cse303
ELEMENTS OF THE THEORY OF COMPUTATION

Professor Anita Wasilewska
CHAPTER 1
SETS, RELATIONS, and LANGUAGES

1. Sets
2. Relations and Functions
3. Special types of binary relations
4. Finite and Infinite Sets
5. Fundamental Proof Techniques
6. Closures and Algorithms
7. Alphabets and languages
8. Finite Representation of Languages
CHAPTER 1

PART 4: Finite and Infinite Sets
Equinumerous Sets

Equinumerous sets
We call two sets A and B are equinumerous if and only if there is a bijection function $f : A \rightarrow B$, i.e. there is f is such that

$$f : A \xrightarrow{1-1,onto} B$$

Notation
We write $A \sim B$ to denote that the sets A and B are equinumerous and write symbolically

$$A \sim B \quad \text{if and only if} \quad f : A \xrightarrow{1-1,onto} B$$
Equinumerous Relation

Observe that for any set X, the relation \sim is an equivalence on the set 2^X, i.e.

$$\sim \subseteq 2^X \times 2^X$$

is reflexive, symmetric and transitive and for any set A the equivalence class

$$[A] = \{ B \in 2^X : A \sim B \}$$

describes for finite sets all sets that have the same number of elements as the set A
Equinumerous Relation

Observe also that the relation \sim when considered for any sets A, B is not an equivalence relation as its domain would have to be the set of all sets that does not exist.

We extend the notion of "the same number of elements" to any sets by introducing the notion of cardinality of sets.
Cardinality of Sets

Cardinality definition

We say that A and B have the same **cardinality** if and only if they are equipotent, i.e.

$$A \sim B$$

Cardinality notations

If sets A and B have the same **cardinality** we denote it as:

$$|A| = |B| \quad \text{or} \quad \text{card}A = \text{card}B$$
Cardinality of Sets

Cardinality

We put the above together in one definition

\[|A| = |B| \text{ if and only if } \]

there is a function \(f \) is such that

\[f : A \xrightarrow{1-1,onto} B \]
Finite and Infinite Sets

Definition
A set A is **finite** if and only if there is $n \in N$ and there is a function

$$f : \{0, 1, 2, ..., n - 1\} \xrightarrow{1-1,onto} A$$

In this case we have that

$$|A| = n$$

and say that the set A has n elements.
Finite and Infinite Sets

Definition
A set A is **infinite** if and only if A is not finite

Here is a theorem that characterizes infinite sets

Dedekind Theorem
A set A is **infinite** if and only if there is a proper subset B of the set A such that

$$|A| = |B|$$
Infinite Sets Examples

E1 Set N of natural numbers is infinite

Consider a function f given by a formula

$$f(n) = 2n \text{ for all } n \in N$$

Obviously

$$f : N \overset{1-1, \text{onto}}{\longrightarrow} 2N$$

By Dedekind Theorem the set N is infinite as the set $2N$ of even numbers are a proper subset of natural numbers N
Infinite Sets Examples

E2 Set \mathbb{R} of real numbers is infinite

Consider a function f given by a formula

$$f(x) = 2^x \text{ for all } x \in \mathbb{R}$$

Obviously

$$f : \mathbb{R} \xrightarrow{1-1,onto} \mathbb{R}^+$$

By Dedekind Theorem the set \mathbb{R} is infinite as the set \mathbb{R}^+ of positive real numbers are a proper subset of real numbers \mathbb{R}
Countably Infinite Sets
Cardinal Number \aleph_0

Definition
A set A is called **countably infinite** if and only if it has the same **cardinality** as the set N natural numbers, i.e. when

$$|A| = |N|$$

The **cardinality** of natural numbers N is called \aleph_0 (Aleph zero) and we write

$$|N| = \aleph_0$$
Countably Infinite Sets

Definition
For any set A,

$$|A| = \aleph_0 \text{ if and only if } |A| = |\mathbb{N}|$$

Directly from definitions we get the following

Fact 1
A set A is countably infinite if and only if $|A| = \aleph_0$
Countably Infinite Sets

Fact 2
A set A is **countably infinite** if and only if all elements of A can be put in a 1-1 sequence.

