cse303
ELEMENTS OF THE THEORY OF COMPUTATION

Professor Anita Wasilewska
LECTURE 4a
REVIEW FOR CHAPTER 1

1. Some Short Questions
2. Some Homework Problems
CHAPTER 1

SHORT QUESTIONS
Short YES/NO Questions

Here are solutions to some short YES/NO Questions for material covered in CHAPTER 1

Solving Quizzes and Tests you have to write a short solutions and circle the answer

You will get 0 pts if you only circle your answer without providing a solution, even if it is correct answer

Here are some questions
Q1 \(\{\emptyset, \{\emptyset\}\} \cap \{\emptyset\} \neq \emptyset \)

yes

We have that

\[\emptyset \in \{\emptyset\} \quad \text{and} \quad \emptyset \in \{\emptyset, \{\emptyset\}\} \]

This proves that

\[\emptyset \in \{\emptyset\} \cap \{\emptyset, \{\emptyset\}\} \]

Hence \(\{\emptyset, \{\emptyset\}\} \cap \{\emptyset\} \neq \emptyset \)
Short YES/NO Questions

Q2 Some relations \(R \subseteq A \times B \) are functions that map the set \(A \) into the set \(B \)

yes

Functions are special type of relations so some binary relations are functions (but not all relations are functions)

Q3 \(2^\emptyset = \emptyset \)

no

\(\emptyset \subseteq \emptyset \) so \(\emptyset \in 2^\emptyset \)
Short YES/NO Questions

Q4 For any binary relation \(R \) on a set \(A \),
the inverse relation \(R^{-1} \) exists

yes

By definition of the inverse relation is

\[
R^{-1} = \{(b, a) : (a, b) \in R\}
\]

and such set always exists
Short YES/NO Questions

Q5 For any function $f : A \longrightarrow B$, the inverse function $f^{-1} : B \longrightarrow A$ exists

no

Inverse function to a function f exists if and only if f is 1–1 and onto

Q6 A set $A = \{x \in N : x^2 + 5 < 0\}$ is countable

yes

$A = \{x \in N : x^2 + 5 < 0\} = \emptyset$

and any finite set is countable
Q7 The set \(A = \{ n \in \mathbb{N} : n^2 + 5 > 0 \} \) is countable.

Yes

The definition says:
A set \(A \) is countable if and only if it is finite or is countably infinite.

The set
\[
A = \{ n \in \mathbb{N} : n^2 + 5 > 0 \} = \mathbb{N}
\]

and \(\mathbb{N} \) is countably infinite, hence \(A \) is countable.
The set \(A = \black\{(\{n\}, n) \in 2^N \times N : 1 \leq n \leq n^2\} \) is infinitely countable.

First observe that

\[
A = \black\{(\{n\}, n) \in 2^N \times N : 1 \leq n \leq n^2\} = C \times B
\]

where the set \(B \) is

\[
B = \{n \in N : 1 \leq n \leq n^2\}
\]

and the set \(C \) is

\[
C = \black\{\{n\} \in 2^N : 1 \leq n \leq n^2\}
\]
Short YES/NO Questions

The condition \(1 \leq n \leq n^2 \) holds for all \(n \in N - \{0\} \) hence the set

\[
B = \{ n \in N : 1 \leq n \leq n^2 \}
\]

is infinitely countable and so is the set

\[
C = \{ \{n\} \in 2^N : 1 \leq n \leq n^2 \}
\]

as the function \(f(n) = \{n\} \) is \(1 - 1 \) and maps \(B \) onto \(C \)

The set

\[
A = C \times B
\]

is infinitely countable as it is the cartesian product of two infinitely countable sets
Q9
Let \(A = \{ n \in N : n^2 + 1 \leq 15 \} \)

It is possible to define **8 alphabets** \(\Sigma \subseteq A \)

The set

\[
A = \{ n \in N : n^2 + 1 \leq 15 \} = \{0, 1, 2, 3\}
\]

so the set \(A \) has 4 elements and it has \(2^4 = 16 \) of all possible subsets and they are all finite, i.e we can define up to up to **16 alphabets** \(\Sigma \subseteq A \)

