cse303
ELEMENTS OF THE THEORY OF COMPUTATION

Professor Anita Wasilewska
LECTURE 7
CHAPTER 2
FINITE AUTOMATA

3. Finite Automata and Regular Expressions
4. Languages that are Not Regular
5. State Minimization
6. Algorithmic Aspects of Finite Automata
CHAPTER 2
PART 3: Finite Automata and Regular Expressions
Finite Automata and Regular Expressions

The goal of this part of chapter 2 is to prove a theorem that establishes a relationship between Finite Automata and Regular languages, i.e. to prove that following

MAIN THEOREM

A language L is regular if and only if it is accepted by a finite automaton, i.e.

A language L is regular if and only if there is a finite automaton M, such that

$$L = L(M)$$
Closure Theorem

To achieve our goal we first prove the following

CLOSURE THEOREM
The class of languages accepted by Finite Automata (FA) is closed under the following operations

1. union
2. concatenation
3. Kleene’s Star
4. complementation
5. intersection

Observe that we used the term Finite Automata (FA) so in the proof we have can choose a DFA or N DFA, as we have already proved their EQUIVALENCY
Closure Theorem

Remember that languages are sets, so we have the set operations \cup, \cap, $-$, defined for any $L_1, L_2 \subseteq \Sigma^*$, i.e. the languages

\[
L = L_1 \cup L_2, \quad L = L_1 \cap L_2, \quad L = \Sigma^* - L_1
\]

We also defined the languages specific operations of concatenation and Kleene’s Star, i.e. the languages

\[
L = L_1 \circ L_2 \quad \text{and} \quad L = L_1^*
\]
Closure Under Union

1. The class of languages accepted by Finite Automata (FA) is closed under union

Proof
Let M_1, M_2 be two NDFA finite automata
We construct a NDF automaton M, such that

$$L(M) = L(M_1) \cup L(M_2)$$

Let $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ and $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$
Where (we rename the states, if needed)

$$\Sigma = \Sigma_1 \cup \Sigma_2, \quad s_1 \neq s_2, \quad K_1 \cap K_2 = \emptyset, \quad F_1 \cap F_2 = \emptyset$$
Closure Under Union

We picture M, such that $L(M) = L(M_1) \cup L(M_2)$ as follows:

M goes nondeterministically to M_1 or to M_2 reading nothing so we get

$$w \in L(M) \text{ if and only if } w \in M_1 \text{ or } w \in M_2$$

and hence

$$L(M) = L(M_1) \cup L(M_2)$$
Closure Under Union

We define formally

\[M = M_1 \cup M_2 = (K, \Sigma, \Delta, s, F) \]

where

\[K = K_1 \cup K_2 \cup \{s\} \quad \text{for} \quad s \notin K_1 \cup K_2 \]

\(s \) is a NEW state and

\[F = F_1 \cup F_2, \quad \Delta = \Delta_1 \cup \Delta_2 \cup \{(s, e, s_1), (s, e, s_2)\} \]

for \(s_1 \) - initial state of \(M_1 \) and \(s_2 \) the initial state of \(M_2 \)

Observe that by Mathematical Induction we construct, for any \(n \geq 2 \) an automaton \(M = M_1 \cup M_2 \cup \ldots M_n \) such that

\[L(M) = L(M_1) \cup L(M_2) \cup \ldots L(M_n) \]
Closure Under Union

Formal proof

Directly from the definition we get

\[w \in L(M) \text{ iff } \exists q((q \in F = F_1 \cup F_2) \cap ((s, w) \vdash_{M^*}(q, e)) \text{ iff } \]
\[\exists q(((q \in F_1) \cup (q \in F_2)) \cap ((s, w) \vdash_{M^*}(q, e)) \text{ iff } \]
\[\exists q((q \in F_1) \cap ((s, w) \vdash_{M^*}(q, e)) \cup \]
\[\exists q((q \in F_2) \cap ((s, w) \vdash_{M^*}(q, e))) \text{ iff } \]
\[w \in L(M_1) \cup w \in L(M_2), \text{ what proves that } \]

\[L(M) = L(M_1) \cup L(M_2) \]

We used the following Law of Quantifiers

\[\exists x(A(x) \cup B(x)) \equiv (\exists xA(x) \cup \exists xB(x)) \]
Examples

Example 1

Diagram of M_1 such that $L(M_1) = aba^*$ is

Diagram of M_2 such that $L(M_2) = b^*ab$ is

We construct $M = M_1 \cup M_2$ such that

$$L(M) = aba^* \cup b^*ab = L(M_1) \cup L(M_2)$$

as follows
Examples

Example 1

Diagram of M such that $L(M) = aba^* \cup b^*ab$ is

![Diagram of automaton](image.png)
Examples

Example 2

Diagram of M_1 such that $L(M_1) = b^*abc$ is

![Diagram of M_1](image1)

Diagram of M_2 such that $L(M_2) = (ab)^*a$ is

![Diagram of M_2](image2)

