cse303
ELEMENTS OF THE THEORY OF COMPUTATION

Professor Anita Wasilewska
LECTURE 14
SMALL REVIEW FOR FINAL
Q1 Given $\Sigma = \emptyset$, there is $L \neq \emptyset$ over Σ
Yes: $\emptyset^* = \{e\}$ and $L = \{e\} \subseteq \Sigma^*$

Q2 There are uncountably many languages over $\Sigma = \{a\}$
Yes: $|\{a\}^*| = \aleph_0$ and $|2\{a\}^*| = C$ and any set of cardinality C is uncountable

Q3 Let RE be a set of regular expressions.
$L \subseteq \Sigma^*$ is regular iff $L = L(r)$, for some $r \in RE$
Yes: this is definition of regular language

Q4 $L^* = \{w \in \Sigma^* : \exists q \in F (s, w) \vdash_M^* (q, e)\}$
No: this is definition of $L(M)$, not of L^*
SOME Y/N QUESTIONS

Q5 \(L^* = L^+ - \{e\} \)
No: only when \(e \not\in L \)

Q6 \(L^* = \{w_1 \ldots w_n : w_i \in L, i = 1, \ldots, n\} \)
No: only when \(i = 0, 1, \ldots, n \)

Q7 For any languages \(L_1, L_2 \subseteq \Sigma^* \),
if \(L_1 \subseteq L_2 \), then \((L_1 \cup L_2)^* = L_2^* \)
Yes languages are sets, so \((L_1 \cup L_2) = L_2^* \) when \(L_1 \subseteq L_2 \)

Q8 \((((\phi^* \cap a) \cup (\phi \cup b^*)) \cap \phi^* \) represents a language \(L = \{e\} \)
Yes \((((\{e\} \cap \{a\}) \cup \{b\}^*) \cap \{e\} = \{b\}^* \cap \{e\} = \{e\} \)
SOME Y/N QUESTIONS

Q9 \[L(M) = \{ w \in \Sigma^* : (q, w) \vdash^*_M (s, e) \} \]
No: only when \(q \in F \)

Q10 \[L(M_1) = L(M_2) \text{ iff } M_1 \text{ and } M_2 \text{ are finite automata} \]
No: take as \(M_1, M_2 \) any finite automata such that \(L(M_1) \neq \emptyset \) and \(M_2 \) such that \(L(M_2) = \emptyset \)

Q11 Any finite language is Context Free
Yes: any finite language is regular and we proved that \(RL \subset CFL \)

Q12 Intersection of any two regular languages is CF language
Yes: Regular languages are closed under intersection and \(RL \subset CFL \)
Q13 Union of a regular and a CF language is a CF language
Yes: \(RL \subseteq CFL \) and FCL are closed under union

Q14 If \(L \) is regular, there is a PDA \(M \) such that \(L = L(M) \)
Yes: FA is a PDA operating on an empty stock

Q15 \(L = \{a^n b^n c^n : n \geq 0\} \) is CF
No: \(L \) is not CF, as proved by Pumping Lemma for CF languages

Q16 Let \(\Sigma = \{a\} \), then for any \(w \in \Sigma^* \) we have that \(w^R = w \)
Yes: \(a^R = a \) and hence \(w^R = w \) for \(w \in \{a\}^* \)
SOME Y/N QUESTIONS

Q17 \(A \rightarrow Ax, A \in V, \ x \in \Sigma^* \) is the only rule allowed in a regular grammar

No: not only, \(A \rightarrow xB \) for \(B \neq A \) is also a rule of a regular grammar

Q18 Let \(G = (\{S, (,)\}, \{(,)\}, R, S) \) for \(R = \{S \rightarrow SS \mid (S)\} \)

\(L(G) \) is regular

Yes: \(L(G) = \emptyset \) and hence regular

Q19 The grammar with rules
\(S \rightarrow AB, B \rightarrow b \mid bB, A \rightarrow e \mid aAb \) generates a language
\(L = \{a^k b^j : k < j\} \)

Yes: the rule \(A \rightarrow e \mid aAb \) produces the same amount of a’s and b’s, and the rule \(B \rightarrow bB \) adds only b’s
Q20 We can always show that L is regular using **Pumping Lemma**

No: we use **Pumping Lemma** to prove (if possible) that L is not regular

Q21 $((p, e, \beta), (q, \gamma)) \in \Delta$ means: read nothing, move from p to q

