cse303
ELEMENTS OF THE THEORY OF COMPUTATION

Professor Anita Wasilewska
LECTURE 5
CHAPTER 2
FINITE AUTOMATA

1. Deterministic Finite Automata DFA
2. Nondeterministic Finite Automata NDFA
3. Finite Automata and Regular Expressions
4. Languages that are Not Regular
5. State Minimization
CHAPTER 2
PART 1: Deterministic Finite Automata DFA
Simple Computational Model

Here are the components of the model

C1: Input string on an input tape written at the beginning of the tape

The input tape is divided into squares, with one symbol inscribed in each tape square
Here is a picture

C2: "Black Box" - called **Finite Control**

It can be in any specific time in **one** of the **finite number of states** \(\{q_1, \ldots, q_n\}\)

C3: A **movable Reading Head** can sense what symbol is written in any position on the **input tape** and **moves** only **one square** to the right
DFA - A Simple Computational Model

Here are the **assumptions** for the model

A1: There is **no output** at all;

A2: DFA **indicates** whether the input is **acceptable** or not **acceptable**

A3: DFA is a language **recognition** device
DFA - A Simple Computational Model

Operation of DFA

O1 Initially the reading head is placed at left most square at the beginning of the tape and
O2 finite control is set on the initial state
O3 After reading on the input symbol the reading head moves one square to the right and enters a new state
O4 The process is repeated
O5 The process ends when the reading head reaches the end of the tape
DFA - A Simple Computational Model

The general rules of the operation of DFA are

R1 At regular intervals DFA *reads* only one symbol at the time from the input tape and *enters* a new state

R2: The *move* of DFA depends *only* on the *current* state and the *symbol* just read

DFA - A Simple Computational Model

Operation of DFA

O6 When the process stops the DFA indicates its approval or disapproval of the string by means of the final state.

O7 If the process stops while being in the final state, the string is accepted.

O8 If the process stops while not being in the final state, the string is not accepted.
Language Accepted by DFA

Informal Definition

Language accepted by a **Deterministic Finite Automata** is equal to the set of strings accepted by it.
DFA - Mathematical Model

To build a mathematical model for DFA we need to include and define the following components

FINITE set of STATES

ALPHABET Σ

INITIAL state

FINAL state

Description of the MOVE of the reading head is as follows

R1: At regular intervals DFA reads only one symbol at the time from the input tape and enters a new state

R2: The MOVE of DFA depends only on the current state and the symbol just read
DFA - Mathematical Model

Definition
A Deterministic Finite Automata is a quintuple

\[M = (K, \Sigma, \delta, s, F) \]

where
- \(K \) is a finite set of states
- \(\Sigma \) as an alphabet
- \(s \in K \) is the initial state
- \(F \subseteq K \) is the set of final states
- \(\delta \) is a function

\[\delta: K \times \Sigma \rightarrow K \]

called the transition function

We usually use different symbols for \(K, \Sigma \), i.e. we have that \(K \cap \Sigma = \emptyset \)
DFA Definition

Definition revisited
A Deterministic Finite Automata is a quintuple

\[M = (K, \Sigma, \delta, s, F) \]

where
- \(K \) is a finite set of states
- \(K \neq \emptyset \) because \(s \in K \)
- \(\Sigma \) as an alphabet
- \(\Sigma \) can be \(\emptyset \) - case to consider
- \(s \in K \) is the initial state
- \(F \subseteq K \) is the set of final states
- \(F \) can be \(\emptyset \) - case to consider
- \(\delta \) is a function

\[\delta : K \times \Sigma \rightarrow K \]

called the transition function
Transition Function

Given DFA

\[M = (K, \Sigma, \delta, s, F) \]

where

\[\delta : K \times \Sigma \rightarrow K \]

Let

\[\delta(q, \sigma) = q' \quad \text{for} \quad q, q' \in K, \quad \sigma \in \Sigma \]

means: the automaton \(M \) in the state \(q \) reads \(\sigma \in \Sigma \) and moves to a state \(q' \in K \), which is uniquely determined by state \(q \) and \(\sigma \) just read
In order to define a notion of computation of M on an input string $w \in \Sigma^*$ we introduce first a notion of a configuration

Definition

A configuration is any tuple

$$(q, w) \in K \times \Sigma^*$$

where $q \in K$ represents a current state of M and $w \in \Sigma^*$ is unread part of the input.
Transition Relation