We construct $M = M_1 \cup M_2$ such that

$$L(M) = b^*abc \cup (ab)^*a = L(M_1) \cup L(M_2)$$

as follows
Examples

Diagram of M such that $L(M) = b^*abc \cup (ab)^*a$ is

This is a schema diagram

If we need to specify the components we put names on states on the diagrams
Closure Under Concatenation

2. The class of languages accepted by Finite Automata is closed under concatenation

Proof
Let \(M_1, M_2 \) be two N DFA
We construct a NDF automaton \(M \), such that

\[
L(M) = L(M_1) \circ L(M_2)
\]

Let \(M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1) \) and
\(M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2) \)
Where (if needed we re-name states)
\[\Sigma = \Sigma_1 \cup \Sigma_2, \quad s_1 \neq s_2, \quad K_1 \cap K_2 = \emptyset \quad F_1 \cap F_2 = \emptyset\]
Closure Under Concatenation

We picture M, such that $L(M) = L(M_1) \circ L(M_2)$ as follows:

The final states from F_1 of M_1 become internal states of M.

The initial state s_2 of M_2 becomes an internal state of M.

M goes nondeterministically from ex-final states of M_1 to the ex-initial state of M_2 reading nothing.
Closure Under Concatenation

We define formally

\[M = M_1 \diamond M_2 = (K, \Sigma, \Delta, s_1, F_2) \]

where

\[K = K_1 \cup K_2 \]

\(s_1 \) of \(M_1 \) is the initial state

\(F_2 \) of \(M_2 \) is the set of final states

\[\Delta = \Delta_1 \cup \Delta_2 \cup \{(q, e, s_2) : \text{ for } q \in F_1\} \]

Directly from the definition we get

\[w \in L(M) \text{ iff } w = w_1 \diamond w_2 \text{ for } w_1 \in L_1, w_2 \in L_2 \]

and hence

\[L(M) = L(M_1) \diamond L(M_2) \]
Examples

Diagram of M_1 such that $L(M_1) = aba^*$ is

Diagram of M_2 such that $L(M_2) = b^*ab$ is

We construct $M = M_1 \circ M_2$ such that

$$L(M) = aba^* \circ b^*ab = L(M_1) \circ L(M_2)$$

as follows
Examples

Given a language \(L = aba^*b^*ab \)

Observe that we can represent \(L \) as, for example, the following concatenation

\[
L = ab \circ a^* \circ b^* \circ ab
\]

Then we construct "easy" automata \(M_1, M_2, M_3, M_4 \) as follows
Examples

We know, by Mathematical Induction that we can construct, for any $n \geq 2$ an automaton

$$M = M_1 \circ M_2 \circ \cdots \circ M_n$$

such that

$$L(M) = L(M_1) \circ \cdots \circ L(M_n)$$

In our case $n=4$ and we get

Diagram of M

and $L(M) = aba^*b^*ab$
Question

Why we have to go be the transactions \((q, e, s_2)\) between \(M_1\) and \(M_2\) while constructing \(M = M_1 \circ M_2\)?

Example of a construction when we can’t SKIP the transaction \((q, e, s_2)\)

Here is a **correct** construction of \(M = M_1 \circ M_2\)

Observe that \(abbabab \notin L(M)\)
Here is a construction of $M' = M_1 \circ M_2$ without the transaction (q, e, s_2)

Observe that $abbabab \in L(M')$ and $abbabab \notin L(M)$

We hence proved that skipping the transactions (q, e, s_2) between M_1 and M_2 leads to automata accepting different languages.
3. The class of languages accepted by Finite Automata is closed under Kleene’s Star

Proof Let \(M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1) \)

We construct a NDF automaton \(M = M_1^* \), such that

\[
L(M) = L(M_1)^*
\]

Here is a diagram
Closure Under Kleene’s Star

Given $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$

We define formally

$$M = M_1^* = (K, \Sigma, \Delta, s, F)$$

where

$K = K_1 \cup \{s\}$ for $s \notin K_1$

s is new initial state, s_1 becomes an internal state

$F = F_1 \cup \{s\}$

$\Delta = \Delta_1 \cup \{(s, e, s_1)\} \cup \{(q, e, s_1) : \text{ for } q \in F_1\}$

Directly from the definition we get

$$L(M) = L(M_1)^*$$
Closure Under Kleene’s Star

The Book **diagram** is

Given $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$

We define

$$M_1^* = (K_1 \cup \{s\}, \Sigma, \Delta, s, F_1 \cup \{s\})$$

where s is a new initial state and

$$\Delta = \Delta_1 \cup \{(s, e, s_1)\} \cup \{(q, e, s_1) : \text{ for } q \in F_1\}$$
Two Questions

Here **two questions** about the construction of $M = M_1^*$.

Q1 Why do we need to make the NEW initial state s of M also a FINAL state?

