{a^n b^n : n \geq 0\} \]

can’t be regular as we can’t construct a **finite automaton** accepting it.

Such automaton would need to have something like a **memory** to store, count and compare the number of a’s with the number of b’s.
We will define and study in Chapter 3 a new class of automata that would accommodate the "memory" problem. They are called Push Down Automata. We will prove that they accept a larger class of languages, called context free languages.
Regular or not Regular Languages

E3 The language $L_3 = a^*$ is regular because it is defined by a regular expression.

E4 The language $L_4 = \{a^n : n \geq 0\}$ is regular because in fact $L_3 = L_4$.

E5 The language $L_4 = \{a^n : n \in \text{Prime}\}$ is not regular. We will prove it using Pumping Lemma.
Regular or not Regular Languages

E6 The language \(L_6 = \{ a^n : n \in \text{EVEN} \} \) is regular because in fact \(L_6 = (aa)^* \)

E7 The language

\[L_7 = \{ w \in \{ a, b \}^* : w \text{ has an equal number of } a\text{'s and } b\text{'s } \}

is not regular

Proof

Assume that \(L_7 \) is regular

We know that \(L_1 = a^*b^* \) is regular

Hence the language \(L = L_7 \cap L_1 \) is regular, as the class of regular languages is closed under intersection

But obviously, \(L = \{ a^n b^n : n \in \mathbb{N} \} \) and was proved to be not regular

This contradiction proves that \(L_7 \) is not regular
Regular aor not Regular Languages

E8 The language \(L_8 = \{ w w^R : w \in \{a, b\}^* \} \)
is not regular
We prove it using Pumping Lemma

E9 The language \(L_9 = \{ w w : w \in \{a, b\}^* \} \)
is not regular
We prove it using Pumping Lemma
Regular or not Regular Languages

E10 The language \(L_{10} = \{wcw : w \in \{a, b\}^*\} \) is not regular
We prove it using Pumping Lemma

E11 The language \(L_{11} = \{w\overline{w} : w \in \{a, b\}^*\} \) where \(\overline{w} \) stands for \(w \) with each occurrence of \(a \) is replaced by \(b \), and vice versa is not regular
We prove it using Pumping Lemma
The language

\[L_{12} = \{ xy \in \Sigma^* : x \in L \text{ and } y \notin L \text{ for any regular } L \subseteq \Sigma^* \} \]

is regular

Proof Observe that \(L_{12} = L \circ \overline{L} \) where \(\overline{L} \) denotes a complement of \(L \), i.e.

\[\overline{L} = \{ w \in \Sigma^* : w \in \Sigma^* - L \} \]

\(L \) is regular, and so is \(\overline{L} \), and \(L_{12} = L \circ \overline{L} \) is regular by the following, already proved theorem

Closure Theorem The class of languages accepted by Finite Automata FA is closed under \(\cup, \cap, -, \circ, * \).
Regular or not Regular Languages

E13 The language

\[L_{13} = \{ w^R : w \in L \text{ and } L \text{ is regular} \} \]

is **regular**

Definition For any language L we call the language

\[L_R = \{ w^R : w \in L \} \]

the **reverse** language of L

The **E13** says that the following holds

Fact

For any **regular** language L, its **reverse** language \(L^R \) is **regular**
Regular or not Regular Languages

Fact
For any regular language \(L \), its reverse language \(L^R \) is regular.

Proof
Let \(M = (K, \Sigma, \Delta, s, F) \) be such that \(L = L(M) \)
The reverse language \(L^R \) is accepted by a finite automata

\[
M^R = (K \cup s', \Sigma, \Delta', s', F = \{s\})
\]

where \(s' \notin K \) and

\[
\Delta' = \{(r, w, p) : (p, w, r) \in \Delta, w \in \Sigma^*\} \cup \{(s', e, q) : q \in F\}
\]

We used the Lecture Definition of \(M \)
Regular and NOT Regular Languages

Proof of **E13** pictures

Diagram of M

Diagram of M^R
Regular and NOT Regular Languages

E14
Any finite language is regular

Proof Let $L \subseteq \Sigma^*$ be a finite language, i.e.