Definition
The set of all possible configurations of \(M = (K, \Sigma, \delta, s, F) \) is just
\[
K \times \Sigma^* = \{(q, w) : q \in K, \ w \in \Sigma^*\}
\]
We define move of an automaton \(M \) in terms of a transition relation
\[
\vdash_M
\]
The transition relation acts between two configurations and hence \(\vdash_M \) is a certain binary relation defined on \(K \times \Sigma^* \), i.e.
\[
\vdash_M \subseteq (K \times \Sigma^*)^2
\]
Formal definition follows
Transition Relation

Definition
Given \(M = (K, \Sigma, \delta, s, F) \)
A binary relation \(\vdash_M \subseteq (K \times \Sigma^*)^2 \)
is called a transition relation when for any \(q, q' \in K, w_1, w_2 \in \Sigma^* \) the following holds

\[(q, w_1) \vdash_M (q', w_2) \]

if and only if

1. \(w_1 = \sigma w_2 \), for some \(\sigma \in \Sigma \) (M looks at \(\sigma \))
2. \(\delta(q, \sigma) = q' \) (M moves from \(q \) to \(q' \) reading \(\sigma \) in \(w_1 \))
Transition Relation

Definition *(Transition relation short definition)*

Given $M = (K, \Sigma, \delta, s, F)$

For any $q, q' \in K, \sigma \in \Sigma, w \in \Sigma^*$

$$(q, \sigma w) \vdash_M (q', w)$$

if and only if

$\delta(q, \sigma) = q'$$
Idea of Computation

We use the transition relation to define a move of M along a given input, i.e. a given $w \in \Sigma^*$

Such a move is called a computation

Example

Given M such that $K = \{s, q\}$ and let \vdash_M be a transition relation such that

$$(s, aab) \vdash_M (q, ab) \vdash_M (s, b) \vdash_M (q, e)$$

We call a sequence of configurations

$$(s, aab), (q, ab), (s, b), (q, e)$$

a computation from (s, aab) to (q, e) in automaton M
Idea of Computation

Given a computation

\((s, aab), (q, ab), (s, b), (q, e)\)

We write this computation in a more general form as

\((q_1, aab), (q_2, ab), (q_3, b), (q_4, e)\)

for \(q_1, q_2, q_3, q_4\) being a specific sequence of states from \(K = \{s, q\}\), namely \(q_1 = s, q_2 =, q_3 = s, q_4 = q\) and say that the length of this computation is 4.

In general we write any computation of length 4 as

\((q_1, w_1), (q_2, w_2), (q_3, w_3), (q_4, w_4)\)

for any sequence \(q_1, q_2, q_3, q_4\) of states from \(K\) and words \(w_i \in \Sigma^*\).
Idea of the Computation

Example
Given M and the computation

$$(s, aab), (q, ab), (s, b), (q, e)$$

We say that the word $w = aab$ is accepted by M if and only if

1. the computation starts when M is in the initial state
 - true here as s denotes the initial state
2. the whole word w has been read, i.e. the last configuration of the computation is (q, e) for certain state in K,
 - true as $K = \{s, q\}$
3. the computation ends when M is in the final state
 - true only if we have that $q \in F$

Otherwise the word w is not accepted by M
Definition of the Computation

Definition
Given $M = (K, \Sigma, \delta, s, F)$
A sequence of configurations

$$(q_1, w_1), (q_2, w_2), \ldots, (q_n, w_n), \quad n \geq 1$$

is a computation of the length n in M from (q, w) to (q', w') if and only if

$$(q_1, w_1) = (q, w), \quad (q_n, w_n) = (q', w') \quad \text{and}$$

$$(q_i, w_i) \vdash_M (q_{i+1}, w_{i+1}) \quad \text{for} \quad i = 1, 2, \ldots n - 1$$

Observe that when $n = 1$ the computation (q_1, w_1) always exists. It is a computation of the length 1, called also a trivial computation.

We also write sometimes the computations as

$$(q_1, w_1) \vdash_M (q_2, w_2) \vdash_M \ldots \vdash_M (q_n, w_n) \quad \text{for} \quad n \geq 1$$
Definition of the Computation

Given a computations

\[(q_1, w_1) \vdash_M (q_2, w_2) \vdash_M \ldots \vdash_M (q_n, w_n)\]

for \(n \geq 1\)

In the case \(n = 1\), we get only **one** configuration \((q_1, w_1)\)

It is a computation of **length 1**

It is a **ZERO STEP** computation, as we have **zero** applications of the transition relation \(\vdash_M\)

In the case \(n = 2\) (length 2) we get

\[(q_1, w_1) \vdash_M (q_2, w_2)\]

It is a **ONE STEP** computation as we have **one** application of the transition relation \(\vdash_M\)

