
INTRODUCTION TO THE THEORY OF
COMPUTATION

LECTURE NOTES

Professor Anita Wasilewska
Stony Brook University (SUNY at Stony Brook)

Course Text Book

ELEMENTS OF THE THEORY OF COMPUTATION

Harry R. Lewis, and Christos H. Papadimitriou

Prentice Hall, S2nd Edition

Chapter 2
Finite Automata

LECTURE SLIDES

Chapter 2
Finite Automata

Slides Set 1

PART 1: Deterministic Finite Automata DFA

PART 2: Nondeterministic Finite Automata DFA
Equivalency of DFA and DFA

Slides Set 2

PART 3: Finite Automata and Regular Expressions

PART 4: Languages that are Not Regular

Slides Set 3

PART 5: State Minimization

Chapter 2
Finite Automata

Slides Set 1

PART 1: Deterministic Finite Automata DFA

Deterministic Finite Automata DFA

Simple Computational Model
Here is a picture

Here are the components of the model
C1: Input string on an input tape written at the beginning of
the tape
The input tape is divided into squares, with one symbol
inscribed in each tape square

DFA - A Simple Computational Model

Here is a picture

C2: ”Black Box” - called Finite Control
It can be in any specific time in one of the finite number of
states {q1, . . . , qn}

C3: A movable Reading Head can sense what symbol is
written in any position on the input tape and moves only
one square to the right

DFA - A Simple Computational Model

Here are the assumptions for the model

A1: There is no output at all;

A2: DFA indicates whether the input is acceptable

or not acceptable

A3: DFA is a language recognition device

DFA - A Simple Computational Model

Operation of DFA

O1 Initially the reading head is placed at left most square

at the beginning of the tape and

O2 finite control is set on the initial state

O3 After reading on the input symbol the reading head

moves one square to the right and enters a new state

O4 The process is repeated

O5 The process ends when the reading head reaches

the end of the tape

DFA - A Simple Computational Model

The general rules of the operation of DFA are

R1 At regular intervals DFA reads only one symbol at the

time from the input tape and enters a new state

R2: The move of DFA depends only on the current state
and the symbol just read

DFA - A Simple Computational Model

Operation of DFA

O6 When the process stops the DFA indicates its approval
or disapproval of the string by means of the final state

O7 If the process stops while being in the final state, the
string is accepted

O8 If the process stops while not being in the final state,
the string is not accepted

Language Accepted by DFA

Informal Definition

Language accepted by a Deterministic Finite Automata

is equal to the set of strings accepted by it

DFA - Mathematical Model

To build a mathematical model for DFA we need to include
and define the following components

FINITE set of STATES

ALPHABET Σ

INITIAL state

FINAL state

Description of the MOVE of the reading head is as follows

R1 At regular intervals DFA reads only one symbol at the
time from the input tape and enters a new state

R2: The MOVE of DFA depends only on the current state
and the symbol just read

DFA - Mathematical Model

Definition
A Deterministic Finite Automata is a quintuple

M = (K , Σ, δ, s, F)

where

K is a finite set of states
Σ as an alphabet
s ∈ K is the initial state
F ⊆ K is the set of final states
δ is a function

δ : K × Σ −→ K

called the transition function
We usually use different symbols for K , Σ, i.e. we have that
K ∩ Σ = ∅

DFA Definition

Definition revisited
A Deterministic Finite Automata is a quintuple

M = (K , Σ, δ, s, F)

where
K is a finite set of states
K , ∅ because s ∈ K
Σ as an alphabet
Σ can be ∅ - case to consider
s ∈ K is the initial state
F ⊆ K is the set of final states
F can be ∅ - case to consider
δ is a function

δ : K × Σ −→ K

δ is called the transition function

Transition Function

Given DFA

M = (K , Σ, δ, s, F)

where
δ : K × Σ −→ K

Let
δ(q, σ) = q′ for q, q′ ∈ K , σ ∈ Σ

means: the automaton M in the state q reads σ ∈ Σ and

moves to a state q′ ∈ K , which is uniquely determined by

state q and σ just read

Configuration

In order to define a notion of computation of M on
an input string w ∈ Σ∗ we introduce first a notion of
a configuration
Definition
A configuration is any tuple

(q,w) ∈ K × Σ∗

where q ∈ K represents a current state of M
and w ∈ Σ∗ is unread part of the input
Picture

Transition Relation

Definition

The set of all possible configurations of M = (K , Σ, δ, s, F)

iis just
K × Σ∗ = {(q,w) : q ∈ K , w ∈ Σ∗}

We define move of an automaton M i in terms of a transition
relation

`M

The transition relation acts between two configurations
and hence `M is a certain binary relation defined on K × Σ∗,
i.e.

`M ⊆ (K × Σ∗)2

Formal definition follows

Transition Relation

Definition

Given M = (K , Σ, δ, s, F)

A binary relation
`M ⊆ (K × Σ∗)2

is called a transition relation when for any

q, q′ ∈ K , w1,w2 ∈ Σ∗ the following holds

(q,w1) `M (q′,w2)

if and only if

1. w1 = σw2, for some σ ∈ Σ (M looks at σ)

2. δ(q, σ) = q′ (M moves from q to q’ reading σ in w1)

Transition Relation

Definition (Transition Relation short definition)

Given M = (K , Σ, δ, s, F)

For any q, q′ ∈ K , σ ∈ Σ, w ∈ Σ∗

(q, σw) `M (q′,w)

if and only if

δ(q, σ) = q′

Idea of Computation

We use the transition relation to define a move of M along

a given input, i.e. a given w ∈ Σ∗

Such a move is called a computation

Example

Given M such that K = {s, q} and let `M be a transition
relation such that

(s, aab)`M(q, ab)`M(s, b)`M(q, e)

We call a sequence of configurations

(s, aab), (q, ab), (s, b), (q, e)

a computation from (s, aab) to (q, e) in automaton M

Idea of Computation

Given a a computation

(s, aab), (q, ab), (s, b), (q, e)

We write this computation in a more general form as

(q1, aab), (q2, ab), (q3, b), (q4, e)

for q1, q2, q3, q4 being a specific sequence of states from
K = {s, q}, namely q1 = s, q2 =, q3 = s, q4 = q and say
that the length of this computation is 4

In general we write any computation of length 4 as

(q1,w1), (q2,w2), (q3,w3), (q4,w4)

for any sequence q1, q2, q3, q4 of states from K and

words wi ∈ Σ∗

Idea of the Computation

Example

Given M and the computation

(s, aab), (q, ab), (s, b), (q, e)

We say that the word w= aab is accepted by M if and only if

1. the computation starts when M is in the initial state

- true here as s denotes the initial state

2. the whole word w has been read, i.e. the last configuration
of the computation is (q, e) for certain state in K,

- true as K = {s, q}

3. the computation ends when M is in the final state

- true only if we have that q ∈ F

Otherwise the word w is not accepted by M

Definition of the Computation

Definition
Given M = (K , Σ, δ, s, F)

A sequence of configurations

(q1,w1), (q2,w2), . . . , (qn,wn), n ≥ 1

is a computation of the length n in M from (q,w) to (q′,w′)

if and only if

(q1,w1) = (q,w), (qn,wn) = (q′,w′) and

(qi ,wi) `M (qi+1,wi+1) for i = 1, 2, . . . n − 1

Observe that when n = 1 the computation (q1,w1)

always exists and is called a computation of the length one
It is also called a rivial computation
We also write sometimes the computations as
(q1,w1) `M (q2,w2) `M . . . `M (qn,wn) for n ≥ 1

Words Accepted by M

Definition

A word w ∈ Σ∗ is accepted by M = (K , Σ, δ, s, F)

if and only if there is a computation

(q1,w1), (q2,w2), . . . , (qn,wn)

such that q1 = s, w1 = w, wn = e and qn = q ∈ F

Words Accepted by M

We re-write it as

Definition

A word w ∈ Σ∗ is accepted by M = (K , Σ, δ, s, F)

if and only if there is a computation

(s,w), (q2,w2), . . . , (q, e) and q ∈ F

When the computation is such that q < F we say that

the word w is not accepted (rejected) by M

Words Accepted by M

In Plain Words:

A word w ∈ Σ∗ is accepted by M = (K , Σ, δ, s, F)

if and only if

there is a computation such that

1. starts with the word w and M in the initial state ,

2. ends when M is in a final state, and

3. the whole word w has been read

Language Accepted by M

Definition

We define the language accepted by M as follows

L(M) = {w ∈ Σ∗ : w is accepted by M}

i.e. we write

L(M) = {w ∈ Σ∗ : (s,w) `M . . . `M (q, e) for some q ∈ F}

Examples

Example 1

Let M = (K , Σ, δ, s, F), where

K = {q0, q1}, Σ = {a, b}, s = q0, F = {q0}

and the transition function δ : K × Σ −→ K

is defined as follows

Question Determine whether ababb ∈ L(M) or
ababb < L(M)

Examples

Solution

We must evaluate computation that starts with the
configuration (q0, ababb) as q0 = s

(q0, ababb) `M use δ(q0, a) = q0

(q0, babb) `M use δ(q0, b) = q1

(q1, abb) `M use δ(q1, a) = q1

(q1, bb) `M use δ(q1, b) = q0

(q0, b) `M use δ(q0, b) = q1

(q1, e) `M end of computation and q1 < F = {q0}

We proved that ababb < L(M)

Observe that we always get unique computations, as δ is a
function, hence he name Deterministic Finite Automaton
(DFA)

Examples

Example 2

Let M1 = (K , Σ, δ, s, F) for all components defined

as in M from Example 1, except that we take now
F = {q0, q1}

We remind that

Exercise Show that now ababb ∈ L(M1)

Language Accepted by M
Revisited

We have defined the language accepted by M as

L(M) = {w ∈ Σ∗ : (s,w) `M . . . `M (q, e) for some q ∈ F}

Question: how to write this definition in a more

concise and elegant way

Answer: use the notion (Chapter 1, Lecture 3) of reflexive,
transitive closure of `M denoted by

`M
∗

and now we write the definition of L(M) as follows

Language Accepted by M
Revisited

Definition

L(M) = {w ∈ Σ∗ : (s,w) `M
∗(q, e) for some q ∈ F}

We write it also using the existential quantifier symbol as

L(M) = {w ∈ Σ∗ : ∃q∈F ((s,w) `M
∗(q, e))

Language Accepted by M
Revisited

In order to justify the following l definition

L(M) = {w ∈ Σ∗ : (s,w) `M
∗ (q, e) for some q ∈ F}

We bring back the general notion of a path in a binary relation
R and its reflexive, transitive closure R∗ (Chapter 1)
It follows directly from these definitions that

(q1,w1) `M
∗ (qn,wn)

represents a path

(q1,w1), (q2,w2) . . . , (qn−1,wn−1, (qn,wn)

in the relation `M , which is defined as a computation

(q1,w1) `M (q2,w2) . . . , (qn−1,wn−1`M (qn,wn)

in M from (q1,w1) to (qn,wn)

Language Accepted by M
Revisited

Hence
(s,w) `M

∗ (q, e)

represent a computation

(s,w) `M(q1,w1), . . . , (qn,wn)`M (q, e)

from (s,w) to (q, e),

So define the language L(M) as

L(M) = {w ∈ Σ∗ : (s,w) `M
∗ (q, e) for some q ∈ F}

Example

Example

Let M = (K , Σ, δ, s, F) be automaton from our Example
1, i.e. we have

K = {q0, q1}, Σ = {a, b}, s = q0, F = {q0}

and the transition function δ : K × Σ −→ K is defined as
follows

Question Show that aabba ∈ L(M)

Example

We evaluate

(q0, aabba) `M (q0, abba) `M (q0, bba) `M

(q1, ba) `M(q0, a) `M(q0, e) and q0 = s, q0 ∈ F = {q0}

This proves that

(s, aabba) `M
∗ (q0, e) for q0 ∈ F

By definition
aabba ∈ L(M)

General remark

To define or to give an example of

M = (K , Σ, δ, s, F)

means that one has to specify all its components
K , Σ, δ, s, F

We usually use different symbols for K , Σ, i.e. we have that
K ∩ Σ = ∅

Exercise

Given Σ = {a, b} and K == {q0, q1}

1. Define 3 automata M

2. Define an automaton M, such that L(M) = ∅

3. How many automata M can one define?

Exercise

1. Here are 3 automata M1 −M3

M1 : M1 = (K = {q0, q1}, Σ = {a, b}, δ, s = q0, F = {q0})

δ(q0, a) = q0, δ(q0, b) = q0, δ(q1, a) = q0, δ(q1, b) = q0

M2 : M2 = (K = {q0, q1}, Σ = {a, b}, δ, s = q0, F = {q1})

δ(q0, a) = q0, δ(q0, b) = q0, δ(q1, a) = q0, δ(q1, b) = q1

M3 : M3 = (K = {q0, q1}, Σ = {a, b}, δ, s = q0, F = {q1})

δ(q0, a) = q0, δ(q0, b) = q1, δ(q1, a) = q1, δ(q1, b) = q0

Exercise

2. Define an automaton M, such that L(M) = ∅

Answer: The automata M2 is such that L(M2) = ∅ as

there is no computation that would start at initial state q0

and

end in the final state q1 as in M2

We have that

δ(q0, a) = q0, δ(q0, b) = q0

so we will never reach the final state q1

Exercise

Here is another example:

Let M4 be defined as follows

M4 = (K = {q0, q1}, Σ = {a, b}, δ, s = q0, F = ∅)

δ(q0, a) = q0, δ(q0, b) = q0, δ(q1, a) = q0, δ(q1, b) = q0

L(M4) = ∅ as there is no computation that would start

at initial state q0 and end in the final state as there is no

final state

Exercise

3. How many automata M can one define?

Observe that all of M must have Σ = {a, b} and
K == {q0, q1} so they differ on the choices of
δ : K × Σ −→ K

By Counting Functions Theorem we have 24 possible

choices for δ

They also can differ on the choices of final states F

There as many choices for final states as subsets of

K == {q0, q1}, i.e. 22 = 4

Additionally we have to count all combinations of choices of δ

with choices of F

Challenge

1. Define an automata M with Σ , ∅ such that L(M) = ∅

2. Define an automata M with Σ = ∅ such that L(M) , ∅

3. Define an automata M with Σ , ∅ such that L(M) , ∅

4. Define an automata M with Σ , ∅ such that L(M) = Σ∗

5. Prove that there always exist an automata M such that
L(M) = Σ∗

DFA State Diagram

As we could see the transition functions can be defined in

many ways but it is difficult to decipher the workings of the
automata they define from their mathematical definition

We usually use a much more clear graphical representation

of the transition functions that is called a state diagram

Definition

The state diagram is a directed graph, with certain additional

information as shown at the picture on next slide

DFA State Diagram

PICTURE 1

States are represented by the nodes

Initial state is shown by a >©

Final states are indicated by a dot in a circle
⊙

Initial state that is also a final state is pictured as >
⊙

DFA State Diagram

PICTURE 2

States are represented by the nodes

There is an arrow labelled a from node q1 to q2 whenever
δ(q1, a) = q2

A Simple Problem

Problem

Given M = (K , Σ, δ, s, F) described by the following
diagram

1. List all components of M

2. Describe L(M) as a regular expression

A Simple Problem

Given the diagram

Components are: M = (K , Σ, δ, s, F) for
Σ = {a, b}, K = {q0, q1, q2},

s = q0, F = {q0, q1} and the transition function is given by
following table

A Simple Problem

2. Describe L(M) as a regular expression, where

L(M) = {w ∈ Σ∗ : (s,w) `M
∗(q, e) for q ∈ F}

Let’s look again at the diagram of M

Observe that the state q2 does not influence the language
L(M). We call such state a trap state and say:
The state q2 is a trap state
We read from the diagram that

L(M) = a(a ∪ b)∗ ∪ e as a regular expression

L(M) = {a} ◦ {a, b}∗ ∪ {e} as a set

DFA Theorem

DFA Theorem

For any DFA M = (K , Σ, δ, s, F),

e ∈ L(M) if and only if s ∈ F

where we defined L(M) as follows

L(M) = {w ∈ Σ∗ : (s,w) `M
∗(q, e) for some q ∈ F}

Proof

Let e ∈ L(M), then by definition (s, e) `M
∗(q, e) and q ∈ F

This is possible only when the computation is of the length
one (case n = 1), i.e when it is (s, e) and s = q, hence s ∈ F

Suppose now that s ∈ F

We know that `M∗ is reflexive, so (s, e) `M
∗(s, e) and as

s ∈ F , we get e ∈ L(M)

Definition of TRAP States of M

Definition

A trap state of a DFA automaton M is any of its states that
does not influence the language L(M) of M

Example

L(M) = b written in shorthand notation, L(M) = {b}, or
L(M) = L(b) = {b}

States q2, q3 are trap states

TRAP States of M

Given a diagram of M

The state q2 is the trap state and we can write a short
diagram of M as follows

Remember that if you use the short diagram you must add
statement: ” plus trap states”

Short and Pattern Diagrams of M

Definition
A diagram of M with some or all of its trap states removed is
called a short diagram
”Our” M becomes

We can ”shorten” the diagram even more by removing the
names of the states

Such diagram, with names of the states removed is called a
pattern diagram

Pattern Diagrams

Pattern Diagrams are very useful when we want to ”read”
the language M directly out of the diagram
Lets look at M1 given by a diagram

It is obvious that (we write a shorthand notion!)

L(M1) = (a ∪ b)∗ = Σ∗

Remark that the regular expression that defines the
language L(M1) is α = (a ∪ b)∗

We add the description L(M1) = Σ∗ as yet another useful
informal shorthand notation notation

Pattern Diagrams

The pattern diagram for ”our” M is

It is obvious that (we write a shorthand notion!) - must add:
plus trap states

L(M) = aL(M1) ∪ e

We must add e to the language by DFA Theorem, as we have
that s ∈ F
Finally we obtain the following regular expression that defines
the language and write it as

L(M) = a(a ∪ b)∗ ∪ e

We can also write L(M) in an informal way (Σ∗ is not a
regular expression) as

L(M) = aΣ∗ ∪ e

Trap States

Why do we need trap states?
Let’s take Σ = {a, b} and let M be defined by a diagram

Obviously, the diagram means that M is such that its language
is L(M) = aa∗

But by definition, δ : K × Σ −→ K and we get from the
diagram

We must ”complete” definition of δ by making it a function
(still preserving the language)
To do so introduce a new state q2 and make it a trap state by
defining δ(q0, b) = q2, δ(q1, b) = q2

Short Problems

For all short problems presented here and given on Quizzes

and Tests, you have to do the following

1. Decide and explain whether the given diagram represents

a DFA or does not, i.e. is not an automatan

2. List all components of M when it represents a DFA

3. Describe L(M) as a regular expression when it does
represent a DFA

Short Problems

Consider a diagram M1

1. Yes, it represents a DFA; δ is a function on {q0, q1} × {a}
and initial state s = q0 exists

2. K = {q0, q1}, Σ = {a}, s = q0, F = {q1},

δ(q0, a) = q1, δ(q1, a) = q1

3. L(M1) = aa∗

Short Problems

Consider a diagram M2

1. Yes, it represents a DFA; δ is a function on {q0} × {a} and
initial state s = q0 exists

2. K = {q0}, Σ = {a}, s = q0, F = ∅, δ(q0, a) = q0

3. L(M2) = ∅

Short Problems

Consider a diagram M3

1. Yes, it represents a DFA; initial state s = q0 exists

2. K = {q0}, Σ = ∅, s = q0, F = ∅, δ = ∅

3. L(M3) = ∅

Short Problems

Consider a diagram M4

1. Yes, it represents a DFA; initial state s = q0 exists

2. K = {q0}, Σ = {a}, s = q0, F = {q0}, δ(q0, a) = q0

3. L(M4) = a∗

Remark e ∈ L(M4) by DFA Theorem, as s = q0 ∈ F = {q0}

Short Problems

Consider a diagram M5

1. NO! it is NOT DFA - initial state does not exist

Short Problems

Consider a diagram M6

1. NO! Initial state does exist, but δ is not a function; δ(q0, b)
is not defined and we didn’t say ”plus trap states”

Short Problems

Consider a diagram M7

1. Yes! it is DFA
Initial state exists and we can complete definition of δ by
adding a trap state as pictured below

3. L(M7) = ∅ as F = ∅

Short Problems

Consider a diagram M8

1. Yes! Initial state exists and it is a short diagram of a DFA
We make δ a function by adding a trap state q2

3. L(M8) = aa∗

We chose to add one trap state but it is possible to add as
many as one wishes
Observe that L(M8) = L(M1) and M1, M8 are defined for
different alphabets

Two Problems

P1 Let Σ = {a1, a2, . . . , a1025, . . . , a2105 }

Draw a state diagram of M such that L(M) = a1025(a1025)∗

P2
1. Draw a state diagram of transition function δ given by
the table below
2. Give an example and automaton M with with this δ

3. Describe the language of M

P1 Solution

P1 Let Σ = {a1, a2, . . . , a1025, . . . , a2105 }

Draw a state diagram of M such that L(M) = a1025(a1025)∗

Solution

PLUS a LOT of trap states!

Σ has 2105 elements; we need a trap state for each of them
except a1025

P1 Solution

Observe that we have a following

pattern for any σ ∈ Σ

L(M) = σ+ for any σ ∈ Σ

PLUS a LOT of trap states! except for the case when
Σ = {σ}

P2 Solutions

P2
1. Draw a state diagram of transition function δ given by
the table below

2. Give an example and automaton M with with this δ

Here is the example of M from our book, page 59

L(M) = {w ∈ {a, b}∗ : w does not contain three consecutive b ′s}

P2 Solution

Observe that the book example is only one of many possible
examples of automata we can define based on δ with the
following

State diagram:

Two more examples follow

Please invent some more of your own!

Be careful! This diagram is NOT an automaton!!

P2 Examples

Example 1

Here is a full diagram of M1

L(M) = (a ∪ b)∗ = Σ∗

Observe that e ∈ L(M1) by the DFA Theorem and the states

q0, q1, q2 are trap states

P2 Examples

Example 2
Here is a full diagram of M1 from Example 1

L(M) = (a ∪ b)∗ = Σ∗

Observe that we can make all, or any of the states q0, q1, q2

as final states and they will still will remain the trap states
Definition
A trap state of a DFA automaton M is any of its states that
does not influence the language L(M) of M

P2 Examples

Example 3

Here is a full diagram of M2 with the same transition function
as M1

L(M) = ∅

Observe that F = ∅ and hence here is no computation that
would finish in a final state

More Problems

P3 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : w has abab as a substring }

Problems Solutions

P3 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : w has abab as a substring }

Solution The essential part of the diagram must produce
abab and it can be surrounded by proper elements on both
sides and can be repeated

Here is the essential part of the diagram

Problems Solutions

We complete the essential part following the fact that it can be
surrounded by proper elements on both sides and can be
repeated

Here is the diagram of M

Observe that this is a pattern diagram; you need to add
names of states only if you want to list all components

M does not have trap states

More Problems

P4 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : every substring of length 4 in word w

contains at least one b }

More Problems

P4 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : every substring of length 4 in word w

contains at least one b }

Solution Here is a short pattern diagram (the trap states
are not included)

More Problems

P5 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : every word w contains

an even number of sub-strings ba }

More Problems

P5 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : every word w contains

an even number of sub-strings ba }

Solution Here is a pattern diagram

Zero is an even number so we must have that e ∈ L(M), i.e.
we have to make the initial state also a final state

More Problems

P6 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : each a in w is

immediately preceded and immediately followed by b }

More Problems

P6 Construct a DFA M such that

L(M) = {w ∈ {a, b}∗ : each a in w is

immediately preceded and immediately followed by b }

Solution: Here is a short pattern diagram - and we need
to say: plus trap states)

It is a short diagram because we omitted needed trap states
(can be more then one, but one is sufficient)
Complete the diagram as an exercise

More Problems

P7 Here is a DFA M defined by the following diagram

Describe L(M) as a regular expression

More Problems

P7 Here is a DFA M defined by the following diagram

Describe L(M) as a regular expression

Solution

L(M) = a∗ ∪ (a∗ba∗ba∗)∗

Observe that e ∈ L(M) by the DFA Theorem

Short Problems

SP1 Given an automaton M1

M1 = (K = {q0, q1}, Σ = {a, b}, δ, s = q0, F = ∅)

δ(q0, a) = q0, δ(q0, b) = q0, δ(q1, a) = q0, δ(q1, b) = q0

1. Draw its state diagram

2. List trap states, if any

3. Describe L(M1)

SP1 Solution

SP1

1. Here is the state diagram

2. q1 is a trap state - M1 never gets there

3. L(M1) = ∅

Short Problems

SP2 Given an automaton M2

M2 = (K = {q0, q1}, Σ = {a, b}, δ, s = q0, F = {q1})

δ(q0, a) = q0, δ(q0, b) = q0, δ(q1, a) = q0, δ(q1, b) = q1

1. Draw its state diagram

2. List trap states, if any

3. Describe L(M2)

SP2 Solution

SP2

1. Here is the state diagram

2. q1 is a trap state - it does not influence the language of
M1

3. L(M2) = ∅

Short Problems

SP3 Given an automaton M3

M3 = (K = {q0, q1}, Σ = {a, b}, δ, s = q0, F = {q1})

δ(q0, a) = q0, δ(q0, b) = q1, δ(q1, a) = q1, δ(q1, b) = q0

1. Draw its state diagram

2. List trap states, if any

3. Describe L(M3)

SP3 Solution

SP3

1. Here is the state diagram

2. There are no trap states

3. L(M3) = a∗b ∪ a∗ba∗ ∪ (a∗ba∗ba∗b)∗

L(M3) = a∗ba∗ ∪ (a∗ba∗ba∗b)∗

Short Problems

SP4 Given an automaton M4 = (K , Σ, δ, s, F) for
K = {q0, q1, q2, q3}, Σ = {a, b}, s = q0, F = {q0, q1, q2}

and δ defined by the table below

1. Draw its state diagram
2. Give a property describing L(M4)

SP4 Solution

SP4

1. Here is the state diagram

Observe that state q3 is a trap state and the short diagram
is as follows

SP4 Solution

SP4
1. Here is the short diagram

2. The language of M4 is

L(M4) = {w ∈ Σ∗ : neither aa nor bb is a substring of w }

Short Problems

SP5 Given an automaton M5 = (K , Σ, δ, s, F) for
K = {q0, q1, q2, q3}, Σ = {a, b}, s = q0, F = {q1}

and δ defined by the table below

1. Draw its state diagram
2. Give a property describing L(M5)

SP5 Solution

SP5

1. Here is the state diagram

2. L(M5) = {w ∈ Σ∗ : w has an odd number of a ’s

and an even number of of b ’s }

Chapter 2
Finite Automata

Slides Set 1

PART 2: Nondeterministic Finite Automata DFA
Equivalency of DFA and DFA

NDFA: Nondeterministic Finite Automata

Now we add a new powerful feature to the finite automata

This feature is called nondeterminism

Nondeterminism is essentially the ability to change states

in a way that is only partially determined by the current

state and input symbol, or a string of symbols, empty string

included

The automaton, as it reads the input string, may choose at
each step to go to any of its states