Other name for **countably infinite** set is **infinitely countable** set and we will use both names.
Countably Infinite Sets

In a case of an infinite set A and not 1-1 sequence we can "prune" all repetitive elements to get a 1-1 sequence, i.e. we prove the following

Fact 2a
An infinite set A is countably infinite if and only if all elements of A can be put in a sequence.
Countable and Uncountable Sets

Definition
A set A is countable if and only if A is finite or countably infinite.

Fact 3
A set A is countable if and only if A is finite or $|A| = \aleph_0$, i.e. $|A| = |N|$.
Countable and Uncountable Sets

Definition
A set A is **uncountable** if and only if A is not countable

Fact 4
A set A is **uncountable** if and only if A is infinite and $|A| \neq \aleph_0$, i.e. $|A| \neq |\mathbb{N}|$

Fact 5
A set A is **uncountable** if and only if its elements can not be put into a sequence

Proof proof follows directly from definition and Facts 2, 4
Countably Infinite Sets

We have proved the following

Fact 2a
An infinite set \(A \) is *countably infinite* if and only if all elements of \(A \) can be put in a sequence.

We use it now to prove two *theorems* about *countably infinite* sets.
Countably Infinite Sets

Union Theorem

Union of two countably infinite sets is a countably infinite set

Proof

Let A, B be two disjoint infinitely countable sets

By Fact 2 we can list their elements as 1-1 sequences

$$A : a_0, a_1, a_2, \ldots \text{ and } B : b_0, b_1, b_2, \ldots$$

and their union can be listed as 1-1 sequence

$$A \cup B : a_0, b_0, a_1, b_1, a_2, b_2, \ldots, \ldots$$

In a case not disjoint sets we proceed the same and then "prune" all repetitive elements to get a 1-1 sequence
Countably Infinite Sets

Product Theorem
Cartesian Product of two countably infinite sets is a countably infinite set

Proof
Let A, B be two infinitely countable sets
By Fact 2 we can list their elements as 1-1 sequences

$$A : a_0, a_1, a_2, \ldots \quad \text{and} \quad B : b_0, b_1, b_2, \ldots$$

We list their Cartesian Product $A \times B$ as an infinite table

$$(a_0, b_0), (a_0, b_1), (a_0, b_2), (a_0, b_3), \ldots$$
$$(a_1, b_0), (a_1, b_1), (a_1, b_2), (a_1, b_3), \ldots$$
$$(a_2, b_0), (a_2, b_1), (a_2, b_2), (a_2, b_3), \ldots$$
$$(a_3, b_0), (a_3, b_1), (a_3, b_2), (a_3, b_3), \ldots$$

$$\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots,$$
Cartesian Product Theorem Proof

Observe that even if the table is infinite each of its diagonals is finite

\[(a_0, b_0), (a_0, b_1), (a_0, b_2), (a_0, b_3), (a_0, b_4), \ldots, \ldots\]
\[(a_1, b_0), (a_1, b_1), (a_1, b_2), (a_1, b_3), \ldots\]
\[(a_2, b_0), (a_2, b_1), (a_2, b_2), (a_2, b_3), \ldots\]
\[(a_3, b_0), (a_3, b_1), (a_3, b_2), (a_3, b_3), \ldots\]
\[\ldots, \ldots, \ldots, \ldots, \ldots, \]

We list now elements of \(A \times B\) one diagonal after the other
Each diagonal is finite, so now we know when one finishes and other starts
Cartesian Product Theorem Proof

$A \times B$ becomes now the following sequence

$(a_0, b_0),
(a_1, b_0), (a_0, b_1),
(a_2, b_0), (a_1, b_1), (a_0, b_2),
(a_3, b_0), (a_2, b_1), (a_1, b_2), (a_0, b_3),
(a_3, b_1), (a_2, b_2), (a_1, b_3), (a_0, b_4), \ldots,$
\[\ldots, \ldots, \ldots, \ldots, \ldots, \]