Q2 Why can’t SKIP the introduction of the NEW initial state and design $M = M_1^*$ as follows

![Diagram](image)

$Q1 + Q2$ give us answer why we construct $M = M_1^*$ as we did, i.e. provides the motivation for the correctness of the construction.
Observe that the definition of $M = M_1^*$ must be correct for ALL automata M_1 and hence in particular for M_1 such that $F_1 = \emptyset$.

In this case we have that $L(M_1) = \emptyset$

But we know that

$$L(M) = L(M_1)^* = \emptyset^* = \{e\}$$

This proves that $M = M_1^*$ must accept e, and hence we must make s of M also a FINAL state.
Q2 Why can’t SKIP the introduction of the NEW initial state and design $M = M_1^*$

Here is an example

Let M_1, such that $L(M_1) = a(ba)^*$

M_1 is defined by a diagram

$L(M_1)^* = (a(ba)^*)^*$
Question 2 Answer

Here is a **diagram** of M where we skipped the introduction of a new initial state

![Diagram of M](image)

Observe that $ab \in L(M)$, but

$$ab \notin (a(ba)^*)^* = L(M_1)^*$$

This proves **incorrectness** of the above construction
Correct Diagram

The CORRECT diagram of $M = M_1^*$ is
Exercise 1

Construct M such that

$$L(M) = (ab^*ba \cup a^*b)^*$$

Observe that

$$L(M) = (L(M_1) \cup L(M_2))^*$$

and

$$M = (M_1 \cup M_2)^*$$
Exercise 1

Solution

We construct M such that $L(M) = (ab^*ba \cup a^*b)^*$ in the following steps using the **Closure Theorem** definitions.

Step 1 Construct M_1 for $L(M_1) = ab^*ba$

![Diagram 1]

Step 2 Construct M_2 for $L(M_2) = a^*b$

![Diagram 2]
Exercise

Step 3 Construct $M_1 \cup M_2$

Step 4 Construct $M = (M_1 \cup M_2)^*$

$L(M) = (ab^*ba \cup a^*b)^*$
Exercise 2

Construct M such that $L(M) = (a^*b \cup abc^*)a^*b^*$

Solution We construct M in the following steps using the Closure Theorem definitions

Step 1 Construct N_1, N_2 for $L = a^*b$ and $L = abc^*$

Step 2 Construct $M_1 = N_1 \cup N_2$
Exercise 2

Step 3 Construct M_2 for $L = a^*b^*$

Step 4 Construct $M = (M_1 \circ M_2)^*$

$L(M) = (a^*b \cup abc^*)a^*b^*$
CLOSURE THEOREM

The class of languages accepted by Finite Automata (FA) is closed under the following operations:

1. union proved
2. concatenation proved
3. Kleene’s Star proved
4. complementation
5. intersection

Observe that we used the term Finite Automata (FA) so in the proof we have can choose a DFA or N DFA, as we have already proved their EQUIVALENCY.
4. The class of languages accepted by Finite Automata is **closed** under complementation

Proof Let

\[M = (K, \Sigma, \delta, s, F) \]

be a **deterministic** finite automaton DFA

The complementary language \(\bar{L} = \Sigma^* - L(M) \) is accepted by the DFA denoted by \(\bar{M} \) that is identical with \(M \) except that final and nonfinal states are interchanged, i.e. we define

\[\bar{M} = (K, \Sigma, \delta, s, K - F) \]

and we have

\[L(\bar{M}) = \Sigma^* - L(M) \]
Closure Under Intersection

4. The class of languages accepted by Finite Automata is **closed** under intersection

Proof 1

Languages are sets so we have have the following property

$$L_1 \cap L_2 = \Sigma^* - ((\Sigma^* - L_1) \cup (\Sigma^* - L_2))$$

Given finite automata M_1, M_2 such that

$$L_1 = L(M_1) \text{ and } L_2 = L(M_2)$$

We construct M such that $L(M) = L_1 \cap L_2$ as follows

1. Transform M_1, M_2 into equivalent DFA automata N_1, N_2
2. Construct $\overline{N_1}, \overline{N_2}$ and then $N = \overline{N_1} \cup \overline{N_2}$
3. Transform NDF automaton N into equivalent DFA automaton N'
4. $M = \overline{N'}$ is the required finite automata

This is an indirect Construction

Homework: describe the direct construction
Closure Theorem

We have proved all cases of the **CLOSURE THEOREM**

The class of languages accepted by **Finite Automata (FA)** is **closed** under the following operations

1. union **proved**
2. concatenation **proved**
3. Kleene’s Star **proved**
4. complementation **proved**
5. intersection **proved**

Observe that we used the term Finite Automata (FA) so in the proof we have can choose a **DFA** or **N DFA**, as we have already proved their **EQUIVALENCY**
Intersection Direct Construction

Direct Construction

Case 1 deterministic

Given deterministic automata M_1, M_2 such that

$$M_1 = (K_1, \Sigma_1, \delta_1, s_1, F_1), \quad M_2 = (K_2, \Sigma_2, \delta_2, s_2, F_2)$$