The choice is not determined by anything in our model , and
therefore it is said to be nondeterministic

At each step there is always a finite number of choices,
hence it is still a finite automaton

NDFA - Mathematical Model

Class Definition
A Nondeterministic Finite Automata is a quintuple

M = (K , Σ, ∆, s, F)

where
K is a finite set of states
Σ is an alphabet
s ∈ K is the initial state
F ⊆ K is the set of final states
∆ is a finite set and

∆ ⊆ K × Σ∗ × K

∆ is called the transition relation
We usually use different symbols for K , Σ, i.e. we have that
K ∩ Σ = ∅

NDFA Definition

Class Definition revisited
A Nondeterministic Finite Automata is a quintuple

M = (K , Σ, ∆, s, F)

where
K is a finite set of states
K , ∅ because s ∈ K
Σ is an alphabet
Σ can be ∅ - case to consider
s ∈ K is the initial state
F ⊆ K is the set of final states
F can be ∅ - case to consider
∆ is a finite set and ∆ ⊆ K × Σ∗ × K
∆ is called the transition relation
∆ can be ∅ - case to consider

Some Remarks

R1 We must say that ∆ is a finite set because the set
K × Σ∗ × K is countably infinite, i.e. |K × Σ∗ × K | = ℵ0) and
we want to have a finite automata and we defined it as

∆ ⊆ K × Σ∗ × K

R2 The DFA transition function δ : K × Σ −→ K is (as
any function!) a relation

δ ⊆ K × Σ × K

R3 The set δ is always finite as the set K × Σ × K is finite

R4 The DFA transition function δ is a particular case of the

NDFA transition relation ∆, hence similarity of notation

NDFA Diagrams

We extend the notion of the state diagram to the case of the

NDFA in natural was as follows

(q1,w, q2) ∈ ∆ means that M in a state q1 reads the word

w ∈ Σ∗ and goes to the state q2

Picture

Remember that in particular w = e

Examples

Example 1

Let M be given by a diagram

By definition M is not a deterministic DFA as it reads e ∈ Σ∗

L(M) = {e}

Examples

Example 2
Let M1 be given by a diagram

Observe that M1 is not a deterministic DFA as
(q, a, q1) ∈ ∆ and (q, a, q2) ∈ ∆ what proves that ∆ is
not a function

L(M1) = {a}

Examples

Example 3

Let M be given by a diagram

M is not a deterministic DFA as (q2, e, q0) ∈ ∆ and this is
not admitted in DFA

∆ = {(q0, a, q1), (q1, b , q0), (q1, b , q2), (q2, a, q0), (q2, e, q0)}

Examples

Example 4

Let M be given by a diagram

M is not a deterministic DFA as (q, ab , q1) ∈ ∆ and this is
not admitted in DFA

∆ = {(q, ba, q), (q, ab , q1), (q, e, q3)} and F = ∅

L(M1) = ∅

NDFA - Book Definition

Book Definition
A Nondeterministic Finite Automata is a quintuple

M = (K , Σ, ∆, s, F)

where

K is a finite set of states
Σ as an alphabet
s ∈ K is the initial state
F ⊆ K is the set of final states
∆ , the transition relation is defined as

∆ ⊆ K × (Σ ∪ {e}) × K

Observe that ∆ is finite set as both K and Σ ∪ {e} are

finite sets

Book Definition Example

Example

Let M be automaton from Example 3 given by a diagram

M follows the Book Definition as

∆ ⊆ K × (Σ ∪ {e}) × K

Equivalence of Definitions

The Class and the Book definitions are equivalent

1. We get the Book Definition as a particular case of the

Class Definition as
Σ ∪ {e} ⊆ Σ∗

2. We will show later a general method how to transform

any automaton defined by the Class Definition into an

equivalent automaton defined by the Book Definition

When solving problems you can use any of these definitions

Configuration and Transition Relation

Given a NDFA automaton

M = (K , Σ, ∆, s, F)

We define as we did in the case of DFA the notions of

a configuration, and a transition relation

Definition

A configuration in a NDFA is any tuple

(q,w) ∈ K × Σ∗

Configuration and Transition Relation

Definition
A transition relation in M = (K , Σ, ∆, s, F)

defined by the Class Definition is a binary relation

`M ⊆ (K × Σ∗) × (K × Σ∗)

such that q, q′ ∈ K , u, w ∈ Σ∗

(q, uw) `M (q′,w)

if and only if

(q, u, q′) ∈ ∆

For M defined by the Book Definition definition of the
Transition Relation is the same but for the fact that

u ∈ Σ ∪ {e}

Language Accepted by M

We define, as in the case of the deterministic DFA ,

the language accepted by the nondeterministic M as follows

Definition

L(M) = {w ∈ Σ∗ : (s,w) `M
∗(q, e) for q ∈ F}

where `M∗ is the reflexive, transitive closure of `M

Equivalency of Automata

We define now formally an equivalency of automata as follows

Definition

For any two automata M1, M2 (deterministic or

nondeterministic)

M1 ≈ M2 if and only if L(M1) = L(M2)

Now we are going to formulate and prove the main theorem of

this part of the Chapter 2, informally stated as

Equivalency Statement

The notions of a deterministic and a non-dederteministic

automata are equivalent

Equivalency of Automata Theorems

The Equivalency Statement consists of two Equivalency

Theorems

Equivalency Theorem 1

For any DFA M, there is is a NDFA M’, such that M ≈ M′,
i.e. such that

L(M) = L(M′)

Equivalency Theorem 2

For any NDFA M, there is is a DFA M’, such that M ≈ M′,
i.e. such that

L(M) = L(M′)

Equivalency of Automata Theorems

Equivalency Theorem 1

For any DFA M, there is is a NDFA M’, such that M ≈ M′,
i.e. such that

L(M) = L(M′)

Proof

Any DFA M is a particular case of a DFA M’ because any
function δ is a relation

Moreover δ and its a particular case of the relation ∆ as
Σ ⊆ Σ ∪ {e} (for the Book Definition) and Σ ⊆ Σ∗ (for the
Class Definition)

This ends the proof

Equivalency of Automata Theorems

Equivalency Theorem 2

For any NDFA M, there is is a DFA M’, such that
M ≈ M′, i.e. such that

L(M) = L(M′)

Proof

The proof is far from trivial. It is a constructive proof;

We will describe, given a NDFA M, a general method of

construction step by step of an DFA M’ that accepts

the came language as M

Before we define the poof construction we discuss some
examples and some general automata properties

EXAMPLES and QUESTIONS

Examples

Example 1

Here is a diagram of NDFA M1 - Class Definition

L(M1) = (ab ∪ aba)∗

Examples

Example 2
Here is a diagram of NDFA M2 - Book Definition

Observe that M2 is not deterministic (even if we add ”plus
trap states) because ∆ is not a function as (q1, b , q0) ∈ ∆
and (q1, b , q2) ∈ ∆

L(M2) = (ab ∪ aba)∗

Examples

Example 3

Here is a diagram of NDFA M3 - Book Definition

Observe that M2 is not deterministic (q1, e, q0) ∈ ∆

L(M3) = (ab ∪ aba)∗

Question 1

All automata in Examples 1-3 accept the same language,
hence by definition, they are equivalent nondeterministic
automata, i.e.

M1 ≈ M2 ≈ M3

Question 1

Construct a deterministic automaton M4 such that

M1 ≈ M2 ≈ M3 ≈ M4

Question1 Solution

Here is a diagram of deterministic DFA M4

Observe that q4 is a trap state

L(M4) = (ab ∪ aba)∗

Question 2

Given an alphabet

Σ = {a1, a2, . . . , an} for n ≥ 2

Question 2

Construct a nondeterministic automaton M such that

L = {w ∈ Σ∗ : at least one letter from Σ is missing in w }

Take n = 4, i.e. Σ = {a1, a2, a3, a4}

Some words in L are:

e ∈ L , a1 ∈ L , a1a2a3 ∈ L , a1a2a2a3a3 ∈ L a1a4a1a2 ∈ L , . . .

Question 2 Solution

Here is solution for n = 3, i.e. Σ = {a1, a2, a3}

Write a solution for n = 4

Question 2 Solution

Here is the solution for n = 4, i.e. Σ = {a1, a2, a3, a4}

Write a general form of solution for n ≥ 2

Question 2 Solution

General case

M = (K , Σ, ∆, s, F) for Σ = {a1, a2, . . . , an} and n ≥ 2,

K = {s = q0, q1, . . . , qn}, F = K − {q0} , or F = K and

∆ =
⋃n

i=1
{(q0, e, qi)} ∪

⋃n

i,j=1
{(qi , aj , qi) : i , j}

i , j means that ai is missing in the loop at state qi

PROPERTIES
Equivalence of Two Definitions

Equivalence of Two Definitions

Book Definition (BD)

∆ ⊆ K × (Σ ∪ {e}) × K

Class Definition (CD)

∆ is a finite set and

∆ ⊆ K × Σ∗ × K

Fact 1

Any (BD) automaton M is a (CD) automaton M

Proof

The (BD) of ∆ is a particular case of the (CD) as

Σ ∪ {e} ⊆ Σ∗

Equivalence of Two Definitions

Fact 2

Any (CD) automaton M can be transformed into an

equivalent (BD) automaton M ’

Proof

We use a ” streching ” technique

For any w , e, w ∈ Σ∗ and (CD) transition (q,w, q′) ∈ ∆,

we transform it into a sequence of (BD) transactions each

reading only σ ∈ Σ that will at the end read the whole

word w ∈ Σ∗

We leave the transactions (q, e, q′) ∈ ∆ unchanged

Stretching Process

Consider w = σ1, σ2, . . . σn and a transaction (q,w, q) ∈ ∆
as depicted on the diagram

We construct ∆′ in M ’ by replacing the transaction
(q, σ1, σ2, . . . σn, q) by

(q, σ1, p1), (p1, σ2, p2), . . . (pn−1, σn, q)

and adding new states p1, p2, . . . pn−1 to the set K of M
making at this stage

K ′ = K ∪ {p1, p2, . . . pn−1}

Stretching Process

This transformation is depicted on the diagram below

We proceed in a similar way in a case of w = σ1, σ2, . . . σn

and a transaction (q,w, q′) ∈ ∆

Equivalent M’

We proceed to do the ”stretching” for all (q,w, q′) ∈ ∆ for
w , e and take as

K ′ = K ∪ P

where P = {p : p added by stretching for all (q,w, q′) ∈ ∆}

We take as

∆ = ∆Σ ∪ {(q, σi , p) : p ∈ P,w = σ1, . . . σn, (q,w, q′) ∈ ∆}

where

∆Σ = {(q, σ, q′) ∈ ∆ : σ ∈ (Σ ∪ {e}), q, q′ ∈ K }

Proof of Equivalency of DFA and NDFA

Equivalency of DFA and NDFA

Let’s now go back now to the Equivalency Statement that

consists of the following two equivalency theorems

Equivalency Theorem 1

For any DFA M, there is is a NDFA M’, such that M ≈ M′,
i.e. such that

L(M) = L(M′)

This is already proved

Equivalency Theorem 2

For any NDFA M, there is a DFA M’, such that M ≈ M′, i.e.
such that

L(M) = L(M′)

This is to be proved

Equivalency Theorem

Our goal now is to prove the following

Equivalency Theorem 2

For any nondeterministic automaton

M = (K , Σ, ∆, s, F)

there is, i.e. we give an algorithm for its construction a

deterministic automaton

M′ = (K ′, Σ, δ = ∆′, s′, F ′)

such that
M ≈ M′

i.e.
L(M) = L(M′)

General Remark

General Remark

We base the proof of the equivalency of DFA and NDFA

automata on the Book Definition of NDFA

Let’s now explore some ideas laying behind the main points

of the proof

They are based on two differences between the DFA

and NDF automata

We discuss now these differences and basic ideas how to

overcome them, i.e. how to ”make” a deterministic automaton

out of a nonderetministic one

NDFA and DFA Differences

Difference 1

DFA transition function δ even if expressed as a relation

δ ⊆ K × Σ × K

must be a function, while the NDFA transition relation ∆

∆ ⊆ K × (Σ ∪ {e}) × K

may not be a function

NDFA and DFA Differences

Difference 2

DFA transition function δ domain is the set

K × Σ

while NDFA transition relation ∆ domain is the set

K × Σ ∪ {e}

Observe that the NDFA transition relation ∆ may contain a

configuration (q, e, q′) that allows a nondeterministic
automaton to read the empty word e, what is not allowed

in the deterministic case

In order to transform a nondeterministic M into an
equivalent deterministic M’ we have to eliminate the both
Differences 1 and 2

Example

Let’s look first at the following

Example

M = ({q0, q1, q2, q3}, Σ = {a, b}, ∆, s = q0, F = {q2})

∆ = {(q0, a, q1), (q1, b , q0), (q1, b , q2), (q2, a, q0)}

Diagram of M

Example

The non-function part of the diagram is

Question

How to transform it into a FUNCTION???