We prove by Mathematical induction that the sequence is well
defined for all $n \in N$ and hence that $|A \times B| = |N|$
It ends the proof of the Product Theorem
Observe that the both Union and Product Theorems can be generalized by Mathematical Induction to the case of Union or Cartesian Products of any finite number of sets.
Uncountable Sets

Theorem 1
The set \mathbb{R} of real numbers is **uncountable**

Proof
We first prove (homework problem 1.5.11) the following

Lemma 1
The set of all real numbers in the interval $[0,1]$ is **uncountable**

Then we use the Lemma 2 below (to be proved it as an exercise) and the fact that $[0,1] \subseteq \mathbb{R}$ and this **ends** the proof

Lemma 2 For any sets A,B such that $B \subseteq A$ and B is **uncountable** we have that also the set A is **uncountable**
Special Uncountable Sets

Cardinal Number C - Continuum
We denote by C the cardinality of the set R of real numbers. C is a new cardinal number called continuum and we write

$$|R| = C$$

Definition
We say that a set A has cardinality C (continuum) if and only if $|A| = |R|$. We write it

$$|A| = C$$
Sets of Cardinality \mathcal{C}

Example
The set of positive real numbers \mathbb{R}^+ has cardinality \mathcal{C} because a function f given by the formula

$$f(x) = 2^x \text{ for all } x \in \mathbb{R}$$

is 1-1 function and maps \mathbb{R} onto the set \mathbb{R}^+.
Sets of Cardinality C

Theorem 2
The set $2^\mathbb{N}$ of all subsets of natural numbers is \textbf{uncountable}.
Proof
We prove it in PART 5 (book page 28)

Theorem 3
The set $2^\mathbb{N}$ has cardinality C, i.e.

$$|2^\mathbb{N}| = C$$

Proof
The proof of this theorem is not trivial and is not in the scope of this course.
Cantor Theorem

Cantor Theorem (1891)
For any set A,

$$|A| < |2^A|$$

where we define

$|A| \leq |B|$ if and only if $A \sim C$ and $C \subseteq B$

$|A| < |B|$ if and only if $|A| \leq |B|$ and $|A| \neq |B|$
Cantor Theorem

Directly from the definition we have the following

Fact 6
If \(A \subseteq B \) then \(|A| \leq |B|\)

We know that \(|N| = \aleph_0\), \(C = |R| \), and \(N \subseteq R \) hence from Fact 6, \(\aleph_0 \leq C \), but \(\aleph_0 \neq C \), as the set \(N \) is **countable** and the set \(R \) is **uncountable**

Hence we proved

Fact 7
\(\aleph_0 < C \)
Uncountable Sets of Cardinality Greater than \mathcal{C}

By **Cantor Theorem** we have that

\[|N| < |\mathcal{P}(N)| < |\mathcal{P}(\mathcal{P}(N))| < |\mathcal{P}(\mathcal{P}(\mathcal{P}(N)))| < \ldots \]

All sets

\[\mathcal{P}(\mathcal{P}(N)), \mathcal{P}(\mathcal{P}(\mathcal{P}(N))) \ldots \]

are **uncountable** with **cardinality greater** than \mathcal{C}, as by Theorem 3, Fact 7, and **Cantor Theorem** we have that

\[\aleph_0 < \mathcal{C} < |\mathcal{P}(\mathcal{P}(N))| < |\mathcal{P}(\mathcal{P}(\mathcal{P}(N)))| < \ldots \]
Countable and Uncountable Sets

Here are some basic **Theorem** and **Facts**

Union 1
Union of two infinitely countable \((\text{of cardinality } \aleph_0)\) sets is an infinitely countable set.
This means that
\[
\aleph_0 + \aleph_0 = \aleph_0
\]

Union 2
Union of a finite \((\text{of cardinality } n)\) set and infinitely countable \((\text{of cardinality } \aleph_0)\) set is an infinitely countable set.
This means that
\[
\aleph_0 + n = \aleph_0
\]
Countable and Uncountable Sets

Union 3
Union of an infinitely countable (of cardinality \aleph_0) set and a set of the same cardinality as real numbers i.e. of the cardinality C has the same cardinality as the set of real numbers.
This means that
$$\aleph_0 + C = C$$