So have can define for sure **8 < 16** alphabets
Q10 Let $\Sigma = \{ n \in N : n^2 + 1 = 10 \}$
There are **uncountably** many **finite** languages over Σ

Observe that

$$\Sigma = \{ n \in N : n^2 + 1 = 10 \} = \{ 3 \}$$

and hence $|\Sigma^*| = \aleph_0$

A **finite** language over Σ is by definition a **finite** subset of Σ^*

We have a Theorem:

The set of all **finite subsets** of any countably infinite set is **countably infinite**
Short YES/NO Questions

Q11 For any languages L_1, L_2, L over $\Sigma \neq \emptyset$ we have that

$$(L_1 \cup L_2) \cap L = (L_1 \cap L) \cup (L_2 \cap L)$$

yes Languages are sets hence all laws of algebra of sets hold for them and this is one of the Distributivity laws

Q12 $L^* = \{w_1w_2\ldots w_n : w_i \in L, i = 1, 2, \ldots n, n \geq 1\}$

no This is the definition of L^+; we must put $n \geq 0$ for L^*
A regular language is a regular expression.

A regular language is represented by a regular expression.

More precisely, a regular language is represented by the function \(L : \text{Regular Expressions} \rightarrow \text{Regular Languages} \) such that the following holds:

if \(\alpha \) is any regular expression, then \(L(\alpha) \) is the language represented by \(\alpha \).
Short YES/NO Questions

Q14 Let $\alpha = a(a \cup b)^*$

$$\mathcal{L}(\alpha) = \{w \in \{a, b\}^* : w \text{ ends with } a\}$$

no

We evaluate

$$\mathcal{L}(a(a \cup b)^*) = \{a\}(\{a\} \cup \{b\})^* = \{a\}\Sigma^*$$

and hence the property defining $\mathcal{L}(\alpha)$ is

$$\mathcal{L}(\alpha) = \{w \in \{a, b\}^* : w \text{ starts with } a\}$$
Short YES/NO Questions

Q15 For any language L over an alphabet Σ,

$$L^+ = L \cup L^*$$

no

Take L be any language such that $e \notin L$

We have that

$$e \notin L^+ \text{ but } e \in L \cup L^*$$

This proves that

$$L^+ \neq L \cup L^*$$
CHAPTER 1

Some Homework Problems
Problem 1

Consider the following languages over $\Sigma = \{a, b\}$

$$L_1 = \{w \in \Sigma^* : \exists u \in \Sigma \Sigma (w = uu^R u)\}$$

$$L_2 = \{w \in \Sigma^* : ww = www\}$$

Part 1: Prove that L_1 is a finite set

Give example of 3 words $w \in L_1$

Solution

We evaluate first the set

$\Sigma \Sigma = \{a, b\}\{a, b\} = \{aa, bb, ab, ba\}$

$\Sigma \Sigma$ is a finite set, hence the set $B = \{uyu : u, y \in \Sigma \Sigma\}$ is also a finite set and by definition $L_1 \subseteq B$

This proves that L_1 must be a finite set
Problem 1

We evaluated that $\Sigma \Sigma = \{a, b\}\{a, b\} = \{aa, bb, ab, ba\}$

We defined $L_1 = \{w \in \Sigma^* : \exists u \in \Sigma \Sigma (w = uu^R u)\}$

By evaluation we have that

$$L_1 = \{aaaaaa, abbaab, baabba, bbbbbbb\}$$

Part 2: Give examples of 2 words over Σ such that $w \notin L_1$

Solution $a \notin L_1$, $bba \notin L_1$

There are countably infinitely many words that are not in L_1
Problem 1

Part 3 Consider now the following language

\[L_2 = \{ w \in \{a, b\}^* : \; ww = www \} \]

Show that \(L_2 \neq \emptyset \)

Solution \(e \in L_2 \), as \(ee = eee \)

In fact, \(e \) is the only word with this property, hence

\[L_2 = \{ e \} \]

Part 4 Show that the set \((\Sigma^* - L_2) \) is infinite

Solution \(\Sigma^* \) is countably infinite, \(L_2 \) is finite, so (basic theorem) \((\Sigma^* - L_2) \) is countably infinite

Any \(w \in \Sigma^* \), such that \(w \neq e \) is in \((\Sigma^* - L_2) \)
Problem 2

Part 1

Given expressions (written in a short hand notation)

\[\alpha_1 = \emptyset^* \cup a^* \cup b^* \cup a \cup b \cup (a \cup b)^* \]

\[\alpha_2 = (a \cup b)^* b(a \cup b)^* \]

Re-write \(\alpha_1 \) as a simpler expression representing the same language.