IDEA 1: make the states of M’ as some SETS made out of
states of M and put in this case

δ({q1}, b) = {q0, q2}

IDEA ONE

IDEA 1: we make the states of M’ as some SETS made out
of states of M

We read other transformation from the Diagram of M

δ({q0}, a) = {q1}, δ({q2}, a) = {q0} and of course

δ({q1}, b) = {q0, q2}

We make the state {q0} the initial state of M’ as q0 was the
initial state of M and

we make the states {q0, q2} and {q2} final states of M’ and
as q2 was a final state of M

Example

We have constructed a part of

M′ = (K ′, Σ, δ = ∆′, s′, F ′)

The Unfinished Diagram is

There will be many trap states

IDEA ONE

IDEA ONE General Case

We take as the set K’ of states of M’ the

set of all subsets of the set K of states of M

We take as the initial state of M’ the set s′ = {s},

where s is the initial state of M, i.e. we put

K ′ = 2K , s′ = {s}, δ : 2K × Σ −→ 2K

We take as the set of final states F’ of M’ the set

F ′ = {Q ⊆ K : Q ∩ F , ∅}

The general definition of the transition function δ

will be given later

Example Revisited

In the case of our Example we had K = {q0, q1, q2}

K ′ = 2K has 23 states

The portion of the unfinished diagram of M’ is

It is obvious that even the finished diagram will have A LOT of

trap states

Difference 2 and Idea Two

Difference 2 and Idea Two - how to eliminate the e
transitions

Example 1

Consider M1

Observe that we can go from q0 to q1 reading only e, i.e.

without reading any input symbol σ ∈ Σ

L(M1) = a

Examples

Example 2

Consider M2

Observe that we can go from q1 to q2 reading only e, i.e.

without reading any input symbol σ ∈ Σ

L(M2) = a

Examples

Example 3

Consider M3

Observe that we can go from q2 to q3 and from q1 to q3

without reading any input

L(M3) = a ∪ b

Idea Two - Sets E(q)

The definition of the transition function δ of M’ uses

the following

Idea Two: a move of M’ on reading an input symbol σ ∈ Σ

imitates a move of M on input symbol σ, possibly followed by

any number of e-moves of M

To formalize this idea we need a special definition

Definition of E(q)

For any state q ∈ K , let E(q) be the set of all states in M they

are reachable from state q without reading any input, i.e.

E(q) = {p ∈ K : (q, e) `M
∗ (p, e)}

Sets E(q)

Fact 1

For any state q ∈ K we have that q ∈ E(q)

Proof

By definition

E(q) = {p ∈ K : (q, e) `M
∗ (p, e)}

and by the definition of reflexive, transitive closure `M∗ the

trivial path (case n=1) always exists, hence

(q, e) `M
∗ (q, e)}

what proves that q ∈ E(q)

Sets E(q)

Observe that by definitions of `M∗ and E(q) we have the
following

Fact 2

1. E(q) is a closure of the set {q} under the relation

{(p, r) : there is a transition (p, e, r) ∈ ∆}

2. E(q) can be computed by the following

Algorithm

Initially set E(q) := {q}

while there is (p, e, r) ∈ ∆ with p ∈ E(q) and r < E(q)

do: E(q) := E(q) ∪ {r}

Example

We go back to the Example 1, i.e.

Consider M1

We evaluate

E(q0) = {q0, q1}, E(q1) = {q1}, E(q2) = {q2}

Remember that always q ∈ E(q)

Definition of M’

Definition of M’

Given a nondeterministic automaton M = (K , Σ, ∆, s, F)

we define the deterministic automaton M’ equivalent to M as

M′ = (K ′, Σ, δ′, s′, F ′)

where
K ′ = 2K , s′ = {s}

F ′ = {Q ⊆ K : Q ∩ F , ∅}

δ′ : 2K × Σ −→ 2K is such that

and for each Q ⊆ K and for each σ ∈ Σ

δ′(Q , σ) =
⋃
{E(p) : p ∈ K and (q, σ, p) ∈ ∆ for some q ∈ Q}

Definition of δ′

Definition of δ′

We re-write the definition of δ′ in a a following form that is

easier to use

δ′ : 2K × Σ −→ 2K is such that for each Q ⊆ K

and for each σ ∈ Σ

δ′(Q , σ) =
⋃
p∈K

{E(p) : (q, σ, p) ∈ ∆ for some q ∈ Q}

We write the above condition in a more clear form as

δ′(Q , σ) =
⋃
p∈K

{E(p) : ∃q∈Q (q, σ, p) ∈ ∆}

Construction of of M’

Given a nondeterministic automaton M = (K , Σ, ∆, s, F)

Here are the STAGES to follow when constructing M’

STAGE 1

1. For all q ∈ K , evaluate E(q)

E(q) = {p ∈ K : (q, e) `M
∗ (p, e)}

2. Evaluate initial and final states: s′ = E(s) and

F ′ = {Q ⊆ K : Q ∩ F , ∅}

STAGE 2

Evaluate δ′(Q , σ) for σ ∈ Σ, Q ∈ 2K

δ′(Q , σ) =
⋃
p∈K

{E(p) : ∃q∈Q (q, σ, p) ∈ ∆}

Evaluation of δ′

Observe that domain of δ′ is 2K × Σ and can be very large

We will evaluate δ′ only on states that are relevant to the

operation of M’ and making all other states trap states

We do so to assure that

M′ ≈ M

i.e. to be able to prove that

L(M) = L(M′)

Having this in mind we adopt the following definition

Evaluation of δ′

Definition

We say that a state Q ∈ 2K is relevant to the operation

of M’ and to the language L(M’) if it can be reached from

the initial state s′ = E(s) by reading some input string

Obviously, any state Q ∈ 2K that is not reachable from the

initial state s’ is irrelevant to the operation of M’ and to

the language L(M’)

Construction of of M’ Example

Example
Let M be defined by the following diagram

STAGE 1
1. For all q ∈ K , evaluate E(q)
M does not have e -transitions so we get
E(q0) = {q0}, E(q1) = {q1}, E(q2) = {q2}

2. Evaluate initial and some final states: s′ = E(q0) = {q0}

and {q2} ∈ F ′

δ′ Evaluation

STAGE 2

Here is a General Procedure for δ′ evaluation

Evaluate δ′(Q , σ) only for relevant Q ∈ 2K , i.e. follow

the steps below

Step 1 Evaluate δ′(s′, σ) for all σ ∈ Σ, i.e. all states
directly reachable from s′

Step (n+1)

Evaluate δ′ on all states that result from the Step n, i.e. on
all states already reachable from s’

Remember

δ′(Q , σ) =
⋃
p∈K

{E(p) : ∃q∈Q (q, σ, p) ∈ ∆}

Example STAGE 2

Diagram

STAGE 2

δ′(Q , σ) =
⋃
p∈K

{E(p) : ∃q∈Q (q, σ, p) ∈ ∆}

Step 1 We evaluate δ′({q0}, a) and δ′({q0}, b)

We look for the transitions from q0

We have only one (q0, a, q1) ∈ ∆ so we get
δ′({q0}, a) = E(q1) = {q1}

There is no transition (q0, b , p) ∈ ∆ for any p ∈ K , so we
get δ′({q0}, b) = E(p) = ∅

Example STAGE 2

By the Step 1 we have that all states directly reachable from
s′ are {q2} and ∅

Step 2 Evaluate δ′ on all states that result from the Step 1;
i.e. on states {q1} and ∅

Obviously δ′(∅, a) = ∅ and δ′(∅, b) = ∅

To evaluate δ′({q1}, a), δ′({q1}, b) we first look at all
transitions (q1, a, p) ∈ ∆ on the diagram

There is no transition (q1, a, p) ∈ ∆ for any p ∈ K , so

δ′({q1}, a) = ∅ and δ′(∅, a) = ∅, δ′(∅, b) = ∅

Example STAGE 2

Step 2 To evaluate δ′({q1}, b) we now look at all transitions
(q1, b , p) ∈ ∆ on the diagram

Here they are: (q1, b , q2), (q1, b , q0)

δ′(Q , σ) =
⋃

p∈K {E(p) : ∃q∈Q (q, σ, p) ∈ ∆}

δ′({q1}, b) = E(q2) ∪ E(q0) = {q2} ∪ {q0} = {q0, q2}

We evaluated

δ′({q1}, b) = {q0, q2}, δ′({q1}, a) = ∅

We also have that the state {q0, q2} ∈ F ′

Example STAGE 2

Step 3 Evaluate δ′ on all states that result from the Step 2;
i.e. on states {q0, q2}, ∅

Obviously δ′(∅, a) = ∅ and δ′(∅, b) = ∅

To evaluate δ′({q0, q2}, a) we look at all transitions (q0, a, p)
and (q2, a, p) on the diagram

Here they are: (q0, a, q1), (q2, a, q0)

δ′({q0, q2}, a) = E(q1) ∪ E(q0) = {q0, q1}

Similarly δ′({q0, q2}, b) = ∅

Diagram Steps 1 - 3

Here is the Diagram of M’ after finishing STAGE 1 and Steps
1-3 of the STAGE 2

Example STAGE 2

Step 4 Evaluate δ′ on all states that result from the Step 3;
i.e. on states {q0, q1}, ∅

Obviously δ′(∅, a) = ∅ and δ′(∅, b) = ∅

To evaluate δ′({q0, q1}, a) we look at all transitions (q0, a, p)
and (q1, a, p) on the diagram

Here there is one (q0, a, q1), and there is no transition
(q1, a, p) for any p ∈ K , so

δ′({q0, q1}, a) = E(q1) ∪ ∅ = {q1}

Similarly
δ′({q0, q1}, b) = {q0, q2}

Example STAGE 2

Step 5 Evaluate δ′ on all states that result from the Step 4;
i.e. on states {q1} and {q0, q2}

Observe that we have already evaluated δ′({q1}, σ) for all
σ ∈ Σ in Step 2 and δ′({q0, q2}, σ) in Step 3

The process of defining δ′(Q , σ) for relevant Q ∈ 2K is
hence terminated

All other states are trap states

Diagram of of M’

Here is the Diagram of the Relevant Part of M’

and here is its short pattern diagram version

Book Example

Book Example
Here is the nondeterministic M from book page 70
Exercise Read the example and re- write it as an exercise
stage by stage as we did in class - it means follow the
previous example
Diagram of M

Book Example

STAGE 1

STAGE 2 evaluation are on page 72

Evaluate them independently of the book

Book Example

Diagram of M’

Book Example

Some book computations

Book Diagram

NDFA and DFA Differences Revisited

Difference 1 Revisited

DFA transition function δ even if expressed as a relation

δ ⊆ K × Σ × K

must be a function, while the NDFA transition relation ∆

∆ ⊆ K × (Σ ∪ {e}) × K

may not be a function

Difference 2 Revisited

DFA transition function δ domain is the set K × Σ while

It is obvious that the definition of δ′ solves the Difference 2

Difference 1

Given a non-function diagram of M

Proposed IDEA of f solving the Difference 1 was to make

the states of M’ as some subsets of the set of states of M

and put in this case

δ′({q0}, b) = {q1, q2, q3}

Exercise

Given the diagram of M

Exercise
Show that the definition of δ′

δ′(Q , σ) =
⋃
p∈K

{E(p) : ∃q∈Q (q, σ, p) ∈ ∆}

does exactly what we have proposed, i.e show that

δ′({q0}, b) = {q1, q2, q3}

Proof of Equivalency Theorem

Equivalency Theorem
For any nondeterministic automaton

M = (K , Σ, ∆, s, F)

there is (we have given an algorithm for its construction) a
deterministic automaton

M′ = (K ′, Σ, δ = ∆′, s′, F ′)

such that
M ≈ M′ i.e. L(M) = L(M′)

Proof
M’ is deterministic directly from the definition because the
formula

δ′(Q , σ) =
⋃
p∈K

{E(p) : ∃q∈Q (q, σ, p) ∈ ∆}

defines a function and is well defined for a all Q ∈ 2K and
σ ∈ Σ.