Union 4 Union of two sets of cardinality the same as real numbers (of cardinality C) has the same cardinality as the set of real numbers.
This means that
$$C + C = C$$
Countable and Uncountable Sets

Product 1
Cartesian Product of two infinitely countable sets is an infinitely countable set

\[\mathbb{N}_0 \cdot \mathbb{N}_0 = \mathbb{N}_0 \]

Product 2
Cartesian Product of a non-empty finite set and an infinitely countable set is an infinitely countable set

\[n \cdot \mathbb{N}_0 = \mathbb{N}_0 \text{ for } n > 0 \]
Countable and Uncountable Sets

Product 3
Cartesian Product of an infinitely countable set and an uncountable set of cardinality C has the cardinality C

$\mathbb{N}_0 \cdot C = C$

Product 4
Cartesian Product of two uncountable sets of cardinality C has the cardinality C

$C \cdot C = C$
Countable and Uncountable Sets

Power 1
The set $2^\mathbb{N}$ of all subsets of natural numbers (or of any countably infinite set) is uncountable set of cardinality \mathcal{C}, i.e. has the same cardinality as the set of real numbers

$$2^{\aleph_0} = \mathcal{C}$$

Power 2
There are \mathcal{C} of all functions that map \mathbb{N} into \mathbb{N}

Power 3
There are \mathcal{C} possible sequences that can be form out of an infinitely countable set

$$\mathcal{N}_0^{\aleph_0} = \mathcal{C}$$
Countable and Uncountable Sets

Power 4
The set of all functions that map \mathbb{R} into \mathbb{R} has the cardinality C^c.

Power 5
The set of all real functions of one variable has the same cardinality as the set of all subsets of real numbers.

$C^c = 2^c$
Countable and Uncountable Sets

Theorem 4

\[n < \aleph_0 < C \]

Theorem 5

For any non empty, finite set \(A \), the set \(A^* \) of all finite sequences formed out of \(A \) is countably infinite, i.e

\[|A^*| = \aleph_0 \]

We write it as

If \(|A| = n, \ n \geq 1 \), then \(|A^*| = \aleph_0 \)
Simple Short Questions

Q1 Set \(A \) is uncountable if \(A \subseteq R \) (\(R \) is the set of real numbers)

Q2 Set \(A \) is countable if \(N \subseteq A \) where \(N \) is the set of natural numbers

Q3 The set \(2^N \) is infinitely countable

Q4 The set \(A = \{\{n\} \in 2^N : n^2 + 1 \leq 15\} \) is infinite

Q5 The set \(A = \{(\{n\}, n) \in 2^N \times N : 1 \leq n \leq n^2\} \) is infinitely countable

Q6 Union of an infinite set and a finite set is an infinitely countable set
Answers to Simple Short Questions

Q1 Set A is uncountable if and only if $A \subseteq \mathbb{R}$ (\mathbb{R} is the set of real numbers)

NO

The set $2^\mathbb{R}$ is uncountable, as $|\mathbb{R}| < |2^\mathbb{R}|$ by Cantor Theorem, but $2^\mathbb{R}$ is not a subset of \mathbb{R}

Also for example. $N \subseteq \mathbb{R}$ and N is not uncountable
Q2 Set A is **countable** if and only if $N \subseteq A$, where N is the set of natural numbers

NO

For example, the set $A = \{\emptyset\}$ is countable as it is finite, but $N \not\subseteq \{\emptyset\}$

In fact, A can be any **finite** set or any A can be any **infinite** set that does not include N, for example, $A = \{\{n\} : n \in N\}$
Answers to Simple Short Questions

Q3 The set $2^\mathbb{N}$ is infinitely countable

NO

$|2^\mathbb{N}| = |\mathbb{R}| = C$ and hence $2^\mathbb{N}$ is uncountable

Q4

The set $A = \{ \{n\} \in 2^\mathbb{N} : n^2 + 1 \leq 15 \}$ is infinite

NO

The set $\{n \in \mathbb{N} : n^2 + 1 \leq 15 \} = \{0, 1, 2, 3\}$,
Hence the set $A = \{\{0\}, \{1\}, \{2\}, \{3\} \}$ is finite
Answers to Simple Short Questions