In the case \(n = 3\) (length 3), we get

\[(q_1, w_1) \vdash_M (q_2, w_2) \vdash_M (q_3, w_3)\]

It is a **TWO STEPS** computation as we have **two** applications of the transition relation \(\vdash_M\), etc, etc...
Words Accepted by M

Definition
A word \(w \in \Sigma^* \) is **accepted** by \(M = (K, \Sigma, \delta, s, F) \) if and only if there is a computation

\[
(q_1, w_1), (q_2, w_2), \ldots, (q_n, w_n)
\]

such that \(q_1 = s, \ w_1 = w, \ w_n = \epsilon \) and \(q_n = q \in F \)

We re-write it as

A word \(w \in \Sigma^* \) is **accepted** by \(M = (K, \Sigma, \delta, s, F) \) if and only if there is a computation

\[
(s, w), (q_2, w_2), \ldots, (q, \epsilon)
\]

and \(q \in F \)

When the computation is such that \(q \notin F \) we say that the word \(w \) is **not accepted** (rejected) by \(M \)
Words Accepted by M

In Plain Words:

A word $w \in \Sigma^*$ is accepted by $M = (K, \Sigma, \delta, s, F)$ if and only if

there is a computation such that
1. starts with the word w and M in the initial state,
2. ends when M is in a final state, and
3. the whole word w has been read
Language Accepted by M

Definition
We define the language **accepted** by M as follows

\[L(M) = \{ w \in \Sigma^* : \text{w is accepted by } M \} \]

i.e. we write

\[L(M) = \{ w \in \Sigma^* : (s, w) \vdash_M \ldots \vdash_M (q, e) \text{ for some } q \in F \} \]
Examples

Example 1
Let $M = (K, \Sigma, \delta, s, F)$, where
$K = \{q_0, q_1\}, \quad \Sigma = \{a, b\}, \quad s = q_0, \quad F = \{q_0\}$
and the transition function $\delta : K \times \Sigma \rightarrow K$
is defined as follows

<table>
<thead>
<tr>
<th>State</th>
<th>Input</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>a</td>
<td>q_0</td>
</tr>
<tr>
<td>q_0</td>
<td>b</td>
<td>q_1</td>
</tr>
<tr>
<td>q_1</td>
<td>a</td>
<td>q_1</td>
</tr>
<tr>
<td>q_1</td>
<td>b</td>
<td>q_0</td>
</tr>
</tbody>
</table>

Question Determine whether $ababb \in L(M)$ or $ababb \notin L(M)$
Examples

Solution

We must evaluate computation that starts with the configuration $(q_0, ababb)$ as $q_0 = s$

$(q_0, ababb) \vdash_M \text{ use } \delta(q_0, a) = q_0$

$(q_0, babb) \vdash_M \text{ use } \delta(q_0, b) = q_1$

$(q_1, abb) \vdash_M \text{ use } \delta(q_1, a) = q_1$

$(q_1, bb) \vdash_M \text{ use } \delta(q_1, b) = q_0$

$(q_0, b) \vdash_M \text{ use } \delta(q_0, b) = q_1$

$(q_1, e) \vdash_M \text{ end }$ of computation and $q_1 \notin F = \{q_0\}$

We proved that $ababb \notin L(M)$

Observe that we always get unique computations, as δ is a function, hence he name Deterministic Finite Automaton (DFA)
Examples

Example 2
Let $M_1 = (K, \Sigma, \delta, s, F)$ for all components defined as in M from Example 1, except that we take now $F = \{q_0, q_1\}$

We remind that

Exercise Show that now $ababb \in L(M_1)$
We have defined the language accepted by M as

$$L(M) = \{w \in \Sigma^*: (s, w) \vdash_M \ldots \vdash_M (q, e) \text{ for some } q \in F\}$$

The question is now- how to write it in a more concise and elegant way

Answer: use the notion (Chapter 1, Lecture 3) of reflexive, transitive closure of \vdash_M denoted by \vdash_M^* and now we write

Definition

$$L(M) = \{w \in \Sigma^*: (s, w) \vdash_M^*(q, e) \text{ for some } q \in F\}$$

We write it also using the existential quantifier symbol as

$$L(M) = \{w \in \Sigma^*: \exists_{q \in F} ((s, w) \vdash_M^*(q, e))$$
Language Accepted by M
Revisited

In order to justify the following definition

\[L(M) = \{ w \in \Sigma^* : (s, w) \vdash_M^* (q, e) \ \text{for some} \ q \in F \} \]