$$L = \emptyset \text{ or } L = \{w_1, w_2, \ldots w_n\} \text{ for } n > 0$$

We construct the finite automata M such that

$$L(M) = L = \{w_1\} \cup \{w_2\} \cup \ldots \{w_n\} = L_{w_1} \cup \ldots \cup L_{w_n}$$

as

$$M = M_{w_1} \cup \ldots \cup M_{w_n} \cup M_{\emptyset}$$

where
Exercises

Exercise 1

Show that the language

\[L = \{ xyx^R : x, y \in \Sigma \} \]

is regular for any \(\Sigma \).
Exercises

Exercise 1
Show that the language

\[L = \{ xyx^R : x, y \in \Sigma \} \]

is regular for any \(\Sigma \)

Proof
For any \(x \in \Sigma \), \(x^R = x \)
\(\Sigma \) is a finite set, hence

\[L = \{ xyx : x, y \in \Sigma \} \]

is also finite and we just proved that any finite language is regular
Exercises

Exercise 2
Show that the class of regular languages is not closed with respect to subset relation.

Exercise 3
Given L_1, L_2 regular languages, is $L_1 \cap L_2$ also a regular language?
Exercises

Exercise 2
Show that the class of regular languages is not closed with respect to subset relation.

Solution
Consider two languages

\[L_1 = \{a^n b^n : n \in \mathbb{N}\} \quad \text{and} \quad L_2 = a^* b^* \]

Obviously, \(L_1 \subseteq L_2 \) and \(L_1 \) is a non-regular subset of a regular \(L_2 \)

Exercise 3
Given \(L_1, L_2 \) regular languages, is \(L_1 \cap L_2 \) also a regular language?

Solution
YES, it is because the class of regular languages is closed under \(\cap \)
Exercises

Exercise 4

Given L_1, L_2, such that $L_1 \cap L_2$ is a regular language
Does it imply that both languages L_1, L_2 must be regular?
Exercises

Exercise 4

Given L_1, L_2, such that $L_1 \cap L_2$ is a regular language. Does it imply that both languages L_1, L_2 must be regular?

Solution

NO, it doesn’t. Take the following L_1, L_2

$$L_1 = \{a^n b^n : n \in N\} \quad \text{and} \quad L_2 = \{a^n : n \in \text{Prime}\}$$

The language $L_1 \cap L_2 = \emptyset$ is a regular language none of L_1, L_2 is regular.
Exercise 5

Show that the language

$$L = \{xyx^R : x, y \in \Sigma^*\}$$

is regular for any Σ.
Exercises

Exercise 5
Show that the language

$$L = \{xyx^R : x, y \in \Sigma^*\}$$

is regular for any Σ

Solution
Take a case of $x = e \in \Sigma^*$
We get a language

$$L_1 = \{eye^R : e, y \in \Sigma^*\} \subseteq L$$

and of course $L_1 = \Sigma^*$ and so $\Sigma^* \subseteq L \subseteq \Sigma^*$
Hence $L = \Sigma^*$ and Σ^* is regular
This proves that L is regular
Exercises

Exercise 6
Given a regular language $L \subseteq \Sigma^*$
Show that the language

$$L_1 = \{xy \in \Sigma^* : x \in L \text{ and } y \notin L\}$$

is also regular
Exercises

Exercise 6
Given a regular language \(L \subseteq \Sigma^* \)
Show that the language

\[L_1 = \{xy \in \Sigma^* : x \in L \text{ and } y \notin L\} \]

is also regular

Solution
Observe that \(L_1 = L \circ (\Sigma^* - L) \)
\(L \) is regular, hence \((\Sigma^* - L) \) is regular (closure under complement), and so is \(L_1 \) by closure under concatenation
For quiz 3

Read **Pumping Lemma** statement and information about its role - you need to know it for **Quiz 3**

The **proof** of the **Pumping Lemma** and its applications will not be on the Quiz 3

You will have to know it for **Quiz 4**
Review Questions
Review Questions

Write SHORT answers

Q1
For any language $L \subseteq \Sigma^*$, $\Sigma \neq \emptyset$ there is a deterministic automata M, such that $L = L(M)$

Q2
Any regular language has a finite representation.