We construct $M = M_1 \cap M_2$ such that $L(M) = L(M_1) \cap L(M_2)$ as follows

$$M = (K, \Sigma, \delta, s, F)$$

where $\Sigma = \Sigma_1 \cup \Sigma_2$

$$K = K_1 \times K_2, \quad s = (s_1, s_2), \quad F = F_1 \times F_2$$

$$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$
Intersection Direct Construction

Proof of correctness of the construction

\[w \in L(M) \quad \text{if and only if} \]

\[(((s_1, s_2), w) \vdash M^* (((f_1, f_2), e)) \quad \text{and} \quad f_1 \in F_1, f_2 \in F_2 \]

\[\quad \text{if and only if} \]

\[(s_1, w) \vdash M_1^* (f_1, e) \quad \text{for} \quad f_1 \in F_1 \]

\[(s_2, w) \vdash M_2^* (f_2, e) \quad \text{for} \quad f_2 \in F_2 \]

\[\quad \text{if and only if} \]

\[w \in L(M_1) \quad \text{and} \quad w \in L(M_2) \]

\[\quad \text{if and only if} \]

\[w \in L(M_1) \cap L(M_2) \]
Intersection Direct Construction

Direct Construction

Case 2 nondeterministic

Given nondeterministic automata M_1, M_2 such that

$$M_1 = (K_1, \Sigma_1, \Delta_1, s_1, F_1), \quad M_2 = (K_2, \Sigma_2, \Delta_2, s_2, F_2)$$

We construct $M = M_1 \cap M_2$ such that $L(M) = L(M_1) \cap L(M_2)$ as follows

$$M = (K, \Sigma, \Delta, s, F)$$

where $\Sigma = \Sigma_1 \cup \Sigma_2$

$$K = K_1 \times K_2, \quad s = (s_1, s_2), \quad F = F_1 \times F_2$$

and Δ is defined as follows
Intersection Direct Construction

\(\Delta \) is defined as follows

\[\Delta = \Delta' \cup \Delta'' \cup \Delta''' \]

\(\Delta' = \{ (((q_1, q_2), \sigma, (p_1, p_2)) : (q_1, \sigma, p_1) \in \Delta_1 \text{ and } (q_2, \sigma, p_2) \in \Delta_2, \sigma \in \Sigma \} \]

\(\Delta'' = \{ (((q_1, q_2), \sigma, (p_1, p_2)) : \sigma = e, (q_1, e, p_1) \in \Delta_1 \text{ and } q_2 = p_1 \} \}

\(\Delta''' = \{ (((q_1, q_2), \sigma, (p_1, p_2)) : \sigma = e, (q_2, e, p_2) \in \Delta_2 \text{ and } q_1 = p_1 \} \}

Observe that if \(M_1, M_2 \) have each at most \(n \) states, our direct construction of produces \(M = M_1 \cap M_2 \) with at most \(n^2 \) states.

The indirect construction from the proof of the theorem might generate \(M \) with up to \(2^{2n+1} + 1 \) states.
Direct Construction Example

Example

Let \(M_1, M_2 \) be given by the following diagrams:

\[
L(M_1) = a^* \quad L(M_2) = aa^* = a^+
\]

Observe that \(L(M_1) \cap L(M_2) = a^* \cap a^+ = a^+ \)
Direct Construction Example

Formally M_1, M_2 are defined as follows

\[
M_1 = (\{s_1\}, \{a\}, \delta_1, s_1, \{s_1\}), \quad M_2 = (\{s_2, q\}, \{a\}, \delta_2, s_2, \{q\})
\]

for $\delta_1(s_1, a) = s_1$ and $\delta_2(s_2, a) = q$, $\delta_2(q, a) = q$

By the deterministic case definition we have that $M = M_1 \cap M_2$ is

\[
M = (K, \Sigma, \delta, s, F)
\]

for $\Sigma = \{a\}$

\[
K = K_1 \times K_2 = \{s_1\} \times \{s_2, q\} = \{(s_1, s_2), (s_1, g)\}
\]

\[
s = (s_1, s_2), \quad F = \{s_1\} \times \{q\} = \{(s_1, q)\}
\]
Direct Construction Example

By definition

$$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$

In our case we have

$$\delta((s_1, s_2), a) = (\delta_1(s_1, a), \delta_2(s_2, a)) = (s_1, q),$$

$$\delta((s_1, q), a) = (\delta_1(s_1, a), \delta_2(q, a)) = (s_1, q)$$

The **diagram** of $M = M_1 \cap M_2$ is
Main Theorem

Now our goal is to prove a theorem that established the relationship between languages and finite automata. This is the most important Theorem of this section so we call it a Main Theorem.