Proof of Equivalency Theorem

We now claim that the following Lemma holds and we will
prove equivalency M ≈ M′ from the Lemma

Lemma

For any word w ∈ Σ∗ and any states p, q ∈ K

(q,w) `M
∗ (p, e) if and only if (E(q),w) `M′

∗ (P, e)

for some set P such that p ∈ P

We carry the proof of the Lemma by induction on the length
|w | of w

Base Step |w | = 0; this is possible only when t w = e and
we must show

(q, e) `M
∗ (p, e) if and only if (E(q), e) `M′

∗ (P, e)

for some P such that p ∈ P

Proof of Lemma

Base Step We must show that

(q, e) `M
∗ (p, e) if and only if ∃P(p ∈ P ∩ (E(q), e) `M′

∗ (P, e)))

Observe that (q, e) `M
∗ (p, e) just says that p ∈ E(q) and

the right side of statement holds for P = E(q)

Since M’ is deterministic the statement
∃P(p ∈ P ∩ (E(q), e) `M′

∗ (P, e))) is equivalent to saying that
P = E(q) and since p ∈ P we get p ∈ E(q) what is
equivalent to the left side

This completes the proof of the basic step

Inductive step is similar and is given as in the book page 71

Proof of The Theorem

We have just proved that for any w ∈ Σ∗ and any states
p, q ∈ K

(q,w) `M
∗ (p, e) if and only if (E(q),w) `M′

∗ (P, e)

for some set P such that p ∈ P

The proof of the Equivalency Theorem continues now

as follows

Proof of The Theorem

We have to prove that L(M) = L(M’)

Let’ s take a word w ∈ Σ∗

We have (by definition of L(M)) that w ∈ L(M)

if and only if (s,w) `M
∗ (f , e) for f ∈ F

if and only if (E(s),w) `M
∗(Q , e) for some Q such that f ∈ Q

(by the Lemma)

if and only if (s′,w) `M
∗ (Q , e) for some Q ∈ F (by

definition of M’)

if and only if w ∈ L(M′)

Hence L(M) = L(M’)

This end the proof of the Equivalency Theorem

Finite Automata

We have proved that the class (CD) and book (BD) definitions
of a nondeterministic automaton are equivalent

Hence by the Equivalency Theorem deterministic and
ondeterministic automata defined by any of the both ways
are equivalent

We will use now a name

FINITE AUTOMATA

when we talk about deterministic or nondeterministic

automata

Chapter 2
Finite Automata

Slides Set 2

PART 3: Finite Automata and Regular Expressions

PART 4: Languages that are Not Regular

Chapter 2
Finite Automata

Slides Set 2

PART 3: Finite Automata and Regular Expressions

Finite Automata and Regular Expressions

The goal of this part of chapter 2 is to prove a theorem that

establishes a relationship between Finite Automata and

Regular languages, i.e to prove that following

MAIN THEOREM

A language L is regular if and only if it is accepted by a

finite automaton, i.e.

A language L is regular if and only if there is a

finite automaton M, such that

L = L(M)

Closure Theorem

To achieve our goal we first prove the following

CLOSURE THEOREM
The class of languages accepted by Finite Automata (FA) is

closed under the following operations

1. union

2. concatenation

3. Kleene’s Star

4. complementation

5. intersection

Observe that we used the term Finite Automata (FA) so in

the proof we can choose a DFA or a NDFA, as we have
already proved their equivalency

Closure Theorem

Remember that languages are sets, so we have the set em[]

operations ∪, ∩, −, defined for any L1, L2 ⊆ Σ∗, i.e the
languages

L = L1 ∪ L2, L = L1 ∩ L2, L = Σ∗ − L1

We also defined the languages specific operations of
concatenation and Kleene’s Star , i.e. the

languages
L = L1 ◦ L2 and L = L1

∗

Closure Under Union

1. The class of languages accepted by Finite Automata (FA)
is closed under union

Proof

Let M1, M2 be two NDFA finite automata

We construct a NDF automaton M, such that

L(M) = L(M1) ∪ L(M2)

Let M1 = (K1, Σ, ∆1, s1, F1) and

M2 = (K2, Σ, ∆2, s2, F2)

Where (we rename the states, if needed)

Σ = Σ1 ∪ Σ2, s1 , s2, K1 ∩ K2 = ∅ F1 ∩ F2 = ∅

Closure Under Union

We picture M, such that L(M) = L(M1) ∪ L(M2) as follows

M goes nondeterministically to M1 or to M2 reading nothing
so we get

w ∈ L(M) if and only if w ∈ M1 or w ∈ M2

and hence
L(M) = L(M1) ∪ L(M2)

Closure Under Union

We define formally

M = M1 ∪M2 = (K , Σ, ∆, s, F)

where

K = K1 ∪ K2 ∪ {s} for s < K1 ∪ K2

s is a new state and

F = F1 ∪ F2, ∆ = ∆1 ∪∆2 ∪ {(s, e, s1), (s, e, s2)}

for s1 - initial state of M1 and

s2 the initial state of M2

Observe that by Mathematical Induction we construct,

for any n ≥ 2 an automaton M = M1 ∪M2 ∪ . . . Mn such that

L(M) = L(M1) ∪ L(M2) ∪ . . . L(Mn)

Closure Under Union

Formal proof

Directly from the definition we get

w ∈ L(M) if and only if

∃q((q ∈ F = F1 ∪ F2) ∩ ((s,w) `M
∗(q, e)) if and only if

∃q(((q ∈ F1) ∪ (q ∈ F2)) ∩ ((s,w) `M
∗(q, e)) if and only if

∃q((q ∈ F1) ∩ ((s,w) `M
∗(q, e)) ∪

∃q((q ∈ F2) ∩ ((s,w) `M
∗(q, e))) if and only if

w ∈ L(M1) ∪ w ∈ L(M2), what proves that

L(M) = L(M1) ∪ L(M2)

We used the following Law of Quantifiers

∃x(A(x) ∪ B(x)) ≡ (∃xA(x) ∪ ∃xB(x))

Examples

Example 1
Diagram of M1 such that L(M1) = aba∗ is

Diagram of M2 such that L(M2) = b∗ab is

We construct M = M1 ∪M2 such that

L(M) = aba∗ ∪ b∗ab = L(M1) ∪ L(M2)

as follows

Examples

Example 1

Diagram of M such that L(M) = aba∗ ∪ b∗ab is

Examples

Example 2
Diagram of M1 such that L(M1) = b∗abc is

Diagram of M2 such that L(M2) = (ab)∗a is

We construct M = M1 ∪M2 such that

L(M) = b∗abc ∪ (ab)∗a = L(M1) ∪ L(M2)

as follows

Examples

Diagram of M such that L(M) = b∗abc ∪ (ab)∗a is

This is a schema diagram

If we need to specify the components we put names on
states on the diagrams

Closure Under Concatenation

2. The class of languages accepted by Finite Automata is
closed under concatenation

Proof

Let M1, M2 be two NDFA

We construct a NDF automaton M, such that

L(M) = L(M1) ◦ L(M2)

Let M1 = (K1, Σ, ∆1, s1, F1) and

M2 = (K2, Σ, ∆2, s2, F2)

Where (if needed we re-name states)

Σ = Σ1 ∪ Σ2, s1 , s2, K1 ∩ K2 = ∅ F1 ∩ F2 = ∅

Closure Under Concatenation

We picture M, such that L(M) = L(M1) ◦ L(M2) as follows

The final states from F1 of M1 become internal states of M

The initial state s2 of M2 becomes an internal state of M

M goes nondeterministically from ex-final states of M1 to the
ex-initial state of M2 reading nothing

Closure Under Concatenation

We define formally

M = M1 ◦M2 = (K , Σ, ∆, s1, F2)

where

K = K1 ∪ K2

s1 of M1 is the initial state

F2 of M2 is the set of final states

∆ = ∆1 ∪∆2 ∪ {(q, e, s2) : for q ∈ F1}

Directly from the definition we get

w ∈ L(M) iff w = w1 ◦ w2 for w1 ∈ L1, w2 ∈ L2

and hence
L(M) = L(M1) ◦ L(M2)

Examples

Diagram of M1 such that L(M1) = aba∗ is

Diagram of M2 such that L(M2) = b∗ab is

We construct M = M1 ◦M2 such that

L(M) = aba∗ ◦ b∗ab = L(M1) ◦ L(M2)

as follows

Examples

Given a language L = aba∗b∗ab

Observe that we can reprezent L as, for example, the
following concatenation

L = ab ◦ a∗ ◦ b∗ ◦ ab

Then we construct ”easy” automata M1, M2, M3, M4 as
follows

Examples

We know, by Mathematical Induction that we can construct,
for any n ≥ 2 an automaton

M = M1 ◦M2 ◦ ◦ Mn

such that
L(M) = L(M1) ◦ . . . ◦ L(Mn)

In our case n=4 and we get

Diagram of M

and L(M) = aba∗b∗ab

Question

Question

Why we have to go be the transactions (q, e, s2) between M1

and M2 while constructing M = M1 ◦M2?

Example of a construction when we can’t SKIP the
transaction (q, e, s2)

Here is a correct construction of M = M1 ◦M2

Observe that abbabab < L(M)

Question

Here is a construction of M′ = M1 ◦M2 without the
transaction (q, e, s2)

Observe that abbabab ∈ L(M′) and abbabab < L(M)

We hence proved that skipping the transactions (q, e, s2)
between M1 and M2 leads to automata accepting different
languages

Closure Under Kleene’s Star

3. The class of languages accepted by Finite Automata is
closed under Kleene’s Star

Proof Let M1 = (K1, Σ, ∆1, s1, F1)

We construct a NDF automaton M = M1
∗, such that

L(M) = L(M1)∗

Here is a diagram

Closure Under Kleene’s Star

Given M1 = (K1, Σ, ∆1, s1, F1)

We define formally

M = M1
∗ = (K , Σ, ∆, s, F)

where

K = K1 ∪ {s} for s < K1

s is new initial state, s1 becomes an internal state

F = F1 ∪ {s}

∆ = ∆1 ∪ {(s, e, s1)} ∪ {(q, e, s1) : for q ∈ F1}

Directly from the definition we get

L(M) = L(M1)∗

Closure Under Kleene’s Star

The Book diagram is

Given M1 = (K1, Σ, ∆1, s1, F1)

We define

M1
∗ = (K1 ∪ {s}, Σ, ∆, s, F1 ∪ {s})

where s is a new initial state and

∆ = ∆1 ∪ {(s, e, s1)} ∪ {(q, e, s1) : for q ∈ F1}

Two Questions

Here two questions about the construction of M = M1
∗

Q1 Why do we need to make the NEW initial state s of M
also a FINAL state?

Q2 Why can’t SKIP the introduction of the NEW initial state
and design M = M1

∗ as follows

Q1 + Q2 give us answer why we construct M = M1
∗ as we

did, i.e. provides the motivation for the correctness of the
construction

Question 1 Answer

Observe that the definition of M = M1
∗ must be correct for

ALL automata M1 and hence in particular for M1 such that
F1 = ∅,

In this case we have that L(M1) = ∅

But we know that

L(M) = L(M1)∗ = ∅∗ = {e}

This proves that M = M1
∗ must accept e, and hence we must

make s of M also a FINAL state

Diagram

Question 2 Answer

Q2 Why can’t SKIP the introduction of the NEW initial state
and design M = M1

∗

Here is an example

Let M1 , such that L(M1) = a(ba)∗

M1 is defined by a diagram

L(M1)∗ = (a(ba)∗)∗

Question 2 Answer

Here is a diagram of M where we skipped the introduction of
a new initial state

Observe that ab ∈ L(M) , but

ab < (a(ba)∗)∗ = L(M1)∗

This proves incorrectness of the above construction

Correct Diagram

The CORRECT diagram of M = M1
∗ is

Exercise 1

Exercise 1

Construct M such that

L(M) = (ab∗ba ∪ a∗b)∗

Observe that

L(M) = (L(M1) ∪ L(M2))∗

and
M = (M1 ∪M2)∗

Exercise 1

Solution

We construct M such that L(M) = (ab∗ba ∪ a∗b)∗ in the
following steps using the Closure Theorem definitions

Step 1 Construct M1 for L(M1) = ab∗ba

Step 2 Construct M2 for L(M2) = a∗b

Exercise

Step 3 Construct M1 ∪M2

Step 4 Construct M = (M1 ∪M2)∗

L(M) = (ab∗ba ∪ a∗b)∗

Exercise 2

Exercise 2
Construct M such that L(M) = (a∗b ∪ abc∗)a∗b∗

Solution We construct M in the following steps using the
Closure Theorem definitions
Step 1 Construct N1,N2 for L = a∗b and L = abc∗

Step 2 Construct M1 = N1 ∪ N2

Exercise 2

Step 3 Construct M2 for L = a∗b∗

Step 4 Construct M = (M1 ◦M2)∗

L(M) = (a∗b ∪ abc∗)a∗b∗

Back to Closure Theorem

CLOSURE THEOREM

The class of languages accepted by Finite Automata FA) is
closed under the following operations

1. union proved

2. concatenation proved

3. Kleene’s Star proved

4. complementation

5. intersection

Observe that we used the term Finite Automata (FA) so in
the

proof we can choose a DFA or NDFA, as we have already
proved their equivelency

Closure Under Complementation

4. The class of languages accepted by Finite Automata is
closed under complementation

Proof Let
M = (K , Σ, δ, s, F)

be a deterministic finite automaton DFA

The complementary language L = Σ∗ − L(M) is accepted
by the DFA denoted by M that is identical with M except that
final and nonfinal states are interchanged, i.e. we define

M = (K , Σ, δ, s, K − F)

and we have
L(M) = Σ∗ − L(M)

Closure Under Intersection

4. The class of languages accepted by Finite Automata is
closed under intersection
Proof 1
Languages are sets so we have have the following property

L1 ∩ L2 = Σ∗ − ((Σ∗ − L1) ∪ (Σ∗ − L2))

Given finite automata M1,M2 such that

L1 = L(M1) and L2 = L(M2)

We construct M such that L(M) = L1 ∩ L2 as follows
1. Transform M1, M2 into equivalent DFA automata N1,N2

2. Construct N1, N2 and then N = N1 ∪ N2

3. Transform NDF automaton N into equivalent DFA
automaton N′

4. M = N′ is the required finite automata
This is an indirect Construction
Homework: describe the direct construction

Closure Theorem

CLOSURE THEOREM

The class of languages accepted by Finite Automata FA) is
closed under the following operations