List properties you used in your solution.

Describe the language \(L = \mathcal{L}(\alpha_1) \).
Problem 2

Solution We first evaluate
\[\mathcal{L}(\alpha_1) = \mathcal{L}(\emptyset^* \cup a^* \cup b^* \cup a \cup b \cup (a \cup b)^*) \]
\[= e \cup \{a\}^* \cup \{b\}^* \cup \{a\} \cup \{b\} \cup (\{a\} \cup \{b\})^* = \Sigma^* \]
This is true because of the properties:
\[(\{a\} \cup \{b\})^* = \{a, b\}^* = \Sigma^* \quad \text{and} \]
\[\{a\} \subseteq \{a\}^*, \quad \{b\} \subseteq \{b\}^*, \quad \{a\}^* \subseteq \Sigma^*, \quad \{b\}^* \subseteq \Sigma^* \]
and we know that for any sets \(A, B \), if \(A \subseteq B \), then \(A \cup B = B \)
\[\mathcal{L}(\alpha_1) = \Sigma^* = (\{a\} \cup \{b\})^* = \mathcal{L}((a \cup b)^*) \]
We hence simplify \(\alpha_1 \) as follows
\[\alpha_1 = \emptyset^* \cup a^* \cup b^* \cup a \cup b \cup (a \cup b)^* = (a \cup b)^* \]
Part 2 Given
\[\alpha_2 = (a \cup b)^* b (a \cup b)^* \]

Re-write \(\alpha_2 \) as a simpler expression representing the same language

Describe the language \(L = \mathcal{L}(\alpha_2) \)

Solution \(\alpha_2 \) can not be simplified, but we can use property
\[(\{a\} \cup \{b\})^* = \Sigma^* \] to describe informally the language determined by \(\alpha_2 \) as
\[L = \mathcal{L}(\alpha_2) = \Sigma^* b \Sigma^* \]

Remember that informal description \(\Sigma^* b \Sigma^* \) is not a regular expression - but just an useful notation
Problem 3

Let $\Sigma = \{a, b\}$ and a language $L \subseteq \Sigma^*$ be defined as follows:

$$L = \{w \in \Sigma^* : w \text{ contains no more then two } a\text{'s}\}$$

Write a regular expression α, such that $L(\alpha) = L$. Use shorthand notation. **Explain** shortly your answer.

Solution

$$\alpha = b^* \cup b^* ab^* \cup b^* ab^* ab^*$$

Explanation

$\ b^*$ contains 0 of $ a$’s (case $n=0$)

$\ b^*ab^*$ contains 1 occurrence of $ a$ (case $n=1$)

$\ b^*ab^*ab^*$ contains 2 occurrence of $ a$ (case $n=2$)
Problem 4

Let \(\Sigma = \{a, b\} \)
The language \(L \subseteq \Sigma^* \) is defined as follows:
\(L = \{ w \in \Sigma^* : \text{the number of } b \text{'s in } w \text{ is divisible by 4} \} \)

Write a regular expression \(\alpha \), such that \(L(\alpha) = L \)
You can use shorthand notation. Explain shortly your answer

Solution
\(\alpha = a^* (a^* ba^* ba^* ba^* ba^*)^* \)

Observe that the regular expression \(a^* ba^* ba^* ba^* ba^* \)
describes a string \(w \in \Sigma^* \) with exactly four \(b \)'s
Problem 4

The regular expression

\[(a^*ba^*ba^*ba^*ba^*)^*\]

represents multiples of \(w \in \Sigma^*\) with exactly four \(b\)'s and hence words in which a number of \(b\)'s is divisible by 4.

Observe that 0 is divisible by 4, so we need to add the case of 0 number of \(b\)'s, i.e. we need to include words \(e, a, aa, aaa, \ldots\).