Main Theorem
A language L is regular if and only if L is accepted by a finite automata.
Main Theorem

The Main Theorem consists of the following two parts

Theorem 1
For any a regular language \(L \)
there is a finite automata \(M \), such that \(L = L(M) \)

Theorem 2
For any a finite automata \(M \), the language \(L(M) \) is regular
Main Theorem

Definition
A language $L \subseteq \Sigma^*$ is regular iff there is a regular expression $r \in \mathcal{R}$ that represents L, i.e. such that

$$L = \mathcal{L}(r)$$

Reminder: the function $\mathcal{L}: \mathcal{R} \rightarrow 2^{\Sigma^*}$ is defined recursively as follows

1. $\mathcal{L}(\emptyset) = \emptyset$, $\mathcal{L}(\sigma) = \{\sigma\}$ for all $\sigma \in \Sigma$
2. If $\alpha, \beta \in \mathcal{R}$, then

$$\mathcal{L}(\alpha \beta) = \mathcal{L}(\alpha) \circ \mathcal{L}(\beta)$$ \text{ concatenation}

$$\mathcal{L}(\alpha \cup \beta) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$$ \text{ union}

$$\mathcal{L}(\alpha^*) = \mathcal{L}(\alpha)^*$$ \text{ Kleene’s Star}
Regular Expressions Definition

Reminder
We define a \mathcal{R} of **regular expressions** over an alphabet Σ as follows

$\mathcal{R} \subseteq (\Sigma \cup \{ (,), \emptyset, \cup, * \})^*$ and \mathcal{R} is the smallest set such that

1. $\emptyset \in \mathcal{R}$ and $\Sigma \subseteq \mathcal{R}$, i.e. we have that
 $$\emptyset \in \mathcal{R} \text{ and } \forall \sigma \in \Sigma \ (\sigma \in \mathcal{R})$$

2. If $\alpha, \beta \in \mathcal{R}$, then
 $$\alpha \beta \in \mathcal{R} \quad \text{concatenation}$$
 $$\alpha \cup \beta \in \mathcal{R} \quad \text{union}$$
 $$\alpha^* \in \mathcal{R} \quad \text{Kleene's Star}$$
Proof of Main Theorem Part 1

Now we are going to prove the first part of the Main Theorem, i.e.

Theorem 1
For any a regular language L
there is a finite automata M, such that $L = L(M)$

Proof
By definition of regular language, L is regular iff there is a regular expression $r \in \mathcal{R}$ that represents L, what we write in shorthand notation as $L = r$

Given a regular language, L, we construct a finite automaton M such that $L(M) = L$ recursively following the definition of the set \mathcal{R} of regular expressions as follows
Proof Theorem 1

1. \(r = \emptyset \), i.e. the language is \(L = \emptyset \)

Diagram of \(M \), such that \(L(M) = \emptyset \) is

We denote \(M \) as \(M = M_{\emptyset} \)
Proof Theorem 1

2. \(r = \sigma \), for any \(\sigma \in \Sigma \) i.e. the language is \(L = \sigma \)

Diagram of \(M \), such that \(L(M) = \emptyset \) is

We denote \(M \) as \(M = M_{\sigma} \)
Proof Theorem 1

3. \(r \neq \emptyset, \ r \neq \sigma \)

By the recursive definition, we have that \(L = r \) where

\[
\begin{align*}
 r &= \alpha \cup \beta, \\
 r &= \alpha \circ \beta, \\
 r &= \alpha^*
\end{align*}
\]

for any \(\alpha, \beta \in \mathcal{R} \)

We construct as in the proof of the **Closure Theorem** the automata

\[
\begin{align*}
 M_r &= M_\alpha \cup M_\beta, \\
 M_r &= M_\alpha \circ M_\beta, \\
 M_r &= (M_r)^*
\end{align*}
\]

respectively and it ends the proof
Example

Use construction defined in the proof of Theorem 1 to construct an automaton M such that

$$L(M) = (ab \cup aab)^*$$

We construct M in the following stages

Stage 1

For $a, b \in \Sigma$ we construct M_a and M_b
Example

Stage 2
For \(ab, aab \) we use \(M_a \) and \(M_b \) and concatenation construction to construct \(M_{ab} \)

\[
M_{ab} = M_a \circ M_b
\]

and \(M_{aab} \)

\[
M_{aab} = M_a \circ M_a \circ M_b
\]
Example

Stage 3
We use union construction to construct $M_1 = M_{ab} \cup M_{aab}$

Stage 4 We use Kleene’s star construction to construct $M = M_1^*$
Exercise

Use construction defined in the proof of Theorem 1 to construct an automaton M such that

$$L(M) = (a^* \cup abc \cup a^*b)^*$$

We construct (draw diagrams) M in the following stages

Stage 1
Construct M_a, M_b, M_c

Stage 2
Construct $M_1 = M_{abc}$

Stage 3
Construct $M_2 = M_{a^*}$

Stage 4
Construct $M_3 = M_{a^*b}$

Stage 5
Construct $M_4 = M_1 \cup M_2 \cup M_3$

Stage 6
Construct $M = M_4^*$
Main Theorem Part 2

Theorem 2
For any a finite automaton \(M \) there is a regular expression \(r \in \mathcal{R} \), such that
\[
L(M) = r
\]