1. union proved

2. concatenation proved

3. Kleene’s Star proved

4. complementation proved

5. intersection proved

Observe that we used the term Finite Automata (FA) so in
the

proof we can choose a DFA or NDFA, as we have already
proved their equivelency

Intersection Direct Construction

Direct Construction

Case 1 deterministic

Given deterministic automata M1, M2 such that

M1 = (K1, Σ1, δ1, s1, F1), M2 = (K2, Σ2, δ2, s2, F2)

We construct M = M1 ∩M2 such that L(M) = L(M1) ∩ L(M2)
as follows

M = (K , Σ, δ, s, F)

where . Σ = Σ1 ∪ Σ2

K = K1 × K2, s = (s1, s2), F = F1 × F2

δ((q1, q2), σ) = (δ1(q1, σ), δ2(q2, σ))

Intersection Direct Construction

Proof of correctness of the construction

w ∈ L(M) if and only if

((s1, s2), w) `M
∗ ((f1, f2), e)) and f1 ∈ F1, f2 ∈ F2

if and only if

(s1, w) `M1
∗ (f1, e) for f1 ∈ F1 and

(s2, w) `M2
∗ (f2, e) for f2 ∈ F2

if and only if

w ∈ L(M1) and w ∈ L(M2)

if and only if

w ∈ L(M1) ∩ L(M2)

Intersection Direct Construction

Direct Construction

Case 2 nondeterministic

Given nondeterministic automata M1, M2 such that

M1 = (K1, Σ1, ∆1, s1, F1), M2 = (K2, Σ2, ∆2, s2, F2)

We construct M = M1 ∩M2 such that L(M) = L(M1) ∩ L(M2)
as follows

M = (K , Σ,∆, s, F)

where Σ = Σ1 ∪ Σ2

K = K1 × K2, s = (s1, s2), F = F1 × F2

and ∆ is defined as follows

Intersection Direct Construction

∆ is defined as follows

∆ = ∆′ ∪∆′′ ∪∆′′′

∆′ = {((q1, q2), σ, (p1, p2)) : (q1, σ, p1) ∈ ∆1 and
(q2, σ, p2) ∈ ∆2, σ ∈ Σ}

∆′′ = {((q1, q2), σ, (p1, p2)) : σ = e, (q1, e, p1) ∈ ∆1 and
q2 = p1}

∆′′ = {((q1, q2), σ, (p1, p2)) : σ = e, (q2, e, p2) ∈ ∆2 and
q1 = p1}

Observe that if M1,M2 have each at most n states, our
direct construction of produces M = M1 ∩M2 with at most
n2 states.

The indirect construction from the proof of the theorem might
generate M with up to 22n+1+1 states

Direct Construction Example

Example

Let M1, M2 be given by the following diagrams

Observe that L(M1) ∩ L(M2) = a∗ ∩ a+ = a+

Direct Construction Example

Formally M1, M2 are defined as follows

M1 = ({s1}, {a}, δ1, s1, {s1}), M2 = ({s2, q}, {a}, δ2, s2, {q})

for δ1(s1, a) = s1 and δ2(s2, a) = q, δ2(q, a) = q

By the deterministic case definition we have that
M = M1 ∩M2 is

M = (K , Σ, δ, s, F)

for Σ = {a}

K = K1 × K2 = {s1} × {s2, q} = {(s1, s2), (s1, g) }

s = (s1, s2), F = {s1} × {q} = {(s1, q)}

Direct Construction Example

By definition

δ((q1, q2), σ) = (δ1(q1, σ), δ2(q2, σ))

In our case we have

δ((s1, s2), a) = (δ1(s1, a), δ2(s2, a)) = (s1, q),

δ((s1, q), a) = (δ1(s1, a), δ2(q, a)) = (s1, q)

The diagram of M = M1 ∩M2 is

Main Theorem

Now our goal is to prove a theorem that established the
relationship between languages and finite automata

This is the most important Theorem of this section so we call
it a Main Theorem

Main Theorem

A language L is regular

if and only if

L is accepted by a finite automata

Main Theorem

The Main Theorem consists of the following two parts

Theorem 1

For any a regular language L

there is a e finite automata M, such that L = L(M)

Theorem 2

For any a finite automata M, the language L(M) is regular

Main Theorem

Definition

A language L ⊆ Σ∗ is regular if and only if

there is a regular expression r ∈ R that represents L, i.e.

such that
L = L(r)

Reminder: the function L : R −→ 2Σ∗ is defined
recursively as follows

1. L(∅) = ∅, L(σ) = {σ} for all σ ∈ Σ

2. If α, β ∈ R, then

L(αβ) = L(α) ◦ L(β) concatenation

L(α ∪ β) = L(α) ∪ L(β) union

L(α∗) = L(α)∗ Kleene’s Star

Regular Expressions Definition

Reminder

We define a R of regular expressions over an alphabet Σ
as follows

R ⊆ (Σ∪ {(,), ∅, ∪, ∗})∗ and R is the smallest set such that

1. ∅ ∈ R and Σ ⊆ R, i.e. we have that

∅ ∈ R and ∀σ∈Σ (σ ∈ R)

2. If α, β ∈ R, then

(αβ) ∈ R concatenation

(α ∪ β) ∈ R union

α∗ ∈ R Kleene’s Star

Proof of Main Theorem Part 1

Now we are going to prove the first part of the Main Theorem,
i.e.

Theorem 1

For any a regular language L

there is a finite automata M, such that L = L(M)

Proof

By definition of regular language, L is regular if and only if

there is a regular expression r ∈ R that represents L, what

we write in shorthand notation as L = r

Given a regular language, L, we construct a finite
automaton M such that L(M) = L recursively following the
definition of the set R of regular expressions as follows

Proof Theorem 1

1. r = ∅, i.e. the language is L = ∅

Diagram of M, such that L(M) = ∅ is

We denote M as M = M∅

Proof Theorem 1

2. r = σ, for any σ ∈ Σ i.e. the language is L = σ

Diagram of M, such that L(M) = ∅ is

We denote M as M = Mσ

Proof Theorem 1

3. r , ∅, r , σ

By the recursive definition, we have that L = r where

r = α ∪ β, r = α ◦ β, r = α∗

for any α, β ∈ R

We construct as in the proof of the Closure Theorem the
automata

Mr = Mα ∪ Mβ, Mr = Mα ◦Mβ, Mr = (Mr)
∗

respectively, and it ends the proof

Example

Use construction defined in the proof of Theorem 1 to
construct an automaton M such that

L(M) = (ab ∪ aab)∗

We construct M in the following stages

Stage 1

For a, b ∈ Σ we construct Ma and Mb

Example

Stage 2
For ab , aab we use Ma and Mb and concatenation
construction to construct Mab

and Maab

Example

Stage 3
We use union construction to construct M1 = Mab ∪Maab

Stage 4 We use Kleene’s star construction to construct
M = M1

∗

Exercise

Use construction defined in the proof of Theorem 1 to
construct an automaton M such that

L(M) = (a∗ ∪ abc ∪ a∗b)∗

We construct (draw diagrams) M in the following stages
Stage 1
Construct Ma , Mb , Mc

Stage 2
Construct M1 = Mabc

Stage 3
Construct M2 = Ma

∗

Stage 4
Construct M3 = Ma

∗Mb

Stage 5
Construct M4 = M1 ∪M2 ∪M3

Stage 6
Construct M = M4

∗

Main Theorem Part 2

Theorem 2

For any a finite automaton M there is a regular expression
r ∈ R, such that

L(M) = r

Proof

The proof is constructive; given M we will give an algorithm
how to recursively generate the regular expression r , such
that L(M) = r

We assume that M is nondeterministic

M = (K , Σ, ∆, s, F)

We use the BOOK definition, i.e.

∆ ⊆ K × (Σ ∪ {e}) × K

Proof of Theorem 2

We put states of M into a one- to - one sequence

K : s = q1, q2, . . . qn for n ≥ 1

We build r using the following expressions

R(i, j, k) for i, j = 1, 2, . . . n, k = 0, 1, 2, . . . n

R(i, j, k) = {w ∈ Σ∗; (qi , w) `M,k
∗(qj ,w′)}

R(i, j, k) is the set of all words ”spelled” by all PATHS from
qi to qj in such way that we do not pass through an
intermediate state numbered k+1 or greater

Observe that ¬(m ≥ k + 1) ≡ m ≤ k so we get the following

Proof of Theorem 2

We say that a PATH has a RANK k when

(qi , w) `M,k
∗(qj ,w′)

I.e. when M can pass ONLY through states numbered m ≤ k
while going from qi to qj

RANK 0 case k = 0

R(i, j, 0) = {w ∈ Σ∗; (qi , w) `M,0
∗(qj ,w′)}

This means; M ”goes” from qi to qj only through states
numbered m ≤ 0

There is no such states as K = {q1, q2, . . . qn}

Proof of Theorem 2

Hence R(i, j, 0) means that M ”goes” from qi to qj

DIRECTLY, i.e. that

R(i, j, 0) = {w ∈ Σ∗; (qi , w) `M
∗(qj ,w′)}

Reminder: we use the BOOK definition so

R(i, j, 0) =

{
a ∈ Σ ∪ {e} if i , j and (qi , a, qj) ∈ ∆
{e} ∪ a ∈ Σ ∪ {e} if i = j and (qi , a, qj) ∈ ∆

Observe that we need {e} in the second equation to include
the following special case

Proof of Theorem 2

We read R(i, j, 0) from the diagram of M as follows

and

Proof of Theorem 2

RANK n case k = n

R(i, j, n) = {w ∈ Σ∗; (q i , w) `M,n
∗(q j ,w′)}

This means; M ”goes” from qi to qj through states
numbered m ≤ n

It means that M ”goes” all states as |K | = n

It means that M will read any w ∈ Σ and hence

R(i, j, n) = {w ∈ Σ∗; (qi , w) `M
∗(qj , e)}

Observe that

w ∈ L(M) iff w ∈ R(1, j, n) and qj ∈ F

Proof of Theorem 2

By definition of the L(M) we get

L(M) =
⋃
{R(1, j, n) : q j ∈ F}

Fact

All sets R(i, j, k) are regular and hence L(M) is also regular

Proof by induction on k

Base case: k =0

All sets R(i, j, 0) are FINITE, hence are regular

Proof of Theorem 2

Inductive Step

The recursive formula for R(i, j, k) is

R(i, j, k) = R(i, j, k − 1) ∪ R(i, k , k − 1)R(k , k , k − 1)∗R(k , j, k − 1)

where n is the number of states of M and
k = 0, . . . , n, i, j = 1, . . . , n

By Inductive assumption, all sets
R(i, j, k − 1), R(i, k , k − 1), R(k , k , k − 1), R(k , j, k − 1) are
regular and by the Closure Theorem so is the set R(i, j, k)

This ends the proof of Theorem 2

Observe that the recursive formula for R(i, j, k) computes r

such that L(M) = r

Example

Example

For the automaton M such that

M = ({q1, q2, q3}, {a, b}, s = q1,

∆ = {(q1, b , q2), (q1, a, q3), (q2, a, q1), (q2, b , q1),

(q3, a, q1), (q3, b , q1)}, F = {q1})

Evaluate 4 steps, in which you must include at least one

R(i, j, 0), in the construction of regular expression that

defines L(M)

Example

Reminder

L(M) =
⋃
{R(1, j, n) : q j ∈ F}

R(i, j, k) = R(i, j, k − 1) ∪ R(i, k , k − 1)R(k , k , k − 1)∗R(k , j, k − 1)

R(i, j, 0) =

{
a ∈ Σ ∪ {e} if i , j and (qi , a, qj) ∈ ∆
{e} ∪ a ∈ Σ ∪ {e} if i = j and (qi , a, qj) ∈ ∆

Example Solution

Solution

Step 1 L(M) = R(1, 1, 3)

Step 2

R(1, 1, 3) = R(1, 1, 2) ∪ R(1, 3, 2)R(3, 3, 2)∗R(3, 1, 2)

Step 3

R(1, 1, 2) = R(1, 1, 1) ∪ R(1, 2, 1)R(2, 2, 1)∗R(2, 1, 1)

Step 4

R(1, 1, 1) = R(1, 1, 0) ∪ R(1, 1, 0)R(1, 1, 0)∗R(1, 1, 0) and

R(1, 1, 0) = {e} ∪ ∅ = {e}, so we get

R(1, 1, 1) = {e} ∪ {e}{e}∗{e} = {e}

Generalized Automata

Generalized Automaton

Definition
We define now a Generalized Automaton GM as the
following generalization of of a nondeterministic automaton
M = (K , Σ, ∆, s, F) as follows

GM = (KG , ΣG , ∆G , sG , FG)

1. GM has a single final state, i,e. FG = {f }
2. ΣG = Σ ∪ R0 where R0 is a FINITE subset of the set R
of regular expressions over Σ

3. Transitions of GM may be labeled not only by symbols in
Σ ∪ {e} but also by regular expressions r ∈ R, i.e. ∆G is a
FINITE set such that

∆G ⊆ K × (Σ ∪ {e} ∪ R) × K

4. There is no transition going into the initial state s nor out
of the final state f
if (q, u, p) ∈ ∆G , then q , f , p , s

Generalized Automata

Given a nondeterministic automaton

M = (K , Σ, ∆, s, F)

We present now a new method of construction of a regular
expression r ∈ R that defines L(M) , i.e. such that L(M) = r
by the use of the notion of of Generalized Automaton

The method consists of a construction of a sequence of
generalized automata that are all equivalent to M