We bring back the general notion of a path in a binary relation \(R \) and its reflexive, transitive closure \(R^* \) (Chapter 1)
It follows directly from these definitions that

\[(q_1, w_1) \vdash_M^* (q_n, w_n) \]

represents a path

\[(q_1, w_1), (q_2, w_2), \ldots, (q_{n-1}, w_{n-1}), (q_n, w_n) \]

in the relation \(\vdash_M \), which is defined as a computation

\[(q_1, w_1) \vdash_M (q_2, w_2), \ldots, (q_{n-1}, w_{n-1}) \vdash_M (q_n, w_n) \]

in \(M \) from \((q_1, w_1) \) to \((q_n, w_n) \)
Language Accepted by M
Revisited

Hence

\[(s, w) \vdash_M^* (q, e)\]

represent a computation

\[(s, w) \vdash_M (q_1, w_1), \ldots, (q_n, w_n) \vdash_M (q, e)\]

from \((s, w)\) to \((q, e)\),

So define the language \(L(M)\) as

\[L(M) = \{ w \in \Sigma^* : (s, w) \vdash_M^* (q, e) \text{ for some } q \in F \}\]
Example

Example
Let \(M = (K, \Sigma, \delta, s, F) \) be automaton from our Example 1, i.e. we have
\[K = \{q_0, q_1\}, \quad \Sigma = \{a, b\}, \quad s = q_0, \quad F = \{q_0\} \]
and the transition function \(\delta : K \times \Sigma \rightarrow K \) is defined as follows

<table>
<thead>
<tr>
<th>(q)</th>
<th>(\delta)</th>
<th>(\delta(q, a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(a)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_0)</td>
<td>(b)</td>
<td>(q_1)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(a)</td>
<td>(q_1)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(b)</td>
<td>(q_0)</td>
</tr>
</tbody>
</table>

Question Show that \(aabba \in L(M) \)
Example

We evaluate

\[(q_0, aabba) \vdash_M (q_0, abba) \vdash_M (q_0, bba) \vdash_M \]

\[(q_1, ba) \vdash_M (q_0, a) \vdash_M (q_0, e) \text{ and } q_0 = s, \quad q_0 \in F = \{q_0\} \]

This proves that

\[(s, aabba) \vdash_M^* (q_0, e) \text{ for } q_0 \in F \]

By definition

\[aabba \in L(M)\]
General remark

To define or to give an example of

$$M = (K, \Sigma, \delta, s, F)$$

means that one has to specify all its components K, Σ, δ, s, F

We usually use different symbols for K, Σ, i.e. we have that $K \cap \Sigma = \emptyset$

Exercise

Given $\Sigma = \{a, b\}$ and $K = \{q_0, q_1\}$

1. Define 3 automata M
2. Define an automaton M, such that $L(M) = \emptyset$
3. How many automata M can one define?
Exercise

1. Here are 3 automata $M_1 - M_3$

$M_1 : M_1 = (K = \{q_0, q_1\}, \Sigma = \{a, b\}, \delta, s = q_0, F = \{q_0\})$

$\delta(q_0, a) = q_0, \ \delta(q_0, b) = q_0, \ \delta(q_1, a) = q_0, \ \delta(q_1, b) = q_0$

$M_2 : M_2 = (K = \{q_0, q_1\}, \Sigma = \{a, b\}, \delta, s = q_0, F = \{q_1\})$

$\delta(q_0, a) = q_0, \ \delta(q_0, b) = q_0, \ \delta(q_1, a) = q_0, \ \delta(q_1, b) = q_1$

$M_3 : M_3 = (K = \{q_0, q_1\}, \Sigma = \{a, b\}, \delta, s = q_0, F = \{q_1\})$

$\delta(q_0, a) = q_0, \ \delta(q_0, b) = q_1, \ \delta(q_1, a) = q_1, \ \delta(q_1, b) = q_0$
Exercise

2. Define an automaton M, such that $L(M) = \emptyset$

Answer: The automata M_2 is such that $L(M_2) = \emptyset$ as there is no computation that would start at initial state q_0 and end in the final state q_1 as in M_2 we have that $\delta(q_0, a) = q_0$, $\delta(q_0, b) = q_0$, so we will never reach the final state q_1

Here is another example:

Let M_4 be defined as follows:

$M_4 = (K = \{q_0, q_1\}, \Sigma = \{a, b\}, \delta, s = q_0, F = \emptyset)$

$\delta(q_0, a) = q_0$, $\delta(q_0, b) = q_0$, $\delta(q_1, a) = q_0$, $\delta(q_1, b) = q_0$