Proof
The proof is constructive; given \(M \) we will give an algorithm how to recursively generate the regular expression \(r \), such that \(L(M) = r \)

We assume that \(M \) is nondeterministic

\[
M = (K, \Sigma, \Delta, s, F)
\]

We use the BOOK definition, i.e.

\[
\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K
\]
Proof of Theorem 2

We put states of M into a one-to-one sequence

$$K: \quad s = q_1, q_2, \ldots, q_n \text{ for } n \geq 1$$

We build r using the following expressions

$$R(i, j, k) \quad \text{for } i, j = 1, 2, \ldots n, \quad k = 0, 1, 2, \ldots n$$

$$R(i, j, k) = \{w \in \Sigma^*; \quad (q_i, w) \vdash_{M,k}^*(q_j, w')\}$$

$R(i, j, k)$ is the set of all words ”spelled” by all PATHS from q_i to q_j in such way that we do not pass through an intermediate state numbered $k+1$ or greater

Observe that $\neg(m \geq k + 1) \equiv m \leq k$ so we get the following
Proof of Theorem 2

We say that a PATH has a RANK k when

$$(q_i, w) \vdash_{M,k^*}(q_j, w')$$

i.e. when M can pass ONLY through states numbered $m \leq k$ while going from q_i to q_j

RANK 0 case $k = 0$

$$R(i, j, 0) = \{w \in \Sigma^*; (q_i, w) \vdash_{M,0^*}(q_j, w')\}$$

This means; M "goes" from q_i to q_j only through states numbered $m \leq 0$

There is no such states as $K = \{q_1, q_2, \ldots q_n\}$
Proof of Theorem 2

Hence \(R(i, j, 0) \) means that \(M \) "goes" from \(q_i \) to \(q_j \) DIRECTLY, i.e. that

\[
R(i, j, 0) = \{ w \in \Sigma^* ; \ (q_i, w) \vdash_{M^*} (q_j, w') \}
\]

Reminder: we use the BOOK definition so

\[
R(i, j, 0) = \begin{cases}
 a \in \Sigma \cup \{e\} & \text{if } i \neq j \text{ and } (q_i, a, q_j) \in \Delta \\
 \{e\} \cup a \in \Sigma \cup \{e\} & \text{if } i = j \text{ and } (q_i, a, q_j) \in \Delta
\end{cases}
\]

Observe that we need \(\{e\} \) in the second equation to include the following special case

\[
\mathcal{L}(M) = \{e\}
\]
Proof of Theorem 2

We read $R(i, j, 0)$ from the diagram of M as follows

\[R(i, j, 0) = \{ a \in \Sigma \cup e \} : \begin{array}{c}
\alpha \\
2i \\
2j
\end{array} \]

and

\[R(i, i, 0) = \{ e \} \cup \{ a \in \Sigma \cup e \} : \begin{array}{c}
\alpha \\
2i
\end{array} \]
Proof of Theorem 2

RANK n case $k = n$

$$R(i, j, n) = \{ w \in \Sigma^*; (q_i, w) \vdash_{M, n}^* (q_j, w') \}$$

This means; M "goes" from q_i to q_j through states numbered $m \leq n$

It means that M "goes" all states as $|K| = n$

It means that M will read any $w \in \Sigma$ and hence

$$R(i, j, n) = \{ w \in \Sigma^*; (q_i, w) \vdash_{M}^* (q_j, e) \}$$

Observe that

$$w \in L(M) \text{ iff } w \in R(1, j, n) \text{ and } q_j \in F$$
Proof of Theorem 2

By definition of the $L(M)$ we get

$$L(M) = \bigcup \{ R(1, j, n) : q_j \in F \}$$

Fact

All sets $R(i, j, k)$ are regular and hence $L(M)$ is also regular

Proof by induction on k

Base case: $k = 0$

All sets $R(i, j, 0)$ are FINITE, hence are regular
Proof of Theorem 2

Inductive Step

The recursive formula for $R(i, j, k)$ is

$$R(i, j, k) = R(i, j, k - 1) \cup R(i, k, k - 1)R(k, k, k - 1)^{\ast}R(k, j, k - 1)$$

where n is the number of states of M and $k = 0, \ldots, n, \ i, j = 1, \ldots, n$

By Inductive assumption, all sets

$R(i, j, k - 1), \ R(i, k, k - 1), \ R(k, k, k - 1), \ R(k, j, k - 1)$ are regular

and by the Closure Theorem so is the set $R(i, j, k)$

This ends the proof of Theorem 2

Observe that the recursive formula for $R(i, j, k)$ computes r such that $L(M) = r$
Example