Q3
Any finite language is regular

Q4
Given L_1, L_2 languages over Σ, then $((L_1 \cap (\Sigma^* - L_2)) \cup L_2)L_1$ is a regular regular language
Review Questions

SHORT answers

Q1
For any language \(L \subseteq \Sigma^* \), \(\Sigma \neq \emptyset \) there is a deterministic automata \(M \), such that \(L = L(M) \)
True only when \(L \) is regular

Q2
Any regular language has a finite representation.
True by definition of regular language and the fact that regular expression is a finite string

Q3
Any finite language is regular
True as we proved it

Q4
Given \(L_1, L_2 \) languages over \(\Sigma \), then
\[
((L_1 \cap (\Sigma^* - L_2)) \cup L_2)L_1
\]
is a regular regular language
True only when both are regular languages
Review Questions for Quiz

Write SHORT answers

Q5
For any finite automata M

$$L(M) = \bigcup \{R(1, j, n) : q_j \in F\}$$

Q6
Σ in any Generalized Finite Automaton includes some regular expressions

Q7
Pumping Lemma says that we can always prove that a language is not regular

Q8
$L = \{a^n c^n : n \geq 0\}$ is regular
Review Questions

SHORT answers

Q5
For any finite automata M

$$L(M) = \bigcup \{R(1, j, n) : q_j \in F\}$$

True only when M has n states and they are put in 1-1 sequence and $q_1 = s$

Q6

Σ in any **Generalized Finite Automaton** includes some regular expressions

True by definition
Review Questions

Q7
Pumping Lemma says that we can always prove that a language is not regular
Not True PL serves as a tool for proving that some languages are not regular

Q8
$L = \{a^n c^n : n \geq 0\}$ is regular
Not True we proved by PL that it is not regular
PUMPING LEMMA
Pumping Lemma

Pumping Lemma is one of a general class of Theorems called **pumping theorems**. They are called **pumping theorems** because they assert the existence of certain points in certain strings where a substring can be repeatedly inserted (pumping) without affecting the acceptability of the string.

We present here two versions of the **Pumping Lemma**. First is the Lecture Notes version from the first edition of the Book and the second is the Book version (page 88) from the new edition. The Book version is a slight generalization of the Lecture version.
Pumping Lemma

Pumping Lemma 1
Let L be an infinite regular language over $\Sigma \neq \emptyset$
Then there are strings $x, y, z \in \Sigma^*$ such that

$$y \neq e \quad \text{and} \quad xy^n z \in L \quad \text{for all} \quad n \geq 0$$

Observe that the Pumping Lemma 1 says that in an infinite regular language L, there is a word $w \in L$ that can be re-written as $w = xyz$ in such a way that $y \neq e$ and we "pump" the part y any number of times and still have that such obtained word is still in L, i.e. that $xy^n z \in L$ for all $n \geq 0$
Hence the name Pumping Lemma
Role of Pumping Lemma

We use the Pumping Lemma as a tool to carry proofs that some languages are not regular

Proof METHOD

Given an infinite language L we want to PROVE it to be NOT REGULAR

We proceed as follows

1. We assume that L is REGULAR
2. Hence by Pumping Lemma we get that there is a word $w \in L$ that can be re-written as $w = xyz$, $y \neq e$, and $xy^n z \in L$ for all $n \geq 0$
3. We examine the fact $xy^n z \in L$ for all $n \geq 0$
4. If we get a CONTRADICTION we have proved that the language L is not regular
Proof of Pumping Lemma

Pumping Lemma 1

Let L be an infinite regular language over $\Sigma \neq \emptyset$

Then there are strings $x, y, z \in \Sigma^*$ such that

\[y \neq e \quad \text{and} \quad xy^n z \in L \quad \text{for all} \quad n \geq 0 \]

Proof

Since L is regular, L is accepted by a deterministic finite automaton

\[M = (K, \Sigma, \delta, s, F) \]

Suppose that M has n states, i.e. $|K| = n$ for $n \geq 1$

Since L is infinite, M accepts some string $w \in L$ of length n or greater, i.e.

there is $w \in L$ such that $|w| = k > n$ and

\[w = \sigma_1 \sigma_2 \ldots \sigma_k \quad \text{for} \quad \sigma_i \in \Sigma, \quad 1 = 1, 2, \ldots, k \]
Proof of Pumping Lemma

Consider a computation of \(w = \sigma_1 \sigma_2 \ldots \sigma_k \in L \):

\[
(q_0, \sigma_1 \sigma_2 \ldots \sigma_k) \vdash_M (q_1, \sigma_2 \ldots \sigma_k),
vdash_M \ldots \vdash_M (q_{k-1}, \sigma_k), \vdash_M (q_k, e)
\]

where \(q_0 \) is the initial state \(s \) of \(M \) and \(q_k \) is a final state of \(M \). Since \(|lw| = k > n \) and \(M \) has only \(n \) states, by Pigeon Hole Principle we have that there exist \(i \) and \(j \), \(0 \leq i < j \leq k \), such that \(q_i = q_j \). That is, the string \(\sigma_{i+1} \ldots \sigma_j \) is nonempty since \(i + 1 \leq j \) and drives \(M \) from state \(q_i \) back to state \(q_i \). But then this string \(\sigma_{i+1} \ldots \sigma_j \) could be removed from \(w \), or we could insert any number of its repetitions just after just after \(\sigma_j \) and \(M \) would still accept such string.
Proof of Pumping Lemma