$L(M_4) = \emptyset$ as there is no computation that would start at initial state q_0 and end in the final state as there is no final state
Exercise

3. How many automata M can one define?
Observe that all of M must have $\Sigma = \{a, b\}$ and $K = \{q_0, q_1\}$ so they differ on the choices of $\delta : K \times \Sigma \to K$

By Counting Functions Theorem we have 2^4 possible choices for δ

They also can differ on the choices of final states F
There as many choices for final states as subsets of $K = \{q_0, q_1\}$, i.e. $2^2 = 4$

Additionally we have to count all combinations of choices of δ with choices of F
Challenge

1. Define an automata M with $\Sigma \neq \emptyset$ such that $L(M) = \emptyset$
2. Define an automata M with $\Sigma = \emptyset$ such that $L(M) \neq \emptyset$
3. Define an automata M with $\Sigma \neq \emptyset$ such that $L(M) \neq \emptyset$
4. Define an automata M with $\Sigma \neq \emptyset$ such that $L(M) = \Sigma^*$
5. Prove that there always exist an automata M such that $L(M) = \Sigma^*$
As we could see the transition functions can be defined in many ways but it is difficult to decipher the workings of the automata they define from their mathematical definition. We usually use a much more clear graphical representation of the transition functions that is called a state diagram.

Definition
The state diagram is a directed graph, with certain additional information as shown at the picture on next slide.
States are represented by the nodes.

Initial state is shown by a \(\Rightarrow \) circle.

Final states are indicated by a dot in a circle \(\bullet \).

Initial state that is also a final state is pictured as \(\Rightarrow \bullet \).
States are represented by the nodes
There is an arrow labelled a from node q_1 to q_2 whenever $\delta(q_1, a) = q_2$
A Simple Problem

Problem
Given $M = (K, \Sigma, \delta, s, F)$ described by the following diagram

1. List all components of M
2. Describe $L(M)$ as a regular expression
A Simple Problem

Given the diagram

Components are: $M = (K, \Sigma, \delta, s, F)$ for

$\Sigma = \{a, b\}, \ K = \{q_0, q_1, q_2\},$

$s = q_0, \ F = \{q_0, q_1\}$ and the transition function is given by

following table
A Simple Problem

2. Describe \(L(M) \) as a regular expression, where

\[
L(M) = \{ w \in \Sigma^* : (s, w) \vdash_M^*(q, e) \text{ for } q \in F \}
\]

Let’s look again at the diagram of \(M \)

![Image of the diagram]

Observe that the state \(q_2 \) does not influence the language \(L(M) \). We call such state a trap state and say:

The state \(q_2 \) is a trap state

We read from the diagram that

\[
L(M) = a(a \cup b)^* \cup e \quad \text{as a regular expression}
\]

\[
L(M) = \{a\} \circ \{a, b\}^* \cup \{e\} \quad \text{as a set}
\]
DFA Theorem

For any DFA $M = (K, \Sigma, \delta, s, F)$,

$$e \in L(M) \text{ if and only if } s \in F$$

where we defined $L(M)$ as follows

$L(M) = \{ w \in \Sigma^* : (s, w) \vdash_M^* (q, e) \text{ for some } q \in F \}$

Proof

Let $e \in L(M)$, then by definition $(s, e) \vdash_M^* (q, e)$ and $q \in F$

This is possible only when the computation is of the length one (case $n = 1$), i.e. when it is (s, e) and $s = q$, hence $s \in F$

Suppose now that $s \in F$

We know that \vdash_M^* is reflexive, so $(s, e) \vdash_M^* (s, e)$ and as $s \in F$, we get $e \in L(M)$
Definition

A trap state of a DFA automaton M is any of its states that does not influence the language $L(M)$ of M.

Example

$L(M) = b$ written in shorthand notation, $L(M) = \{b\}$, or $L(M) = \mathcal{L}(b) = \{b\}$

States q_2, q_3 are trap states.
Given a **diagram** of M

The state q_2 is the **trap state** and we can write a **short diagram** of M as follows

Remember that if you use the **short diagram** you **must add** statement: ”**plus trap states”**
Short and Pattern Diagrams of M

Definition

A diagram of M with some or all of its *trap states* removed is called a *short diagram*.

"Our" M becomes

We can "shorten" the diagram even more by *removing* the *names* of the states.

Such diagram, with *names of the states removed* is called a *pattern diagram*.
Pattern Diagrams are very useful when we want to "read" the language M directly out of the diagram.