Q5 The set $A = \{ (\{n\}, n) \in 2^N \times N : 1 \leq n \leq n^2 \}$ is infinitely countable (countably infinite)
YES
Observe that the condition $n \leq n^2$ holds for all $n \in N$, so the set $B = \{ n : n \leq n^2 \}$ is infinitely countable
The set $C = \{ (\{n\} \in 2^N : 1 \leq n \leq n^2 \}$ is also infinitely countable as the function given by a formula $f(n) = \{n\}$ is 1–1 and maps B onto C, i.e $|B| = |C|

The set $A = C \times B$ is hence infinitely countable as the Cartesian Product of two infinitely countable sets
CHAPTER 1

PART 5: Fundamental Proof Techniques

1. Counting Functions Theorem
2. The Pigeonhole Principle
3. The Diagonalization Principle
Mathematical Induction Applications
Examples

Counting Functions Theorem

For any finite, non empty sets \(A, B \), there are

\[|B|^{|A|} \]

functions that map \(A \) into \(B \)

Proof
We conduct the proof by Mathematical Induction over the number of elements of the set \(A \), i.e. over \(n \in N - \{0\} \), where \(n = |A| \)
Counting Functions Theorem Proof

Base case \(n = 1 \)

We have hence that \(|A| = 1 \) and let \(|B| = m, \ m \geq 1, \ i.e. \)

\[
A = \{a\} \quad \text{and} \quad B = \{b_1, \ldots b_m\}, \ m \geq 1
\]

We have to prove that there are

\[
|B|^{|A|} = m^1
\]

functions that map \(A \) into \(B \)

The base case holds as there are exactly \(m^1 = m \) functions \(f : \{a\} \rightarrow \{b_1, \ldots b_m\} \) defined as follows

\[
f_1(a) = b_1, \ f_2(a) = b_2, \ldots, \ f_m(a) = b_m
\]
Counting Functions Theorem Proof

Inductive Step
Let \(A = A_1 \cup \{a\} \) for \(a \notin A_1 \) and \(|A_1| = n \)

By inductive assumption, there are \(m^n \) functions

\[f : A \rightarrow B = \{b_1, \ldots, b_m\} \]

We **group** all functions that map \(A_1 \) as follows

Group 1 contains all functions \(f_1 \) such that

\[f_1 : A \rightarrow B \]

and they have the following property

\[f_1(a) = b_1, \quad f_1(x) = f(x) \quad \text{for all} \quad f : A \rightarrow B \quad \text{and} \quad x \in A_1 \]

By inductive assumption there are \(m^n \) functions in the **Group 1**
Counting Functions Theorem Proof

Inductive Step
We define now a **Group** i, for $1 \leq i \leq m$, $m = |B|$ as follows

Each **Group** i contains all functions f_i such that

$$f_i : A \rightarrow B$$

and they have the following property

$$f_i(a) = b_1, \quad f_i(x) = f(x) \quad \text{for all} \quad f : A \rightarrow B \quad \text{and} \quad x \in A_1$$

By **inductive assumption** there are m^n functions in each of the **Group** i

There are $m = |B|$ groups and each of them has m^n elements, so all together there are

$$m(m^n) = m^{n+1}$$

functions, what **ends the proof**
Pigeonhole Principle Theorem

If A and B are non-empty finite sets and $|A| > |B|$, then there is no one-to-one function from A to B.

Proof

We conduct the proof by Mathematical Induction over $n \in \mathbb{N} - \{0\}$, where $n = |B|$ and $B \neq \emptyset$.

Base case $n = 1$

Suppose $|B| = 1$, that is, $B = \{b\}$, and $|A| > 1$.