We just showed by Pigeon Hole Principle we have that \(M \) that accepts \(w = \sigma_1 \sigma_2 \ldots \sigma_k \in L \) also accepts the string

\[\sigma_1 \sigma_2 \ldots \sigma_i (\sigma_{i+1} \ldots \sigma_j)^n \sigma_{j+1} \ldots \sigma_k \]
for each \(n \geq 0 \)

Observe that \(\sigma_{i+1} \ldots \sigma_j \) is non-empty string since \(i + 1 \leq j \)

That means that there exist strings

\[x = \sigma_1 \sigma_2 \ldots \sigma_i, \quad y = \sigma_{i+1} \ldots \sigma_j, \quad z = \sigma_{j+1} \ldots \sigma_k \]
for \(y \neq e \)

such that

\[y \neq e \quad \text{and} \quad xy^n z \in L \]
for all \(n \geq 0 \)
Proof of Pumping Lemma

The computation of M that accepts xy^nz is as follows

$$(q_o, xy^n z) \vdash_M^* (q_i, y^n z) \vdash_M^* (q_i, y^{n-1} z)$$

$\vdash_M^* \ldots \vdash_M^* (q_i, y^{n-1} z) \vdash_M (q_k, e)$$

This ends the proof.

Observe that the proof of the holds for any word $w \in L$ with $|w| \geq n$, where n is the number of states of deterministic M that accepts L.

We get hence another version of the Pumping Lemma 1.
Proof of Pumping Lemma

Pumping Lemma 2
Let \(L \) be an infinite regular language over \(\Sigma \neq \emptyset \)
Then there is an integer \(n \geq 1 \) such that for any word \(w \in L \) with lengths greater than \(n \), i.e. \(|w| \geq n \) there are \(x, y, z \in \Sigma^* \) such that \(w \) can be re-written as \(w = xyz \) and

\[
y \neq e \quad \text{and} \quad xy^n z \in L \quad \text{for all} \quad n \geq 0
\]

Proof
Since \(L \) is regular, it is accepted by a deterministic finite automaton \(M \) that has \(n \geq 1 \) states
This is our integer \(n \geq 1 \)
Let \(w \) be any word in \(L \) such that \(|w| \geq n \)
Such words exist as \(L \) in infinite
The rest of the proof exactly the same as in case of Pumping Lemma 1
Pumping Lemma

We write the **Pumping Lemma 2** symbolically using quantifiers symbols as follows

Pumping Lemma 2

Let L be an *infinite regular* language over $\Sigma \neq \emptyset$

Then the following holds

$$\exists n \geq 1 \forall w \in L (|w| \geq n \Rightarrow \exists x, y, z \in \Sigma^* (w = xyz \cap y \neq e \cap \forall n \geq 0 (xy^n z \in L)))$$
Book Pumping Lemma

Book Pumping Lemma is a STRONGER version of the Pumping Lemma 2.
It applies to any *any regular* language, not to an *infinite regular* language, as the **Pumping Lemmas 1, 2**.
Let L be a regular language over $\Sigma \neq \emptyset$

Then **there is** an integer $n \geq 1$ such that **any word** $w \in L$ with $|w| \geq n$ can be re-written as $w = xyz$ such that

$y \neq e, \ |xy| \leq n, \ x, y, z \in \Sigma^* \text{ and } xy^iz \in L \text{ for all } i \geq 0$

Proof The proof goes exactly as in the case of **Pumping Lemmas 1, 2**

Notice that from the proof of **Pumping Lemma 1**

$$x = \sigma_1\sigma_2\ldots\sigma_i, \ z = \sigma_{j+1} \ldots \sigma_k \} \text{ for } 0 \leq i < j \leq n$$

and so by definition $|xy| \leq n$ for n being the number of states of the deterministic M that accepts L
We write the Pumping Lemma symbolically using quantifiers symbols as follows:

Book Pumping Lemma

Let L be a regular language over $\Sigma \neq \emptyset$.

Then the following holds:

$$\exists n \geq 1 \forall w \in L (|w| \geq n \Rightarrow \exists x, y, z \in \Sigma^*(w = xyz \cap y \neq e \cap |xy| \leq n \cap \forall i \geq 0(xy^iz \in L))$$

A natural question arises:

WHY the Book Pumping Lemma applies when L is a regular finite language?