Let's look at M_1 given by a diagram:

![Diagram](image)

It is obvious that (we write a shorthand notion!)

$$L(M_1) = (a \cup b)^* = \Sigma^*$$

Remark that the regular expression that defines the language $L(M_1)$ is $\alpha = (a \cup b)^*$.

We add the description $L(M_1) = \Sigma^*$ as yet another useful informal **shorthand notation** notation.
Pattern Diagrams

The **pattern diagram** for "our" M is

It is obvious that (we write a shorthand notion!) - must add: plus **trap states**

$$ L(M) = aL(M_1) \cup e $$

We must add e to the language by **DFA Theorem**, as we have that $s \in F$

Finally we obtain the following regular expression that defines the language and write it as

$$ L(M) = a(a \cup b)^* \cup e $$

We can also write $L(M)$ in an **informal way** (Σ^* is not a regular expression) as

$$ L(M) = \Sigma^* \cup e $$
Why do we need trap states?
Let's take $\Sigma = \{a, b\}$ and let M be defined by a diagram

![Diagram](image)

Obviously, the diagram means that M is such that its language is $L(M) = aa^*$

But by definition, $\delta : K \times \Sigma \rightarrow K$ and we get from the diagram

![Diagram](image)

We must "complete" definition of δ by making it a function (still preserving the language)
To do so introduce a new state q_2 and make it a trap state by defining $\delta(q_0, b) = q_2$, $\delta(q_1, b) = q_2$
Short Problems

For all **short problems** presented here and given on Quizzes and Tests, you have to do the following

1. Decide and **explain** whether the given **diagram** represents a DFA or does **not**, i.e. is **not** an automaton

2. List all components of M when it represents a DFA

3. Describe $L(M)$ as a **regular expression** when it does represent a DFA
Consider a diagram M_1

1. Yes, it represents a DFA; δ is a function on $\{q_0, q_1\} \times \{a\}$ and initial state $s = q_0$ exists
2. $K = \{q_0, q_1\}$, $\Sigma = \{a\}$, $s = q_0$, $F = \{q_1\}$,
 $\delta(q_0, a) = q_1$, $\delta(q_1, a) = q_1$
3. $L(M_1) = aa^*$
Short Problems

Consider a diagram $M2$

1. Yes, it represents a DFA; δ is a function on $\{q_0\} \times \{a\}$ and initial state $s = q_0$ exists
2. $K = \{q_0\}$, $\Sigma = \{a\}$, $s = q_0$, $F = \emptyset$, $\delta(q_0, a) = q_0$
3. $L(M2) = \emptyset$
Short Problems

Consider a diagram \(M_3 \)

1. Yes, it represents a DFA; initial state \(s = q_0 \) exists
2. \(K = \{q_0\}, \Sigma = \emptyset, s = q_0, F = \emptyset, \delta = \emptyset \)
3. \(L(M_3) = \emptyset \)
Short Problems

Consider a diagram $M4$

1. Yes, it represents a DFA; initial state $s = q_0$ exists
2. $K = \{q_0\}$, $\Sigma = \{a\}$, $s = q_0$, $F = \{q_0\}$, $\delta(q_0, a) = q_0$
3. $L(M4) = a^*$

Remark $e \in L(M4)$ by DFA Theorem, as $s = q_0 \in F = \{q_0\}$
Short Problems

Consider a diagram M5

1. NO! it is NOT DFA - initial state does not exist
Short Problems

Consider a diagram M6

1. NO! Initial state does exist, but δ is not a function; $\delta(q_0, b)$ is not defined and we didn’t say "plus trap states"
Consider a diagram $M7$

1. Yes! it is DFA
Initial state exists and we can complete definition of δ by adding a trap state as pictured below
Consider a diagram \(M_8 \)

1. Yes! Initial state exists and it is a **short diagram** of a DFA.
 We make \(\delta \) a function by adding a **trap state** \(q_2 \)

3. \(L(M_8) = aa^* \)
 We chose to add one **trap state** but it is possible to add as many as one wishes.
 Observe that \(L(M_8) = L(M_1) \) and \(M_1 \), \(M_8 \) are defined for different alphabets.
Two Problems

P1 Let \(\Sigma = \{ a_1, a_2, \ldots, a_{1025}, \ldots, a_{2^{105}} \} \)

Draw a state diagram of \(M \) such that \(L(M) = a_{1025}(a_{1025})^* \)

P2

1. Draw a state diagram of transition function \(\delta \) given by the table below

2. Give an example and automaton \(M \) with with this \(\delta \)

<table>
<thead>
<tr>
<th>(q)</th>
<th>(\sigma)</th>
<th>(\delta(q, \sigma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(a)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_0)</td>
<td>(b)</td>
<td>(q_1)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(a)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(b)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(a)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(b)</td>
<td>(q_3)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(a)</td>
<td>(q_3)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(b)</td>
<td>(q_3)</td>
</tr>
</tbody>
</table>

3. Describe the language of \(M \)
P1 Solution

P1 Let $\Sigma = \{a_1, a_2, \ldots, a_{1025}, \ldots, a_{2^{105}}\}$

Draw a state diagram of M such that $L(M) = a_{1025}(a_{1025})^*$

Solution

PLUS a LOT of trap states!