If $f : A \rightarrow \{b\}$,

then there are at least two distinct elements $a_1, a_2 \in A$, such that $f(a_1) = f(a_2) = \{b\}$

Hence the function f is not one-to-one.
Pigeonhole Principle Proof

Inductive Assumption
We assume that any \(f : A \rightarrow B \) is not one-to one provided

\[|A| > |B| \quad \text{and} \quad |B| \leq n, \quad \text{where} \quad n \geq 1 \]

Inductive Step
Suppose that \(f : A \rightarrow B \) is such that

\[|A| > |B| \quad \text{and} \quad |B| = n + 1 \]

Choose some \(b \in B \)

Since \(|B| \geq 2 \) we have that \(B - \{b\} \neq \emptyset \)
Pigeonhole Principle Proof

Consider the set $f^{-1}([b]) \subseteq A$. We have two cases

1. $|f^{-1}(\{b\})| \geq 2$

Then by definition there are $a_1, a_2 \in A$, such that $a_1 \neq a_2$ and $f(a_1) = f(a_2) = b$ what proves that the function f is not one-to one

2. $|f^{-1}(\{b\})| \leq 1$

Then we consider a function

$$g : A - f^{-1}(\{b\}) \rightarrow B - \{b\}$$

such that

$$g(x) = f(x) \text{ for all } x \in A - f^{-1}(\{b\})$$
Pigeonhole Principle Proof

Observe that the inductive assumption applies to the function \(g \) because \(|B - \{b\}| = n \) for \(|B| = n + 1 \) and

\[
|A - f^{-1}(\{b\})| \geq |A| - 1 \text{ for } |f^{-1}(\{b\})| \leq 1
\]

We know that \(|A| > |B| \), so

\[
|A| - 1 > |B| - 1 = n = |B - \{b\}| \text{ and } |A - f^{-1}(\{b\})| > |B - \{b\}|
\]

By the inductive assumption applied to \(g \) we get that \(g \) is not one-to-one

Hence \(g(a_1) = g(a_2) \) for some distinct \(a_1, a_2 \in A - f^{-1}(\{b\}) \),

but then \(f(a_1) = f(a_2) \) and \(f \) is not one-to-one either
Pigeonhole Principle Revisited

We now formulate a bit stronger version of the pigeonhole principle and present its slightly different proof.

Pigeonhole Principle Theorem
If \(A \) and \(B \) are finite sets and \(|A| > |B| \), then there is no one-to-one function from \(A \) to \(B \).

Proof
We conduct the proof by Mathematical Induction over \(n \in \mathbb{N} \), where \(n = |B| \).

Base case \(n = 0 \)
Assume \(|B| = 0 \), that is, \(B = \emptyset \). Then there is no function \(f : A \to B \) whatsoever; let alone a one-to-one function.
Pigeonhole Principle Revisited Proof

Inductive Assumption
Any function \(f : A \to B \) is **not one-to one** provided

\[
|A| > |B| \quad \text{and} \quad |B| \leq n, \quad n \geq 0
\]

Inductive Step
Suppose that \(f : A \to B \) is such that

\[
|A| > |B| \quad \text{and} \quad |B| = n + 1
\]

We have to show that \(f \) is **not one-to one** under the Inductive Assumption.
Pigeonhole Principle Revisited Proof

We proceed as follows

We **choose** some element $a \in A$

Since $|A| > |B|$, and $|B| = n + 1 \geq 1$ such choice is possible

Observe now that if there is another element $a' \in A$ such that $a' \neq a$ and $f(a) = f(a')$, then obviously the function f is **not one-to one** and we are done

So, **suppose now** that the chosen $a \in A$ is **the only** element mapped by f to $f(a)$
Pigeonhole Principle Revisited Proof

Consider then the sets $A - \{a\}$ and $B - \{f(a)\}$
and a function

$$g : A - \{a\} \rightarrow B - \{f(a)\}$$

such that

$$g(x) = f(x) \text{ for all } x \in A - \{a\}$$

Observe that the Inductive Assumption applies to g because

$$|B - \{f(a)\}| = n$$ and

$$|A - \{a\}| = |A| - 1 > |B| - 1 = |B - \{f(a)\}|$$
Pigeonhole Principle Revisited Proof

Hence by the **inductive assumption** the function g is **not one-to one**

Therefore, there are two distinct elements elements of $A - \{a\}$ that are mapped by g to the same element of $B - \{f(a)\}$

The function g is, by definition, such that

$$g(x) = f(x) \text{ for all } x \in A - \{a\}$$

so the function f is **not one-to one** either

This **ends** the proof
The Pigeonhole Principle is used in a large variety of proofs including many in this course.