Construction

Steps of construction are as follows

Step 1

We extend M to a generalized automaton MG , such that
L(M) = L(MG) as depicted on the diagram below

Diagram of MG

MG Definition

Definition of MG

We re-name states of M as s = q1, q2, . . . , qn−2 for
appropriate n and make the initial state s = q1 and all final
states of M the internal non-final states of GM

We ADD TWO states: initial and one final, which me name
qn−1, qn, respectively, i.e. we put

sG = qn−1 and f = qn

We take

∆G = ∆ ∪ {(qn−1, e, s)} ∪ {(q, e, qn) : q ∈ F}

Obviously L(M) = L(MG), and so M ≈ MG

States of GM Elimination

We construct now a sequence GM1,GM2, . . . ,GM(n − 2)
such that

M ≈ MG ≈ GM1 ≈ · · · ≈ GM(n − 2)

where GM(n − 2) has only two states qn−1 and qn and
only one transition (qn−1, r , qn) for r ∈ R, such that

L(M) = r

We construct the sequence GM1,GM2, . . . ,GM(n − 2) by
eliminating states of M one by one following rules given by the
following diagrams

States of GM Elimination

Case 1 of state elimination
Given a fragment of GM diagram

we transform it into

The state q ∈ K has been eliminated preserving the
language of GM and we constructed GM′ ≈ GM

States of GM Elimination

Case 2 of state elimination
Given a fragment of GM diagram

we transform it into

The state q ∈ K has been eliminated preserving the
language of GM and we constructed GM′ ≈ GM

Example 1

Example 1

Use the Generalized Automata Construction and States of GM

Elimination procedure to evaluate r ∈ R, such that

L(r) = L(M)

, where M is an automata that accepts the language

L = {w ∈ {a, b}∗ : w has 3k + 1 b ′s, for some k ∈ N}

This is the Book example, page 80

Example 1

The Diagram of M is

Step 1
We extend M with K = {q1, q2, q3} to a generalized MG by
adding two states

sG = q4 and f = q5

We take
∆G = ∆ ∪ {(q4, e, q1)} ∪ {(q3, e, q5)}

Example 1

The Diagram of MG is

Step 2

We construct GM1 ≈ MG ≈ M by elimination of q1

The Diagram of GM1 is

Example 1

The Diagram of GM1 is

Step 3

We construct GM2 ≈ GM1 by elimination of q2

The Diagram of GM2 is

Example 1

The Diagram of GM2 is

Step 4

We construct GM3 ≈ GM2 by elimination of q3

The Diagram of GM2 is

L(GM3) = a∗b(a ∪ ba∗ba∗b)∗ = L(M)

Example 2

Example 2

Given the automaton

M = (K , Σ, ∆, s, F)

where

K = {q1, q2, q3}, Σ = {a, b}, s = q1, F = {q1}

∆ = {(q1, b , q2), (q1, a, q3), (q2, a, q1),

(q2, b , q1), (q3, a, q1), (q3, b , q1)

Use the Generalized Automata Construction and States of GM

Elimination procedure to evaluate r ∈ R, such that

L(r) = L(M)

Example 2

The diagram of M is

Step 1
The diagram of MG ≈ M is

Example 2

Step 1

The components of MG ≈ M are

MG = (K = {q1, q2, q3, q4, q5}, Σ = {a, b}, sG = q4,

∆G = {(q1, b , q2), (q1, a, q3), (q2, a, q1),

(q2, b , q1), (q3, a, q1), (q3, b , q1), (q4, e, q1),

(q1, e, q5)}, F = {q5})

Example 2

The Diagram of MG is

Step 2
We construct GM1 ≈ MG ≈ M by elimination of q2

The Diagram of GM1 is

Example 2

Step 2

The components of GM1 ≈ MG ≈ M are

GM1 = (K = {q1, q3, q4, q5}, Σ = {a, b}, sG = q4

∆G = {(q1, a, q3), (q1, (bb ∪ ba), q1),

(q3, a, q1), (q3, b , q1), (q4, e, q1),

(q1, e, q5)}, F = {q5})

Example 2

The Diagram of GM1 is

Step 3
We construct GM2 ≈ GM1 by elimination of q3

The Diagram of GM2 is

Example 2

Step 3

The components of GM2 ≈ GM1 ≈ MG ≈ M are

GM2 = (K = {q1, q4, q5}, Σ = {a, b}, sG = q4

∆G = {(q1, (bb ∪ ba), q1), (q1, (aa ∪ ab), q1),

(q4, e, q1), (q1, e, q5)}, F = {q5})

Example 2

The Diagram of GM2 is

Step 4

We construct GM3 ≈ GM2 by elimination of q1

The Diagram of GM3 is

Example 2

We have constructed

GM3 ≈ GM2 ≈ GM1 ≈ MG ≈ M

The Diagram of GM3 is

Hence the language

L(GM3) = (bb ∪ ba ∪ aa ∪ ab)∗ = ((a ∪ b)(a ∪ b))∗ = L(M)

Chapter 2
Finite Automata

Slides Set 2

PART 4: Languages that are Not Regular

Languages that are Not Regular

We know that there are uncountably many and exactly C

of all languages over any alphabet Σ , ∅

We also know that there are only ℵ0, i.e. infinitely countably

many regular languages

It means that we have uncountably many and . exactly C
languages that are not regular

Reminder

A language L ⊆ Σ∗ is regular if and only if there is a regular

expression r ∈ R that represents L, i.e. such that

L = L(r)

Regular or not Regular Languages

We look now at some simple examples of languages that

might be, or not be regular

E1 The language L1 = a∗b∗ is regular because is

defined by a regular expression

E2 The language

L2 = {anbn : n ≥ 0} ⊆ L1

is not regular

We will prove prove it using a very important theorem to be

proved that is called Pumping Lemma

Regular or not Regular Languages

Intuitively we can see that

L2 = {anbn : n ≥ 0}

can’t be regular as we can’t construct a finite automaton

accepting it

Such automaton would need to have something like a

memory to store, count and compare the number of a’s with

the number of b’s

Regular or not Regular Languages

We will define and study in Chapter 3 a new class of

automata that would accommodate the ”memory” problem

They are called Push Down Automata

We will prove that they accept a larger class of languages,

called context free languages

Regular or not Regular Languages

E3 The language L3 = a∗ is regular because is defined

by a regular expression

E4 The language L4 = {an : n ≥ 0} is regular because

in fact L3 = L4

E5 The language L4 = {an : n ∈ Prime} is not regular

We will prove it using Pumping Lemma

Regular or not Regular Languages

E6 The language L6 = {an : n ∈ EVEN} is regular
because in fact L6 = (aa)∗

E7 The language

L7 = {w ∈ {a, b}∗ : w has an equal number of a’ s and b’s }

is not regular
Proof
Assume that L7 is regular
We know that L1 = a∗b∗ is regular
Hence the language L = L7 ∩ L1 is regular, as the class of
regular languages is closed under intersection
But obviously, L = {anbn : n ∈ N} and was proved to
be not regular
This contradiction proves that L7 is not regular

Regular aor not Regular Languages

E8 The language L8 = {wwR : w ∈ {a, b}∗}

is not regular

We prove it using Pumping Lemma

E9 The language L9 = {ww : w ∈ {a, b}∗}

is not regular

We prove it using Pumping Lemma

Regular or not Regular Languages

E10 The language L10 = {wcw : w ∈ {a, b}∗}

is not regular

We prove it using Pumping Lemma

E11 The language L11 = {ww : w ∈ {a, b}∗}

where w stands for w with each occurrence of a is
replaced by b, and vice versa

is not regular

We prove it using Pumping Lemma

Regular or not Regular Languages

E12 The language

L12 = {xy ∈ Σ∗ : x ∈ L and y < L for any regular L ⊆ Σ∗}

is regular

Proof Observe that L12 = L ◦ L where L denotes

a complement of L, i.e.

L = {w ∈ Σ∗ : w ∈ Σ∗ − L}

L is regular, and so is L , and L12 = L ◦ L is regular by the

following, already already proved theorem

Closure Theorem The class of languages accepted by Finite

Automata FA is closed under ∪,∩,−, ◦,∗

Regular or not Regular Languages

E13 The language

L13 = {wR : w ∈ L and L is regular }

is regular

Definition For any language L we call the language

LR = {wR : w ∈ L}

the reverse language of L

The E13 says that the following holds

Fact

For any regular language L, its reverse language LR

is regular

Regular or not Regular Languages

Fact

For any regular language L, its reverse language LR is
regular

Proof Let M = (K , Σ, ∆, s, F) be such that L = L(M)

The reverse language LR is accepted by a finite automata

MR = (K ∪ s′, Σ, ∆′, s′, F = {s})

where s′ < K and

∆′ = {(r ,w, p) : (p,w, r) ∈ ∆, w ∈ Σ∗} ∪ {(s′, e, q) : q ∈ F}

We used the Lecture Definition of M

Regular and NOT Regular Languages

Proof of E13 pictures

Diagram of M

Diagram of MR

Regular and NOT Regular Languages

E14

Any finite language is regular

Proof Let L ⊆ Σ∗ be a finite language , i.e.

L = ∅ or L = {w1,w2, . . .wn} for n > 0}

We construct the finite automata M such that

L(M) = L = {w1} ∪ {w2} ∪ . . . {wn} = Lw1 ∪ · · · ∪ Lwn

as M = Mw1 ∪ · · · ∪Mwn ∪M∅
where

Exercises

Exercise 1

Show that the language

L = {xyxR : x, y ∈ Σ}

is regular for any Σ

Exercises

Exercise 1

Show that the language

L = {xyxR : x, y ∈ Σ}

is regular for any Σ

Proof

For any x ∈ Σ, xR = x

Σ is a finite set, hence

L = {xyx : x, y ∈ Σ}

is also finite and we just proved that any finite language is
regular

Exercises

Exercise 2

Show that the class of regular languages is not closed with
respect to subset relation.

Exercise 3

Given L1, L2 regular languages, is L1 ∩ L2 also a regular
language?

Exercises

Exercise 2
Show that the class of regular languages is not closed with
respect to subset relation.
Solution
Consider two languages

L1 = {anbn : n ∈ N} and L2 = a∗b∗

Obviously, L1 ⊆ L2 and L1 is a non-regular subset of a
regular L2

Exercise 3
Given L1, L2 regular languages, is L1 ∩ L2 also a regular
language?
Solution
YES, it is because the class of regular languages is closed
under ∩

Exercises

Exercise 4

Given L1, L2 , such that L1 ∩ L2 is a regular language

Does it imply that both languages L1, L2 must be regular?

Exercises

Exercise 4

Given L1, L2 , such that L1 ∩ L2 is a regular language

Does it imply that both languages L1, L2 must be regular?

Solution

NO, it doesn’t. Take the following L1, L2

L1 = {anbn : n ∈ N} and L2 = {an : n ∈ Prime}

The language L1 ∩ L2 = ∅ is a regular language none of
L1, L2 is regular

Exercises

Exercise 5

Show that the language

L = {xyxR : x, y ∈ Σ∗}

is regular for any Σ

Exercises

Exercise 5

Show that the language

L = {xyxR : x, y ∈ Σ∗}

is regular for any Σ

Solution

Take a case of x = e ∈ Σ∗

We get a language

L1 = {eyeR : e, y ∈ Σ∗} ⊆ L

and of course L1 = Σ∗ and so Σ∗ ⊆ L ⊆ Σ∗

Hence L = Σ∗ and Σ∗ is regular

This proves that L is regular

Exercises

Exercise 6

Given a regular language L ⊆ Σ∗

Show that the language

L1 = {xy ∈ Σ∗ : x ∈ L and y < L}

is also regular

Exercises

Exercise 6

Given a regular language L ⊆ Σ∗

Show that the language

L1 = {xy ∈ Σ∗ : x ∈ L and y < L}

is also regular

Solution

Observe that L1 = L ◦ (Σ∗ − L)

L is regular, hence (Σ∗ − L) is regular (closure under
complement), and so is L1 by closure under concatenation

Review Questions

Review Questions

Write SHORT answers

Q1

For any language L ⊆ Σ∗, Σ , ∅ there is a deterministic
automata M, such that L = L(M)

Q2

Any regular language has a finite representation.