Σ has 2^{105} elements; we need a trap state for each of them except a_{1025}
Observe that we have a following pattern for any $\sigma \in \Sigma$

$$L(M) = \sigma^+ \quad \text{for any} \quad \sigma \in \Sigma$$

PLUS a LOT of trap states! except for the case when $\Sigma = \{\sigma\}$
P2 Solutions

P2
1. Draw a state diagram of transition function δ given by the table below

2. Give an example and automaton M with this δ

Here is the example of M from our book, page 59

$L(M) = \{w \in \{a, b\}^* : w$ does not contain three consecutive $b's\}$
P2 Solution

Observe that the book example is only **one of many** possible examples of automata **we can define** based on δ with the following

State diagram:

Two more examples follow

Please invent some more of your own!

Be careful! **This diagram is NOT an automaton!!**
P2 Examples

Example 1
Here is a full **diagram** of M_1

$L(M) = (a \cup b)^* = \Sigma^*$

Observe that $e \in L(M1)$ by the DFA **Theorem** and the states q_0, q_1, q_2 are **trap states**
Example 2

Here is a full **diagram** of M_1 from **Example 1**

\[L(M) = (a \cup b)^* = \Sigma^* \]

Observe that we can make **all, or any** of the states q_0, q_1, q_2 as **final states** and they will still will remain the **trap states**

Definition

A **trap state** of a DFA automaton M is any of its states that **does not influence** the language $L(M)$ of M
Example 3

Here is a full diagram of M2 with the same transition function as M1

$L(M) = \emptyset$

Observe that $F = \emptyset$ and hence here is no computation that would finish in a final state
P3 Construct a DFA M such that

$$L(M) = \{w \in \{a, b\}^* : w \text{ has } abab \text{ as a substring} \}$$
P3 Construct a DFA M such that

$$L(M) = \{ w \in \{a, b\}^* : w \text{ has } abab \text{ as a substring} \}$$

Solution The essential part of the diagram must produce $abab$ and it can be surrounded by proper elements on both sides and can be repeated.

Here is the essential part of the diagram.

![Diagram](image-url)
Problems Solutions

We complete the essential part following the fact that it can be surrounded by proper elements on both sides and can be repeated.

Here is the diagram of M.

Observe that this is a pattern diagram; you need to add names of states only if you want to list all components. M does not have trap states.
More Problems

P4 Construct a DFA M such that

$L(M) = \{ w \in \{a, b\}^* : \text{every substring of length 4 in word } w \text{ contains at least one } b \}$
More Problems

P4 Construct a DFA M such that

$$L(M) = \{ w \in \{a, b\}^* : \text{every substring of length 4 in word } w \text{ contains at least one } b \}$$

Solution Here is a short pattern diagram (the trap states are not included)
More Problems

P5 Construct a DFA M such that

$$L(M) = \{ w \in \{a, b\}^* : \text{every word } w \text{ contains an even number of sub-strings } ba \}$$
More Problems

P5 Construct a DFA M such that

$$L(M) = \{ w \in \{a, b\}^* : \text{every word } w \text{ contains an even number of sub-strings } ba \}$$

Solution Here is a pattern diagram

Zero is an even number so we must have that $e \in L(M)$, i.e. we have to make the initial state also a final state.
More Problems

P6 Construct a DFA M such that

$$L(M) = \{ w \in \{a, b\}^* : \text{each } a \text{ in } w \text{ is immediately preceded and immediately followed by } b \}$$
P6 Construct a DFA M such that

$$L(M) = \{ w \in \{a, b\}^* : \text{each } a \text{ in } w \text{ is immediately preceded and immediately followed by } b \}$$

Solution: Here is a short pattern diagram - and we need to say: plus trap states

It is a short diagram because we omitted needed trap states (can be more then one, but one is sufficient)