Here is one simple application to be used in later Chapters.

Path Definition

Let $A \neq \emptyset$ and $R \subseteq A \times A$ be a binary relation in the set A.

A **path** in the binary relation R is a finite sequence a_1, \ldots, a_n such that $(a_i, a_{i+1}) \in R$, for $i = 1, \ldots, n - 1$ and $n \geq 1$.

The **path** a_1, \ldots, a_n is said to be from a_1 to a_n.

The **length** of the path a_1, \ldots, a_n is n.

The **path** a_1, \ldots, a_n is a **cycle** if a_i are all distinct and also $(a_n, a_1) \in R$.
Path THeorem

Path Theorem
Let R be a binary relation on a finite set A and let $a, b \in A$
If there is a path from a to b in R,
then there is a path of length at most $|A|$

Proof
Suppose that a_1, \ldots, a_n is the shortest path from $a = a_1$
to $b = a_n$, that is, the path with the smallest length, and
suppose that $n > |A|$.
By Pigeonhole Principle there is an element in A that
repeats on the path, say $a_i = a_j$ for some $1 \leq i < j \leq n$
But then $a_1, \ldots, a_i, a_{j+1}, \ldots, a_n$ is a shorter path from a to b,
contradicting a_1, \ldots, a_n being the shortest path
The Diagonalization Principle

Here is yet another Principle which justifies a new important proof technique

Diagonalization Principle (Georg Cantor 1845-1918)

Let R be a binary relation on a set A, i.e.

$R \subseteq A \times A$ and let D, the diagonal set for R be as follows

$$D = \{a \in A : (a, a) \notin R\}$$

For each $a \in A$, let

$$R_a = \{b \in A : (a, b) \in R\}$$

Then D is distinct from each R_a
The Diagonalization Principle Applications

Here are two theorems whose proofs are the "classic" applications of the Diagonalization Principle

Cantor Theorem 2
Let N be the set on natural numbers

The set 2^N is uncountable

Cantor Theorem 3
The set of real numbers in the interval $[0, 1]$ is uncountable
Cantor Theorem 2 Proof

Cantor Theorem 2
Let N be the set on natural numbers

The set 2^N is uncountable

Proof
We apply proof by contradiction method and the Diagonalization Principle
Suppose that 2^N is countably infinite. That is, we assume that we can put sets of 2^N in a one-to one sequence

$$\{R_n\}_{n \in N}$$

such that

$$2^N = \{R_0, R_1, R_2, \ldots \}$$

We define a binary relation $R \subseteq N \times N$ as follows

$$R = \{(i,j) : j \in R_i\}$$

This means that for any $i, j \in N$ we have that

$$(i,j) \in R \text{ if and only if } j \in R_i$$
Cantor Theorem 2 Proof

In particular, for any $i, j \in N$ we have that

$$(i, j) \notin R \text{ if and only if } j \notin R_i$$

and the diagonal set D for R is

$$D = \{n \in N : n \notin R_n\}$$

By definition $D \subseteq N$, i.e.

$$D \in 2^N = \{R_0, R_1, R_2, \ldots\}$$

and hence

$$D = R_k \text{ for some } k \geq 0$$
Cantor Theorem 2 Proof

We obtain **contradiction** by asking whether $k \in R_k$ for

$$D = R_k$$

We have two cases to consider: $k \in R_k$ or $k \notin R_k$

c1 Suppose that $k \in R_k$
Since $D = \{ n \in N : n \notin R_n \}$ we have that $k \notin D$
But $D = R_k$ and we get $k \notin R_k$

Contradiction

c2 Suppose that $k \notin R_k$
Since $D = \{ n \in N : n \notin R_n \}$ we have that $k \in D$
But $D = R_k$ and we get $k \in R_k$

Contradiction

This ends the **proof**
Cantor Theorem 3
The set of real numbers in the interval \([0, 1]\) is \textbf{uncountable}.