We do so by concatenating \(a^*(a^*ba^*ba^*ba^*ba^*)^*\) with \(a^*\) and get

\[L = a^*(a^*ba^*ba^*ba^*ba^*)^*\]
Problem 5

1. Let \(A = \left\{ (\{n, n+1\}, n) \in 2^N \times N : 1 \leq n \leq 3 \right\} \)
List all elements of \(A \)

Solution

1. By simple evaluation we get

\[
A = \left\{ (\{n, n+1\}, n) \in 2^N \times N : n = 1, 2, 3 \right\} \\
 = \{(\{1, 2\}, 1), (\{2, 3\}, 2), (\{3, 4\}, 3)\}
\]
Problem 5

2. Let now \(A = \{ (\{ n \}, n) \in 2^N \times N : \ 1 \leq n \leq n + 1 \} \)

Prove that \(A \) is infinitely countable

Solution

Observe that the set \(A \) can be re-written as follows

\[
A = \{ (\{ n \}, n) \in 2^N \times N : \ 1 \leq n \leq n + 1 \}
\]

\[
= \{ (\{ n \}, n) \in 2^N \times N : \ 1 \leq n \}
\]

because \(n \leq n + 1 \) for all \(n \in N \)

The set \(B = \{ \{ n \} : n \in N \} \) has the same cardinality as \(N \) by the function \(f(n) = \{ n \} \)

\(A = B \times N \) is hence a Cartesian product of two infinitely countable sets, and as we have proved, an infinitely countable set
Problem 6

Let \(L \) be a language defined as follows

\[
L = \{ w \in \{a, b\}^* : P(a, b) \}
\]

for the property \(P(a, b) \) defined as follows

\(P(a, b) : \) between any two \(a \)'s in \(w \) there is an even number of consecutive \(b \)'s

1. **Describe** a regular expression \(r \) such that \(L(r) = L \)

Remark that 0 is an even number, hence \(a^* \in L \) and

\[
r = b^* \cup b^* a^* b^* \cup b^* (a(bb)^*a)^* b^* = b^* a^* b^* \cup b^* (a(bb)^*a)^* b^*
\]
Problem 7

Let Σ be any alphabet, L_1, L_2 two languages over Σ such that $e \in L_1$ and $e \in L_2$

Show that

$$(L_1 \Sigma^* L_2)^* = \Sigma^*$$

Solution

By definition, $L_1 \subseteq \Sigma^*$, $L_2 \subseteq \Sigma^*$ and $\Sigma^* \subseteq \Sigma^*$

Hence

$$(L_1 \Sigma^* L_2) \subseteq \Sigma^*$$
Problem 7

Now we use the following property:

Property
For any languages L_1, L_2,
if $L_1 \subseteq L_2$, then $L_1^* \subseteq L_2^*$
and obtain that $(L_1 \Sigma^* L_2)^* \subseteq \Sigma^{**} = \Sigma^*$, i.e. we proved that

$$(L_1 \Sigma^* L_2)^* \subseteq \Sigma^*$$

We have to show now that also

$$\Sigma^* \subseteq (L_1 \Sigma^* L_2)^*$$

Let $w \in \Sigma^*$, we have that also $w \in (L_1 \Sigma^* L_2)^*$ because $w = e\varepsilon e$ and $e \in L_1$ and $e \in L_2$. We have hence proved that

$$(L_1 \Sigma^* L_2)^* = \Sigma^*$$
Let \mathcal{L} be a function that associates with any regular expression α the regular language $L = \mathcal{L}(\alpha)$

1. Evaluate $L = \mathcal{L}(\alpha)$ for $\alpha = (a \cup b)^* a$

Solution

$L = \mathcal{L}((a \cup b)^* a) = \mathcal{L}((a \cup b)^*) \mathcal{L}(a) = (\mathcal{L}(a \cup b))^* \{a\} = (\mathcal{L}(a) \cup \mathcal{L}(b))^* \{a\} = (\{a\} \cup \{b\})^* \{a\} = \{a, b\}^* \{a\}$

2. Describe a property that defines the language $L = \mathcal{L}((a \cup b)^* a)$

Solution

$L = \{a, b\}^* \{a\} = \Sigma^* \{a\} = \{w \in \{a, b\}^* : w \text{ ends with } a \}$