Complete the diagram as an exercise
More Problems

P7 Here is a DFA M defined by the following diagram

Describe $L(M)$ as a regular expression
More Problems

P7 Here is a DFA M defined by the following diagram

Describe $L(M)$ as a regular expression

Solution

$$L(M) = a^* \cup (a^*ba^*ba^*)^*$$

Observe that $e \in L(M)$ by the DFA Theorem
Short Problems

SP1 Given an automaton M_1

$$M_1 = (K = \{q_0, q_1\}, \Sigma = \{a, b\}, \delta, s = q_0, F = \emptyset)$$

$$\delta(q_0, a) = q_0, \, \delta(q_0, b) = q_0, \, \delta(q_1, a) = q_0, \, \delta(q_1, b) = q_0$$

1. Draw its **state diagram**
2. List **trap states**, if any
3. Describe $L(M_1)$
SP1 Solution

SP1

1. Here is the state diagram

2. q_1 is a trap state - $M1$ never gets there

3. $L(M1) = \emptyset$
Short Problems

SP2 Given an automaton M_2

$$M_2 = (K = \{q_0, q_1\}, \Sigma = \{a, b\}, \delta, s = q_0, F = \{q_1\})$$

$$\delta(q_0, a) = q_0, \quad \delta(q_0, b) = q_0, \quad \delta(q_1, a) = q_0, \quad \delta(q_1, b) = q_1$$

1. Draw its state diagram
2. List trap states, if any
3. Describe $L(M_2)$
SP2 Solution

SP2

1. Here is the state diagram

2. q_1 is a trap state - it does not influence the language of M_1

3. $L(M_2) = \emptyset$
Short Problems

SP3 Given an automaton M_3
$M_3 = (K = \{q_0, q_1\}, \Sigma = \{a, b\}, \delta, s = q_0, F = \{q_1\})$
\[\delta(q_0, a) = q_0, \delta(q_0, b) = q_1, \delta(q_1, a) = q_1, \delta(q_1, b) = q_0\]

1. Draw its state diagram
2. List trap states, if any
3. Describe $L(M_3)$
SP3 Solution

SP3

1. Here is the **state diagram**

![State Diagram](image)

2. There are no **trap states**

3. \(L(M3) = a^*b \cup a^*ba^* \cup (a^*ba^*ba^*b)^* \)

 \(L(M3) = a^*ba^* \cup (a^*ba^*ba^*b)^* \)
Short Problems

SP4 Given an automaton \(M_4 = (K, \Sigma, \delta, s, F) \) for
\(K = \{q_0, q_1, q_2, q_3\}, \Sigma = \{a, b\}, s = q_0, F = \{q_0, q_1, q_2\} \)
and \(\delta \) defined by the table below

<table>
<thead>
<tr>
<th>(q)</th>
<th>(\sigma)</th>
<th>(\delta(q, \sigma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(a)</td>
<td>(q_1)</td>
</tr>
<tr>
<td>(q_0)</td>
<td>(b)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(a)</td>
<td>(q_3)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(b)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(a)</td>
<td>(q_1)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(b)</td>
<td>(q_3)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(a)</td>
<td>(q_3)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(b)</td>
<td>(q_3)</td>
</tr>
</tbody>
</table>

1. Draw its **state diagram**
2. Give a **property** describing \(L(M_4) \)
SP4 Solution

SP4

1. Here is the state diagram

![State Diagram](image)

Observe that state q_3 is a trap state and the short diagram is as follows
SP4 Solution

SP4

1. Here is the short diagram

2. The language of M4 is

\[L(M4) = \{ w \in \Sigma^* : \text{neither } aa \text{ nor } bb \text{ is a substring of } w \} \]
Short Problems

SP5 Given an automaton \(M5 = (K, \Sigma, \delta, s, F) \) for
\(\begin{align*}
K &= \{q_0, q_1, q_2, q_3\}, \\
\Sigma &= \{a, b\}, \\
s &= q_0, \\
F &= \{q_1\}
\end{align*} \)
and \(\delta \) defined by the table below

<table>
<thead>
<tr>
<th>(q)</th>
<th>(\sigma)</th>
<th>(\delta(q, \sigma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(a)</td>
<td>(q_1)</td>
</tr>
<tr>
<td>(q_0)</td>
<td>(b)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(a)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(b)</td>
<td>(q_3)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(a)</td>
<td>(q_3)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(b)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(a)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(b)</td>
<td>(q_1)</td>
</tr>
</tbody>
</table>

1. Draw its **state diagram**
2. Give a **property** describing \(L(M5) \)
SP5 Solution

SP5

1. Here is the **state diagram**

2. \(L(M5) = \{ w \in \Sigma^* : w \text{ has an odd number of } a \text{'s and an even number of } b \text{'s } \} \)