\textbf{Proof}
We carry the proof by the \textit{contradiction method}.

We assume that the set of real numbers in the interval \([0, 1]\) is \textit{infinitely countable}.

This means, by definition, that there is a function \(f\) such that
\[
f : \mathbb{N} \overset{1-1,onto}{\rightarrow} [01]
\]
Let \(f\) be any such function. We write \(f(n) = d_n\) and denote by
\[
d_0, d_1, \ldots, d_n, \ldots,
\]
a sequence of all elements of \([01]\) \textit{defined} by \(f\).

We will get a \textit{contradiction} by showing that one can always find an element \(d \in [01]\) such that \(d \neq d_n\) for all \(n \in \mathbb{N}\).
Cantor Theorem 3 Proof

We use \textbf{binary} representation of real numbers

Hence we assume that all numbers in the interval \([01]\) form a one to one sequence

\[
d_0 = 0.a_{00} \ a_{01} \ a_{02} \ a_{03} \ a_{04} \ \ldots \ \ldots \\

d_1 = 0.a_{10} \ a_{11} \ a_{12} \ a_{13} \ a_{04} \ \ldots \ \ldots \\

d_2 = 0.a_{20} \ a_{21} \ a_{22} \ a_{23} \ a_{0} \ \ldots \ \ldots \\

d_3 = 0.a_{30} \ a_{31} \ a_{32} \ a_{33} \ a_{04} \ \ldots \ \ldots \\
\ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \\
\]

where all \(a_{ij} \in \{0, 1\}\)
Cantor Theorem 3 Proof

We use Cantor Diagonatization idea to define an element $d \in [01]$, such that $d \neq d_n$ for all $n \in N$ as follows:

For each element a_{nn} of the "diagonal"

$$a_{00}, a_{11}, a_{22}, \ldots, a_{nn}, \ldots$$

of the sequence $d_0, d_1, \ldots, d_n, \ldots$, of binary representation of all elements of the interval $[01]$ we define an element $b_{nn} \neq a_{nn}$ as

$$b_{nn} = \begin{cases}
0 & \text{if } a_{nn} = 1 \\
1 & \text{if } a_{nn} = 0
\end{cases}$$
Cantor Theorem 3 Proof

Given such defined sequence

\[b_{00}, b_{11}, b_{22}, b_{33}, b_{44}, \ldots \ldots \]

We now construct a real number \(d \) as

\[d = b_{00} \ b_{11} \ b_{22} \ b_{33} \ b_{44} \ \ldots \ \ldots \]

Obviously \(d \in [01] \) and by the Diagonatization Principle \(d \neq d_n \) for all \(n \in N \)

Contradiction

This ends the proof
Cantor Theorem 3 Proof

Here is another proof of the Cantor Theorem 3. It uses, after Cantor, the decimal representation of real numbers. In this case, we assume that all numbers in the interval [0,1) form a one to one sequence:

\[
d_0 = 0.a_{00} a_{01} a_{02} a_{03} a_{04} \ldots \ldots \\
d_1 = 0.a_{10} a_{11} a_{12} a_{13} a_{04} \ldots \ldots \\
d_2 = 0.a_{20} a_{21} a_{22} a_{23} a_{0} \ldots \ldots \\
d_3 = 0.a_{30} a_{31} a_{32} a_{33} a_{04} \ldots \ldots \\
\ldots \ldots
Cantor Theorem 3 Proof

For each element \(a_{nn} \) of the "diagonal"

\[a_{00}, a_{11}, a_{22}, \ldots a_{nn}, \ldots , \ldots \]

we define now an element (this is not the only possible definition) \(b_{nn} \neq a_{nn} \) as

\[
 b_{nn} = \begin{cases}
 2 & \text{if } a_{nn} = 1 \\
 1 & \text{if } a_{nn} \neq 1
\end{cases}
\]

We construct a real number \(d \in [01] \) as

\[
 d = b_{00} \ b_{11} \ b_{22} \ b_{33} \ b_{44} \ldots \ldots
\]