No: must add: and replace β by γ on the top of the stack

Q22 $L = \{a^n b^m c^n : n, m \in N\}$ is CF

Yes: $L = L(G)$ for G with rules $S \rightarrow aSc \mid B$, $B \rightarrow bB \mid e$

Q23 Every subset of a regular language is a regular language

No: $L = \{a^n b^n : n \geq 0\} \subseteq a^*b^*$ and L is not regular
SOME Y/N QUESTIONS

Q24 Class of context-free languages is closed under intersection
No: \(L_1 = \{ a^n b^n c^m : n, m \geq 0 \} \) is CF,
 \(L_1 = \{ a^m b^n c^n : n, m \geq 0 \} \) is CF, but
 \(L_1 \cap L_2 = \{ a^n b^n c^n, n \geq 0 \} \) is not CF

Q25 A regular language is a CF language
Yes: Regular grammar is a special case of a context-free grammar

Q26 Any regular language is accepted by some PD automaton
Yes: Any regular language is accepted by a finite automaton, and a finite automaton is a PD automaton (that never operates on the stock)
SOME Y/N QUESTIONS

Q27 Turing Machines can read and write
Yes: by definition

Q28 A configuration of a Turing machine $M = (K, \Sigma, \delta, s, H)$ is any element of a set $K \times \Sigma^* \times (\Sigma^*(\Sigma - \{\square\}) \cup \{e\})$, where \square denotes a blank symbol
No: a configuration is an element of a set $K \times \triangleright \Sigma^* \times (\Sigma^*(\Sigma - \{\square\}) \cup \{e\})$

Q29 A computation of a Turing machine can start at any position of $w \in \Sigma$
Yes: by definition
Q30 In Turing machines, words \(w \in \Sigma^* \) can’t contain blank symbols
No: \(\Sigma \) in Turing machine contains the blank symbol \(\sqcup \)

Q31 It is proved that everything computable (algorithm) is computable by a Turing Machine and vice versa
No: this is Church - Turing Hypothesis, not a theorem

Q32 A Turing machine \(M \) decides a language \(L \subseteq \Sigma^* \), if for any word \(w \in \Sigma^* \) the following is true.
If \(w \in L \), then then \(M \) accepts \(w \);
and if \(w \not\in L \) then \(M \) rejects \(w \)
No: must say: any word \(w \in \Sigma_0^* \), and \(L \subseteq \Sigma_0^* \) for \(\Sigma_0 = \Sigma - \{\sqcup\} \)
P1

Let \(\Sigma \) be any alphabet, \(L_1, L_2 \) be two languages such that \(e \in L_1 \) and \(e \in L_2 \). Show that

\[
(L_1 \Sigma^* L_2)^* = \Sigma^*
\]

Solution

By definition, \(L_1 \subseteq \Sigma^* \), \(L_2 \subseteq \Sigma^* \) and \(\Sigma^* \subseteq \Sigma^* \). Hence

\[
(L_1 \Sigma^* L_2)^* \subseteq \Sigma^*
\]

We have to show that also

\[
\Sigma^* \subseteq (L_1 \Sigma^* L_2)^*
\]

Let \(w \in \Sigma^* \). We have that also \(w \in (L_1 \Sigma^* L_2)^* \) because \(w = e e e \) and \(e \in L_1 \) and \(e \in L_2 \)
P2
Use book or lecture definition (specify which are you using) to construct a non-deterministic finite automaton M, such that

$$L(M) = (ab)^*(ba)^*$$

Draw a state diagram. Do not specify all components. **Justify** your construction by listing some strings accepted by the state diagram

Solution 1: We use the **lecture definition**
Components of M are:

$\Sigma = \{a, b\}$, $K = \{q_0, q_1\}$, $s = q_0$, $F = \{q_0, q_1\}$,

$$\Delta = \{(q_0, ab, q_0), (q_0, e, q_1), (q_1, ba, q_1)\}$$

You must **draw the diagram** only!
Strings accepted are: $ab, abab, abba, ababba, ...$
You must **trace the computations** accepting these strings!
SOME PROBLEMS

P2

Solution 2: We use the book definition

Components of M are:

$\Sigma = \{a, b\}$, $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$, $F = \{q_2\}$,

$\Delta = \{(q_0, a, q_1), (q_1, b, q_0), (q_0, e, q_2), (q_2, b, q_3), (q_3, a, q_2)\}$

You must draw the diagram only!