Example
For the automaton M such that

$$M = (\{q_1, q_2, q_3\}, \{a, b\}, s = q_1, \\Delta = \{(q_1, b, q_2), (q_1, a, q_3), (q_2, a, q_1), (q_2, b, q_1), (q_3, a, q_1), (q_3, b, q_1)\}, F = \{q_1\})$$

Evaluate 4 steps, in which you must include at least one $R(i, j, 0)$, in the construction of regular expression that defines $L(M)$
Example

Reminder

\[L(M) = \bigcup \{ R(1, j, n) : q_j \in F \} \]

\[R(i, j, k) = R(i, j, k - 1) \cup R(i, k, k - 1)R(k, k, k - 1)^* R(k, j, k - 1) \]

\[R(i, j, 0) = \begin{cases} a \in \Sigma \cup \{ e \} & \text{if } i \neq j \text{ and } (q_i, a, q_j) \in \Delta \\ \{ e \} \cup a \in \Sigma \cup \{ e \} & \text{if } i = j \text{ and } (q_i, a, q_j) \in \Delta \end{cases} \]
Example Solution

Solution

Step 1 \[L(M) = R(1, 1, 3) \]

Step 2
\[R(1, 1, 3) = R(1, 1, 2) \cup R(1, 3, 2)R(3, 3, 2)^* R(3, 1, 2) \]

Step 3
\[R(1, 1, 2) = R(1, 1, 1) \cup R(1, 2, 1)R(2, 2, 1)^* R(2, 1, 1) \]

Step 4
\[R(1, 1, 1) = R(1, 1, 0) \cup R(1, 1, 0)R(1, 1, 0)^* R(1, 1, 0) \text{ and } R(1, 1, 0) = \{e\} \cup \emptyset = \{e\}, \text{ so we get} \]
\[R(1, 1, 1) = \{e\} \cup \{e\}\{e\}^* \{e\} = \{e\} \]
Generalized Automaton

Definition
We define now a **Generalized Automaton** \(GM \) as the following generalization of of a nondeterministic automaton \(M = (K, \Sigma, \Delta, s, F) \) as follows

\[
GM = (K_G, \Sigma_G, \Delta_G, s_G, F_G)
\]

1. \(GM \) has a single final state, i.e. \(F_G = \{ f \} \)
2. \(\Sigma_G = \Sigma \cup \mathcal{R}_0 \) where \(\mathcal{R}_0 \) is a FINITE subset of the set \(\mathcal{R} \) of **regular expressions** over \(\Sigma \)
3. Transitions of \(GM \) may be labeled not only by symbols in \(\Sigma \cup \{ e \} \) but also by **regular expressions** \(r \in \mathcal{R} \), i.e. \(\Delta_G \) is a FINITE set such that
 \[
 \Delta_G \subseteq K \times (\Sigma \cup \{ e \} \cup \mathcal{R}) \times K
 \]
4. There is no transition going into the initial state \(s \) nor out of the final state \(f \)
 if \((q, u, p) \in \Delta_G \), then \(q \neq f \), \(p \neq s \)
Given a nondeterministic automaton

\[M = (K, \Sigma, \Delta, s, F) \]

We present now a new method of construction of a regular expression \(r \in \mathcal{R} \) that defines \(L(M) \), i.e. such that \(L(M) = r \) by the use of the notion of Generalized Automaton.

The method consists of a construction of a sequence of generalized automata that are all equivalent to \(M \).
Construction

Steps of construction are as follows

Step 1

We extend M to a generalized automaton M_G, such that $L(M) = L(M_G)$ as depicted on the diagram below.

Diagram of M_G
Definition of M_G

We re-name states of M as $s = q_1, q_2, \ldots, q_{n-2}$ for appropriate n and make the initial state $s = q_1$ and all final states of M the internal non-final states of G_M

We ADD TWO states: initial and one final, which me name q_{n-1}, q_n, respectively, i.e. we put

$$s_G = q_{n-1} \quad \text{and} \quad f = q_n$$

We take

$$\Delta_G = \Delta \cup \{(q_{n-1}, e, s)\} \cup \{(q, e, q_n) : q \in F\}$$

Obviously $L(M) = L(M_G)$, and so $M \approx M_G$
States of G_M Elimination

We construct now a sequence $GM_1, GM_2, \ldots, GM(n-2)$ such that

$$M \approx M_G \approx GM_1 \approx \cdots \approx GM(n-2)$$

where $GM(n-2)$ has only two states q_{n-1} and q_n and only one transition (q_{n-1}, r, q_n) for $r \in \mathcal{R}$, such that

$$L(M) = r$$

We construct the sequence $GM_1, GM_2, \ldots, GM(n-2)$ by eliminating states of M one by one following rules given by the following diagrams
Case 1 of state elimination
Given a fragment of GM diagram

The state \(q \in K \) has been eliminated preserving the language of GM and we constructed \(GM' \approx GM \)
States of G_M Elimination

