INTRODUCTION TO THE THEORY OF COMPUTATION LECTURE NOTES

Professor Anita Wasilewska
Stony Brook University (SUNY at Stony Brook)

Course Text Book

ELEMENTS OF THE THEORY OF COMPUTATION Harry R. Lewis, and Christos H. Papadimitriou Prentice Hall, S2nd Edition

Chapter 2
Finite Automata

LECTURE SLIDES

Chapter 2
 Finite Automata

Slides Set 1

PART 1: Deterministic Finite Automata DFA
PART 2: Nondeterministic Finite Automata DFA Equivalency of DFA and DFA

Slides Set 2

PART 3: Finite Automata and Regular Expressions
PART 4: Languages that are Not Regular

Slides Set 3

PART 5: State Minimization

Chapter 2

Finite Automata

Slides Set 1

PART 1: Deterministic Finite Automata DFA

Deterministic Finite Automata DFA

Simple Computational Model

Here is a picture

Here are the components of the model
C1: Input string on an input tape written at the beginning of the tape
The input tape is divided into squares, with one symbol inscribed in each tape square

DFA - A Simple Computational Model

Here is a picture

C2: "Black Box" - called Finite Control
It can be in any specific time in one of the finite number of states $\left\{q_{1}, \ldots, q_{n}\right\}$
C3: A movable Reading Head can sense what symbol is written in any position on the input tape and moves only one square to the right

DFA - A Simple Computational Model

Here are the assumptions for the model

A1: There is no output at all;

A2: DFA indicates whether the input is acceptable or not acceptable

A3: DFA is a language recognition device

DFA - A Simple Computational Model

Operation of DFA
01 Initially the reading head is placed at left most square at the beginning of the tape and
02 finite control is set on the initial state
O3 After reading on the input symbol the reading head moves one square to the right and enters a new state
04 The process is repeated
05 The process ends when the reading head reaches the end of the tape

DFA - A Simple Computational Model

The general rules of the operation of DFA are

R1 At regular intervals DFA reads only one symbol at the time from the input tape and enters a new state

R2: The move of DFA depends only on the current state and the symbol just read

DFA - A Simple Computational Model

Operation of DFA
06 When the process stops the DFA indicates its approval or disapproval of the string by means of the final state
07 If the process stops while being in the final state, the string is accepted
O8 If the process stops while not being in the final state, the string is not accepted

Language Accepted by DFA

Informal Definition

Language accepted by a Deterministic Finite Automata is equal to the set of strings accepted by it

DFA - Mathematical Model

To build a mathematical model for DFA we need to include and define the following components
FINITE set of STATES
ALPHABET Σ
INITIAL state
FINAL state
Description of the MOVE of the reading head is as follows
R1 At regular intervals DFA reads only one symbol at the time from the input tape and enters a new state
R2: The MOVE of DFA depends only on the current state and the symbol just read

DFA - Mathematical Model

Definition

A Deterministic Finite Automata is a quintuple

$$
M=(K, \Sigma, \delta, s, F)
$$

where
K is a finite set of states
Σ as an alphabet
$s \in K$ is the initial state
$F \subseteq K$ is the set of final states
δ is a function

$$
\delta: K \times \Sigma \longrightarrow K
$$

called the transition function
We usually use different symbols for K, Σ, i.e. we have that $K \cap \Sigma=\emptyset$

DFA Definition

Definition revisited
A Deterministic Finite Automata is a quintuple

$$
M=(K, \Sigma, \delta, s, F)
$$

where
K is a finite set of states
$K \neq \emptyset \quad$ because $s \in K$
Σ as an alphabet
Σ can be \emptyset - case to consider
$s \in K$ is the initial state
$F \subseteq K$ is the set of final states
F can be \emptyset - case to consider
δ is a function

$$
\delta: K \times \Sigma \longrightarrow K
$$

δ is called the transition function

Transition Function

Given DFA

$$
M=(K, \Sigma, \delta, s, F)
$$

where

$$
\delta: K \times \Sigma \longrightarrow K
$$

Let

$$
\delta(q, \sigma)=q^{\prime} \quad \text { for } \quad q, q^{\prime} \in K, \quad \sigma \in \Sigma
$$

means: the automaton M in the state q reads $\sigma \in \Sigma$ and moves to a state $q^{\prime} \in K$, which is uniquely determined by state q and σ just read

Configuration

In order to define a notion of computation of M on an input string $w \in \Sigma^{*}$ we introduce first a notion of a configuration

Definition

A configuration is any tuple

$$
(q, w) \in K \times \Sigma^{*}
$$

where $q \in K$ represents a current state of M and $w \in \Sigma^{*}$ is unread part of the input
Picture

Transition Relation

Definition

The set of all possible configurations of $M=(K, \Sigma, \delta, s, F)$ iis just

$$
K \times \Sigma^{*}=\left\{(q, w): \quad q \in K, \quad w \in \Sigma^{*}\right\}
$$

We define move of an automaton Mi in terms of a transition relation

$$
\vdash_{M}
$$

The transition relation acts between two configurations and hence \vdash_{M} is a certain binary relation defined on $K \times \Sigma^{*}$, i.e.