Strings accepted are: ab, $abab$, $abba$, $ababba$,

You must trace the computations accepting these strings!
SOME PROBLEMS

P3
1. DRAW a DIAGRAM of a PDA \(M \), such that

\[
L(M) = \{b^n a^{2n} : n \geq 0\}
\]

Solution 1
Here are the components- you must draw a diagram!

\(M = (K, \Sigma, \Gamma, \Delta, s, F) \)

\[
K = \{s, f\}, \Sigma = \{a, b\}, \Gamma = \{a\}, s, F = \{f\},
\]

\[
\Delta = \{((s, b, e), (s, aa)), ((s, e, e), (f, e)), ((f, a, a), (f, e))\}
\]
SOME PROBLEMS

P3

2. Explain the construction. Write motivation.

Solution

\(M \) operates as follows:

- \(\Delta \) pushes \(aa \) on the top of the stock while \(M \) is reading \(b \),
- switches to \(f \) (final state) non-deterministically;
- and pops \(a \) while reading \(a \) (all in final state)

\(M \) puts on the stock two \(a \)'s for each \(b \), and then remove all \(a \)'s from the stock comparing them with \(a \)'s in the word while in the final state
SOME PROBLEMS

P3
3. **Trace** a transitions of M that leads to the acceptance of the string $bbaaaa$

The accepting computation is:

$$(s, bbaaaa, e) \vdash_M (s, baaaa, aa) \vdash_M (s, aaaa, aaaa)$$

$$\vdash_M (f, aaaa, aaaa) \vdash_M (f, aaa, aa) \vdash_M (f, aa, aa)$$

$$\vdash_M (f, a, a) \vdash_M (f, e, e)$$

Solution 2

$M = (K, \Sigma, \Gamma, \Delta, s, F)$ for

$$K = \{s, f\}, \Sigma = \{a, b\}, \Gamma = \{b\}, s, F = \{f\},$$

$$\Delta = \{((s, b, e), (s, b)), ((s, e, e), (f, e)), ((f, aa, b), (f, e))\}$$
SOME PROBLEMS

P4
Given a Regular grammar \(G = (V, \Sigma, R, S) \), where

\[
V = \{a, b, S, A\}, \quad \Sigma = \{a, b\},
\]

\[
R = \{S \to aS | A | e, \quad A \to abA | a | b\}
\]

1. Use the construction in the proof of **L-GTheorem**: Language \(L \) is regular if and only if there exists a regular grammar \(G \) such that \(L = L(G) \) to construct a **finite automaton** \(M \), such that \(L(G) = L(M) \)

Draw a **diagram** of \(M \)
SOME PROBLEMS

P4
Solution
Given \(R = \{ S \to aS \mid A \mid e, \ A \to abA \mid a \mid b\} \)
we construct a non-deterministic finite automata

\[
M = (K, \Sigma, \Delta, s, F)
\]

as follows:

\[
K = (V - \Sigma) \cup \{f\}, \ \Sigma = \Sigma, s = S, \ F = \{f\},
\]
\[
\Delta = \{(S, a, S), (S, e, A), (S, e, f), (A, ab, A), (A, a, f), (A, b, f)\}
\]
SOME PROBLEMS

P4

2. **Trace** a transitions of M that lead to the acceptance of the string $aaaababa$, and **compare** with a derivation of the same string in G

Solution

The accepting **computation** is:

$$(S, aaaababa) \vdash_M (S, aaababa) \vdash_M (S, ababa) \vdash_M (A, ababa) \vdash_M (A, aba) \vdash_M (A, a) \vdash_M (f, e)$$

G derivation is:

$$S \Rightarrow aS \Rightarrow aaS \Rightarrow aaaS \Rightarrow aaaA \Rightarrow aaaabA$$

$$\Rightarrow aaaababA \Rightarrow aaaababa$$
P5
Prove that the Class of context-free languages is NOT closed under intersection

Proof
Assume that the context-free languages are are closed under intersection

Observe that both languages

$L_1 = \{a^n b^n c^m : m, n \geq 0\}$ and $L_2 = \{a^m b^n c^n : m, n \geq 0\}$

are context-free

So the language $L_1 \cap L_2$ must be context-free, but

$L_1 \cap L_2 = \{a^n b^n c^n : n \geq 0\}$

and we have proved that $L = \{a^n b^n c^n : n \geq 0\}$ is not context-free

Contradiction