When L is a regular finite language the Lecture Lemma does not apply.
Book Pumping Lemma

Let’s look at an example of a finite, and hence a regular language

\[L = \{a, b, ab, bb\} \]

Observe that the condition

\[\exists n \geq 1 \forall w \in L \ (|w| \geq n \Rightarrow \exists x, y, z \in \Sigma^* (w = xyz \land y \neq e \land |xy| \leq n \land \forall i \geq 0 (xy^iz \in L)) \]

of the Book Pumping Lemma holds because there exists \(n = 3 \) such that the conditions becomes as follows
Book Pumping Lemma

Take $n = 3$, or any $n \geq 3$ we get statement:

$$\exists_{n=3} \forall_{w \in L} (|w| \geq 3 \Rightarrow \exists_{x,y,z \in \Sigma^*}(w = xyz \cap y \neq e \cap |xy| \leq n \cap \forall_{i \geq 0}(xy^iz \in L)))$$

Observ**e** that the above is a TRUE statement because the statement $|w| \geq 3$ is FALSE for all $w \in L = \{a, b, ab, bb\}$

By definition, the implication $FALSE \Rightarrow (anything)$ is always TRUE, hence the whole statement is TRUE
Book Pumping Lemma

The same reasoning applies for any finite (and hence regular) language.

In general, let L be any finite language.

Let $m = \max\{|w| : w \in L\}$

Such m exists because L is finite.

Take $n = m + 1$ as the n in the condition of the Book Pumping Lemma.

The Lemma condition is TRUE for all $w \in L$, because the statement $|w| \geq m + 1$ is FALSE for all $w \in L$.

By definition, the implication $FALSE \Rightarrow (anything)$ is always TRUE, hence the whole statement is TRUE.
Pumping Lemma Applications

Use **Pumping Lemma** to prove the following

Fact 1
The language $L \subseteq \{a, b\}^*$ defined as follows

$$L = \{a^n b^n : n > 0\}$$

IS NOT regular

Obviously, L is infinite and we use the Lecture version

Pumping Lemma 1
Let L be an **infinite regular** language over $\Sigma \neq \emptyset$

Then **there are** strings $x, y, z \in \Sigma^*$ such that

$$y \neq e \quad \text{and} \quad xy^n z \in L \quad \text{for all} \quad n \geq 0$$
Pumping Lemma Applications

Reminder: we proceed as follows
1. We assume that \(L \) is REGULAR
2. Hence by Pumping Lemma we get that there is a word \(w \in L \) that can be re-written as \(w = xyz \) for \(y \neq e \) and \(xy^n z \in L \) for all \(n \geq 0 \)
3. We examine the fact \(xy^n z \in L \) for all \(n \geq 0 \)
4. If we get a CONTRADICTION we have proved that \(L \) is NOT REGULAR
Pumping Lemma Applications

Assume that

\[L = \{a^m b^m : m \geq 0\} \]

IS REGULAR

L is infinite hence Pumping Lemma 1 applies, so there is a word \(w \in L \) that can be re-written as \(w = xyz \) for \(y \neq e \) and \(xy^n z \in L \) for all \(n \geq 0 \)

There are three possibilities for \(y \neq e \)

We will show that in each case we prove that \(xy^n z \in L \) is impossible (contradiction)
Pumping Lemma Applications

Consider \(w = xyz \in L \), i.e. \(xyz = a^m b^m \) for some \(m \geq 0 \)
We have to consider the following cases

Case 1
\(y \) consists entirely of \(a \)'s

Case 2
\(y \) consists entirely of \(b \)'s

Case 3
\(y \) contains both some \(a \)'s followed by some \(b \)'s

We will show that in each case assumption that \(xy^n z \in L \) for all \(n \) leads to CONTRADICTION
Pumping Lemma Applications

Consider \(w = xyz \in L \), i.e. \(xyz = a^m b^m \) for some \(m \geq 0 \)

Case 1: \(y \) consists entirely of \(a \)'s

So \(x \) **must** consists entirely of \(a \)'s only and \(z \) **must** consists of some \(a \)'s followed by some \(b \)'s

Remember that only we must have that \(y \neq e \)