Q3

Any finite language is regular

Q4

Given L1, L2 languages over Σ, then
((L1 ∩ (Σ∗ − L2)) ∪ L2)L1 is a regular regular language

Review Questions

SHORT answers
Q1
For any language L ⊆ Σ∗, Σ , ∅ there is a deterministic
automata M, such that L = L(M)

True only when L is regular
Q2
Any regular language has a finite representation.
True by definition of regular language and the fact that regular
expression is a finite string
Q3
Any finite language is regular
True as we proved it
Q4
Given L1, L2 languages over Σ, then
((L1 ∩ (Σ∗ − L2)) ∪ L2)L1 is a regular regular language
True only when both are regular languages

Review Questions for Quiz

Write SHORT answers

Q5

For any finite automata M

L(M) =
⋃
{R(1, j, n) : qj ∈ F}

Q6

Σ in any Generalized Finite Automaton includes some
regular expressions

Q7

Pumping Lemma says that we can always prove that a
language is not regular

Q8

L = {ancn : n ≥ 0} is regular

Review Questions

SHORT answers

Q5

For any finite automata M

L(M) =
⋃
{R(1, j, n) : qj ∈ F}

True only when M has n states and they are put in 1-1
sequence and q1 = s

Q6

Σ in any Generalized Finite Automaton includes some
regular expressions

True by definition

Review Questions

Q7

Pumping Lemma says that we can always prove that a
language is not regular

Not True PL serves as a tool for proving that some
languages are not regular

Q8

L = {ancn : n ≥ 0} is regular

Not True we proved by PL that it is not regular

PUMPING LEMMA

Pumping Lemma

Pumping Lemma is one of a general class of Theorems

called pumping theorems

They are called pumping theorems because they assert the

existence of certain points in certain strings where a substring

can be repeatedly inserted (pumping) without affecting the

acceptability of the string

Pumping Lemma

We present here two versions of the Pumping Lemma

First is the Lecture Notes version adopted from the first edition
of the Book

The second is the Book version (page 88) from the second
edition

The Book version is a slight generalization of the Lecture

version

Pumping Lemma

Pumping Lemma 1

Let L be an infinite regular language over Σ , ∅

Then there are strings x, y, z ∈ Σ∗ such that

y , e and xynz ∈ L for all n ≥ 0

Observe that the Pumping Lemma 1 says that in an infinite

regular language L, there is a word w ∈ L that can be

re-written as w = xyz in such a way that y , e and we

”pump” the part y any number of times and still have that

such obtained word is still in L, i.e. that xynz ∈ L for all n ≥ 0

Hence the name Pumping Lemma

Role of Pumping Lemma

We use the Pumping Lemma as a tool to carry proofs that

some languages are not regular

Problem

Given an infinite language L we want to prove it to be nor
REGULAR

We proceed as follows

1. We assume that L is REGULAR

2.Hence by Pumping Lemma we get that there is a word
w ∈ L that can be re-written as w = xyz, y , e, and
xynz ∈ L for all n ≥ 0

3. We examine the fact xynz ∈ L for all n ≥ 0

4. If we get a CONTRADICTION we have proved that the
language L is not regular

Proof of Pumping Lemma

Pumping Lemma 1
Let L be an infinite regular language over Σ , ∅

Then there are strings x, y, z ∈ Σ∗ such that

y , e and xynz ∈ L for all n ≥ 0

Proof
Since L is regular, L is accepted by a deterministic finite
automaton

M = (K , Σ, δ, s, F)

Suppose that M has n states, i.e. |K | = n for n ≥ 1
Since L is infinite, M accepts some string w ∈ L of length
n or greater, i.e.
there is w ∈ L such that lw | = k > n and

w = σ1σ2 . . . σk for σi ∈ Σ, 1 = 1, 2, . . . , k

Proof of Pumping Lemma

Consider a computation of w = σ1σ2 . . . σk ∈ L :

(q0, σ1σ2 . . . σk) `M (q1, σ2 . . . σk), `M

. `M (qk−1, σk), `M (qk , e)

where q0 is the initial state s of M and qk is a final state of M

Since |w | = k > n and M has only n states, by Pigeon Hole

Principle we have that

there exist i and j, 0 ≤ i < j ≤ k , such that qi = qj

That is, the string σi+1 . . . σj is nonempty since i + 1 ≤ j

and drives M from state qi back to state qi

But then this string σi+1 . . . σj could be removed from w, or

we could insert any number of its repetitions just after σj

and M would still accept such string

Proof of Pumping Lemma

We just showed by Pigeon Hole Principle that automaton

M that accepts w = σ1σ2 . . . σk ∈ L also accepts the
string

σ1σ2 . . . σi(σi+1 . . . σj)
nσj+1 . . . σk for each n ≥ 0

Observe that σi+1 . . . σj is non-empty string since i + 1 ≤ j

That means that there exist strings

x = σ1σ2 . . . σi, y = σi+1 . . . σj, z = σj+1 . . . σk for y , e

such that

y , e and xynz ∈ L for all n ≥ 0

Proof of Pumping Lemma

The computation of M that accepts xynz is as follows

(qo , xynz) `M
∗ (qi , ynz)`M

∗ (qi , yn−1z)

`M
∗ . . . `M

∗ (qi , yn−1z)`M
∗(qk , e)

This ends the proof

Observe that the proof of the holds for for any word w ∈ L
with |w | ≥ n , where n is the number of states of deterministic
M that accepts L

We get hence another version of the Pumping Lemma 1

Pumping Lemma 2

Pumping Lemma 2
Let L be an infinite regular language over Σ , ∅

Then there is an integer n ≥ 1 such that for any word
w ∈ L with lengths greater then n, i.e. |w | ≥ n there are
x, y, z ∈ Σ∗ such that w can be re-written as w = xyz and

y , e and xynz ∈ L for all n ≥ 0

Proof
Since L is regular, it is accepted by a deterministic finite
automaton M that has n ≥ 1 states
This is our integer n ≥ 1
Let w be any word in L such that |w | ≥ n
Such words exist as L in infinite
The rest of the proof exactly the same as in the previous case
of the Pumping Lemma 1

Pumping Lemma

We write the Pumping Lemma 2 symbolically using

quantifiers symbols as follows

Pumping Lemma 2

Let L be an infinite regular language over Σ , ∅

Then the following holds

∃n≥1∀w∈L (|w | ≥ n ⇒

∃x,y,z∈Σ∗ (w = xyz ∩ y , e ∩ ∀n≥0(xynz ∈ L)))

Book Pumping Lemma

Book Pumping Lemma is a STRONGER version of the

Pumping Lemma 2

It applies to any any regular language, not to an

infinite regular language, as the Pumping Lemmas 1, 2

Book Pumping Lemma

Book Pumping Lemma

Let L be a regular language over Σ , ∅

Then there is an integer n ≥ 1 such that any word w ∈ L
with |w | ≥ n can be re-written as w = xyz such that

y , e, |xy | ≤ n, x, y, z ∈ Σ∗ and xy iz ∈ L for all i ≥ 0

Proof The proof goes exactly as in the case of Pumping
Lemmas 1, 2

Notice that from the proof of Pumping Lemma 1

x = σ1σ2 . . . σi , z = σj+1 . . . σk } for 0 ≤ i < j ≤ n

and so by definition |xy | ≤ n for n being the number of states
of the deterministic M that accepts L

Book Pumping Lemma

We write the Book Pumping Lemma symbolically using

quantifiers symbols as follows

Book Pumping Lemma

Let L be a regular language over Σ , ∅

Then the following holds

∃n≥1∀w∈L (|w | ≥ n ⇒

∃x,y,z∈Σ∗(w = xyz ∩ y , e ∩ |xy | ≤ n ∩ ∀i≥0(xy iz ∈ L)))

Book Pumping Lemma

A natural question arises:

WHY the Book Pumping Lemma applies also when L is a
finite regular language?

We know that when L is a finite regular language the

Lecture Pumping Lemma does not apply

Book Pumping Lemma

Let’s look at an example of a finite, and hence a regular
language

L = {a, b , ab , bb}

Observe that the condition

∃n≥1∀w∈L (|w | ≥ n ⇒

∃x,y,z∈Σ∗(w = xyz ∩ y , e ∩ |xy | ≤ n ∩ ∀i≥0(xy iz ∈ L)))

of the Book Pumping Lemma holds because there exists
n = 3 such that the conditions becomes as follows

Book Pumping Lemma

Take n = 3 , or any n ≥ 3 we get statement:

∃n=3∀w∈L (|w | ≥ 3 ⇒

∃x,y,z∈Σ∗(w = xyz ∩ y , e ∩ |xy | ≤ n ∩ ∀i≥0(xy iz ∈ L)))

Observe that the above is a TRUE statement because the
statement |w | ≥ 3 is FALSE for all w ∈ L = {a, b , ab , bb}

By definition, the implication FALSE ⇒ (anything) is always
TRUE, hence the whole statement is TRUE

Book Pumping Lemma

The same reasoning applies for any finite (and hence
regular) language

In general, let L be any finite language

Let m = max{|w | : w ∈ L}

Such m exists because L is finite

Take n = m + 1 as the n in the condition of the Book
Pumping Lemma

The Lemma condition is TRUE for all w ∈ L , because the
statement

|w | ≥ m + 1 is FALSE for all w ∈ L

By definition, the implication FALSE ⇒ (anything) is always
TRUE, hence the whole statement is TRUE

Pumping Lemma Applications

Pumping Lemma Applications

We ese now Pumping Lemma to prove the following

Fact 1

The language L ⊆ {a, b}∗ defined as follows

L = {anbn : n > 0}

IS NOT regular

Obviously, L is infinite and we can use the Lecture version,
i.e. the following

Pumping Lemma Applications

Pumping Lemma 1

Let L be an infinite regular language over Σ , ∅

Then there are strings x, y, z ∈ Σ∗ such that

y , e and xynz ∈ L for all n ≥ 0

Pumping Lemma Applications

Reminder: we proceed as follows

1. We assume that L is REGULAR

2. Hence by Pumping Lemma we get that there is a word
w ∈ L that can be re-written as w = xyz for y , e and
xynz ∈ L for all n ≥ 0

3. We examine the fact xynz ∈ L for all n ≥ 0

4. If we get a CONTRADICTION we have proved that L is
NOT REGULAR

Pumping Lemma Applications

Assume that
L = {ambm : m ≥ 0}

IS REGULAR

L is infinite hence Pumping Lemma 1 applies, so there is

a word w ∈ L that can be re-written as w = xyz for y , e

and xynz ∈ L for all n ≥ 0

There are three possibilities for y , e

We will show that in each case we prove that xynz ∈ L is

impossible, i.e. we get a contradiction

Pumping Lemma Applications

Consider w = xyz ∈ L , i.e. xyz = ambm for some m ≥ 0

We have to consider the following cases

Case 1

y consists entirely of a’s

Case 2

y consists entirely of b’s

Case 3

y contains both some a’s followed by some b’s

We will show that in each case assumption that xynz ∈ L for
all n leads to CONTRADICTION

Pumping Lemma Applications

Consider w = xyz ∈ L , i.e. xyz = ambm for some m ≥ 0

Case 1: y consists entirely of a’s

So x must consists entirely of a’s only and z must consists
of some a’s followed by some b’s

Remember that only we must have that y , e

We have the following situation

x = ap for p ≥ 0 as x can be empty

y = aq for q > 0 as y must be nonempty

z = arbs for r ≥ 0, s > 0 as we must have some b’s

Pumping Lemma Applications

The condition xynz ∈ L for all n ≥ 0 becomes as follows

ap(aq)narbs = ap+nq+rbs ∈ L

for all p, q, n, r, s such that the following conditions hold

C1: p ≥ 0, q > 0, n ≥ 0, r ≥ 0, s > 0

By definition of L

ap+nq+rbs ∈ L iff [p + nq + r = s

Take case: p = 0, r = 0, q > 0, n = 0

We get s = 0 CONTRADICTION with C1: s > 0

Pumping Lemma Applications

Consider xyz = ambm for some m ≥ 0

Case 2: y consists of b’s only

So x must consists of some a’s followed by some b’s and z
must have only b’s, possibly none

We have the following situation

x = apb r for p > 0 as y has at least one b and r ≥ 0

y = bq for q > 0 as y must be nonempty

z = bs for s ≥ 0

Pumping Lemma Applications

The condition xynz ∈ L for all n ≥ 0 becomes as follows

apb r(bq)nbs = apb r+nq+r ∈ L

for all p, q, n, r, s such that the following conditions hold

C2: p > 0, r ≥ 0 q > 0, n ≥ 0, s ≥ 0

By definition of L

apb r+nq+r ∈ L iff [p = r + qn + s

Take case: r = 0, n = 0, q > 0

We get p = 0 CONTRADICTION with C2: p > 0

Pumping Lemma Applications

Consider xyz = ambm for some m ≥ 0

Case 3: y contains both a’s and a’s

So y = apb r for p > 0 and r > 0

Case y = b rap is impossible

Take case: y = ab , x = e, z = e and n = 2

By Pumping Lemma we get that y2 ∈ L

But this is a CONTRADICTION with y2 = abab < L

We covered all cases and it ends the proof

Pumping Lemma Applications

Use Pumping Lemma to prove the following

Fact 2

The language L ⊆ {a}∗ defined as follows

L = {an : n ∈ Prime}

IS NOT regular

Obviously, L i infinite and we use the Lecture version

Proof

Assume that L is regular, hence as L is infinite, so there is a
word w ∈ L that can be re-written as w = xyz for y , e
and xynz ∈ L for all n ≥ 0

Consider w = xyz ∈ L , i.e. xyz = am for some m > 0 and
m ∈ Prime

Pumping Lemma Applications

Then

x = ap , y = aq, z = ar for p ≥ 0, q > 0, r ≥ 0

The condition xynz ∈ L for all n ≥ 0 becomes as follows

ap(aq)nar = ap+nq+r ∈ L

It means that for all n, p, q, r the following condition hold

C n ≥ 0, p ≥ 0, q > 0, r ≥ 0, and p + nq + r ∈ Prime

But this is IMPOSSIBLE

Pumping Lemma Applications

Take n = p + 2q + r + 2 and evaluate:

p + nq + r = p + (p + 2q + r + 2)q + r =

p(1 + q) + 2q(q + 1) + r(q + 1) =(q + 1)(p + 2q + r)

By the above and the condition C we get that

p + nq + r ∈ Prime and p + nq + r = (q + 1)(p + 2q + r)

and both factors are natural numbers greater than 1 what is a
CONTRADICTION

This ends the proof

Chapter 2
Finite Automata

Slides Set 3

PART 5: State Minimization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

State Minimalization