Case 2 of state elimination

Given a fragment of GM diagram

- The state $q \in K$ has been **eliminated** preserving the language of GM and we constructed $GM' \approx GM$
Example 1

Use the Generalized Automata Construction and States of G_M Elimination procedure to evaluate $r \in \mathcal{R}$, such that

$$\mathcal{L}(r) = L(M)$$

where M is an automata that accepts the language

$$L = \{ w \in \{a, b\}^* : w \text{ has } 3k + 1 \text{ b's, for some } k \in \mathbb{N} \}$$

This is the Book example, page 80
Example 1

The **Diagram** of M is

![Diagram of M](image)

Step 1

We extend M with $K = \{q_1, q_2, q_3\}$ to a generalized M_G by adding two states

$$s_G = q_4 \quad \text{and} \quad f = q_5$$

We take

$$\Delta_G = \Delta \cup \{(q_4, e, q_1)\} \cup \{(q_3, e, q_5)\}$$
Example 1

The Diagram of M_G is

Step 2
We construct $GM_1 \approx M_G \approx M$ by elimination of q_1
The Diagram of GM_1 is
Example 1

The **Diagram** of $GM1$ is

![Diagram of GM1](image1.png)

Step 3

We construct $GM2 \approx GM1$ by **elimination** of q_2

The **Diagram** of $GM2$ is

![Diagram of GM2](image2.png)
Example 1

The **Diagram** of $GM2$ is

![Diagram of GM2](image1)

Step 4

We construct $GM3 \approx GM2$ by **elimination** of q_3

The **Diagram** of $GM2$ is

![Diagram of GM2](image2)

$L(GM3) = a^* b (a \cup ba^* ba^* b)^* = L(M)$
Example 2

Given the automaton

\[M = (K, \Sigma, \Delta, s, F) \]

where

\[K = \{ q_1, q_2, q_3 \}, \quad \Sigma = \{ a, b \}, \quad s = q_1, \quad F = \{ q_1 \} \]

\[\Delta = \{ (q_1, b, q_2), (q_1, a, q_3), (q_2, a, q_1), (q_2, b, q_1), (q_3, a, q_1), (q_3, b, q_1) \} \]

Use the Generalized Automata Construction and States of \(G_M \) Elimination procedure to evaluate \(r \in \mathcal{R} \), such that

\[\mathcal{L}(r) = \mathcal{L}(M) \]
Example 2

The diagram of M is

Step 1
The diagram of $M_G \approx M$ is
Example 2

Step 1
The components of $M_G \approx M$ are

$M_G = (K = \{q_1, q_2, q_3, q_4, q_5\}, \Sigma = \{a, b\}, s_G = q_4,$

$\Delta_G = \{(q_1, b, q_2), (q_1, a, q_3), (q_2, a, q_1),$

$(q_2, b, q_1), (q_3, a, q_1), (q_3, b, q_1), (q_4, e, q_1),$

$(q_1, e, q_5)\}, F = \{q_5\})$
Example 2

The **Diagram** of M_G is

![Diagram of M_G]

Step 2

We construct $GM_1 \approx M_G \approx M$ by **elimination** of q_2

The **Diagram** of GM_1 is

![Diagram of GM_1]
Example 2

Step 2
The components of $GM_1 \cong M_G \cong M$ are

\[
GM_1 = (K = \{q_1, q_3, q_4, q_5\}, \quad \Sigma = \{a, b\}, \quad s_G = q_4
\]

\[
\Delta_G = \{(q_1, a, q_3), (q_1, (bb \cup ba), q_1), (q_3, a, q_1), (q_3, b, q_1), (q_4, e, q_1), (q_1, e, q_5)\}, \quad F = \{q_5\}
\]
Example 2

The **Diagram** of \(GM1 \) is

![Diagram of GM1]

Step 3
We construct \(GM2 \approx GM1 \) by **elimination** of \(q_3 \)
The **Diagram** of \(GM2 \) is

![Diagram of GM2]
Example 2

Step 3
The components of $GM_2 \cong GM_1 \cong M_G \cong M$ are

$GM_2 = (K = \{q_1, q_4, q_5\}, \Sigma = \{a, b\}, s_G = q_4$

$\Delta_T = \{(q_1, (bb \cup ba), q_1), (q_1, (aa \cup ab), q_1),$

$(q_4, e, q_1), (q_1, e, q_5)\}, F = \{q_5\})$
Example 2

The **Diagram** of GM_2 is

![Diagram of GM2]

Step 4

We construct $GM_3 \approx GM_2$ by **elimination** of q_1

The **Diagram** of GM_3 is

![Diagram of GM3]
Example 2

We have constructed

\[GM_3 \approx GM_2 \approx GM_1 \approx M_G \approx M \]

The Diagram of \(GM_3 \) is

\[L(GM_3) = (bb \cup ba \cup aa \cup ab)^* = ((a \cup b)(a \cup b))^* = L(M) \]