We have the following situation

\[
\begin{align*}
x &= a^p & \text{for } p \geq 0 & \text{as } x \text{ can be empty} \\
y &= a^q & \text{for } q > 0 & \text{as } y \text{ must be nonempty} \\
z &= a^r b^s & \text{for } r \geq 0, \ s > 0 & \text{as we must have some } b \text{'s}
\end{align*}
\]
Pumping Lemma Applications

The condition \(xy^n z \in L\) for all \(n \geq 0\) becomes as follows

\[a^p(a^q)^n a^r b^s = a^{p+nq+r} b^s \in L\]

for all \(p, q, n, r, s\) such that the following conditions hold

\[C1: \quad p \geq 0, \quad q > 0, \quad n \geq 0, \quad r \geq 0, \quad s > 0\]

By definition of \(L\)

\[a^{p+nq+r} b^s \in L \quad \text{iff} \quad [p + nq + r = s]\]

Take case: \(p = 0, \quad r = 0, \quad q > 0, \quad n = 0\)

We get \(s = 0\) CONTRADICTION with \(C1: \quad s > 0\)
Pumping Lemma Applications

Consider $xyz = a^m b^m$ for some $m \geq 0$

Case 2: y consists of b’s only
So x **must** consist of some a’s followed by some b’s and z **must** have only b’s, possibly none

We have the following situation

$x = a^p b^r$ for $p > 0$ as y has at least one b and $r \geq 0$

$y = b^q$ for $q > 0$ as y must be nonempty

$z = b^s$ for $s \geq 0$
Pumping Lemma Applications

The condition \(xy^n z \in L \) for all \(n \geq 0 \) becomes as follows

\[
a^p b^r (b^q)^n b^s = a^p b^{r+nq+r} \in L
\]

for all \(p, q, n, r, s \) such that the following conditions hold

\[\text{C2: } p > 0, \ r \geq 0, \ q > 0, \ n \geq 0, \ s \geq 0\]

By definition of \(L \)

\[
a^p b^{r+nq+r} \in L \iff [p = r + qn + s]
\]

Take case: \(r = 0, \ n = 0, \ q > 0 \)

We get \(p = 0 \) \text{ CONTRADICTION} \ with \(\text{C2: } p > 0 \)
Pumping Lemma Applications

Consider \(xyz = a^m b^m \) for some \(m \geq 0 \)

Case 3: \(y \) contains both \(a \)'s and \(a \)'s

So \(y = a^p b^r \) for \(p > 0 \) and \(r > 0 \)

Case \(y = b^r a^p \) is impossible

Take case: \(y = ab, \quad x = e, \quad z = e \) and \(n = 2 \)

By **Pumping Lemma** we get that \(y^2 \in L \)

But this is a **CONTRACTION** with \(y^2 = abab \notin L \)

We covered all cases and it **ends the proof**
Use **Pumping Lemma** to *prove* the following

Fact 2

The language $L \subseteq \{a\}^*$ defined as follows

$$L = \{a^n : n \in \text{Prime}\}$$

IS NOT regular

Obviously, L is infinite and we use the Lecture version

Proof

Assume that L is regular, hence as L is infinite, so there is a word $w \in L$ that can be re-written as $w = xyz$ for $y \neq e$ and $xy^n z \in L$ for all $n \geq 0$

Consider $w = xyz \in L$, i.e. $xyz = a^m$ for some $m > 0$ and $m \in \text{Prime}$
Pumping Lemma Applications

Then

\[x = a^p, \quad y = a^q, \quad z = a^r \quad \text{for} \quad p \geq 0, \quad q > 0, \quad r \geq 0 \]

The condition \(xy^n z \in L \) for all \(n \geq 0 \) becomes as follows

\[a^p (a^q)^n a^r = a^{p+nq+r} \in L \]

It means that for all \(n, p, q, r \) the following condition hold \(C \)

\[n \geq 0, \quad p \geq 0, \quad q > 0, \quad r \geq 0, \quad \text{and} \quad p + nq + r \in \text{Prime} \]

But this is IMPOSSIBLE
Pumping Lemma Applications

Take \(n = p + 2q + r + 2 \) and evaluate:

\[
p + nq + r = p + (p + 2q + r + 2)q + r =
\]

\[
p(1 + q) + 2q(q + 1) + r(q + 1) = (q + 1)(p + 2q + r)
\]

By the above and the condition \(C \) we get that

\[
p + nq + r \in \text{Prime} \quad \text{and} \quad p + nq + r = (q + 1)(p + 2q + r)
\]

and both factors are natural numbers greater than 1 what is a \text{CONTRADICTION}.

This \text{ends the proof}.