$$
\vdash_{M} \subseteq\left(K \times \Sigma^{*}\right)^{2}
$$

Formal definition follows

Transition Relation

Definition

Given $M=(K, \Sigma, \delta, s, F)$
A binary relation

$$
\vdash_{M} \subseteq\left(K \times \Sigma^{*}\right)^{2}
$$

is called a transition relation when for any
$q, q^{\prime} \in K, w_{1}, w_{2} \in \Sigma^{*}$ the following holds

$$
\left(q, w_{1}\right) \vdash_{M}\left(q^{\prime}, w_{2}\right)
$$

if and only if

1. $w_{1}=\sigma w_{2}$, for some $\sigma \in \Sigma$ (M looks at σ)
2. $\delta(q, \sigma)=q^{\prime}$ (M moves from q to q^{\prime} reading σ in w_{1})

Transition Relation

Definition (Transition Relation short definition)

Given $M=(K, \Sigma, \delta, s, F)$
For any $q, q^{\prime} \in K, \quad \sigma \in \Sigma, \quad w \in \Sigma^{*}$

$$
(q, \sigma w) \vdash_{M}\left(q^{\prime}, w\right)
$$

if and only if

$$
\delta(q, \sigma)=q^{\prime}
$$

Idea of Computation

We use the transition relation to define a move of M along a given input, i.e. a given $w \in \Sigma^{*}$
Such a move is called a computation

Example

Given M such that $K=\{s, q\}$ and let \vdash_{M} be a transition relation such that

$$
(s, a a b) \vdash M(q, a b) \vdash_{M}(s, b) \vdash_{M}(q, e)
$$

We call a sequence of configurations

$$
(s, a a b), \quad(q, a b), \quad(s, b), \quad(q, e)
$$

a computation from ($s, a a b$) to (q, e) in automaton M

Idea of Computation

Given a a computation

$$
(s, a a b),(q, a b),(s, b), \quad(q, e)
$$

We write this computation in a more general form as

$$
\left(q_{1}, a a b\right), \quad\left(q_{2}, a b\right), \quad\left(q_{3}, b\right), \quad\left(q_{4}, e\right)
$$

for $q_{1}, q_{2}, q_{3}, q_{4}$ being a specific sequence of states from $K=\{s, q\}$, namely $q_{1}=s, q_{2}=, q_{3}=s, q_{4}=q$ and say that the length of this computation is 4 In general we write any computation of length 4 as

$$
\left(q_{1}, w_{1}\right), \quad\left(q_{2}, w_{2}\right), \quad\left(q_{3}, w_{3}\right), \quad\left(q_{4}, w_{4}\right)
$$

for any sequence $q_{1}, q_{2}, q_{3}, q_{4}$ of states from K and words $w_{i} \in \Sigma^{*}$

Idea of the Computation

Example

Given M and the computation

$$
(s, a a b), \quad(q, a b), \quad(s, b), \quad(q, e)
$$

We say that the word $w=a a b$ is accepted by M if and only if

1. the computation starts when M is in the initial state

- true here as s denotes the initial state

2. the whole word w has been read, i.e. the last configuration of the computation is (q, e) for certain state in K,

- true as $K=\{s, q\}$

3. the computation ends when M is in the final state

- true only if we have that $q \in F$

Otherwise the word w is not accepted by M

Definition of the Computation

Definition

Given $M=(K, \Sigma, \delta, s, F)$
A sequence of configurations

$$
\left(q_{1}, w_{1}\right),\left(q_{2}, w_{2}\right), \ldots,\left(q_{n}, w_{n}\right), \quad n \geq 1
$$

is a computation of the length n in M from (q, w) to $\left(q^{\prime}, w^{\prime}\right)$
if and only if

$$
\begin{aligned}
& \left(q_{1}, w_{1}\right)=(q, w), \quad\left(q_{n}, w_{n}\right)=\left(q^{\prime}, w^{\prime}\right) \quad \text { and } \\
& \left(q_{i}, w_{i}\right) \vdash_{M}\left(q_{i+1}, w_{i+1}\right) \quad \text { for } \quad i=1,2, \ldots n-1
\end{aligned}
$$

Observe that when $n=1$ the computation $\left(q_{1}, w_{1}\right)$ always exists and is called a computation of the length one It is also called a rivial computation
We also write sometimes the computations as
$\left(q_{1}, w_{1}\right) \vdash_{M}\left(q_{2}, w_{2}\right) \vdash_{M} \ldots \vdash_{M}\left(q_{n}, w_{n}\right)$ for $n \geq 1$

Words Accepted by M

Definition

A word $w \in \Sigma^{*}$ is accepted by $M=(K, \Sigma, \delta, s, F)$ if and only if there is a computation

$$
\left(q_{1}, w_{1}\right),\left(q_{2}, w_{2}\right), \ldots,\left(q_{n}, w_{n}\right)
$$

such that $q_{1}=s, w_{1}=w, w_{n}=e$ and $q_{n}=q \in F$

Words Accepted by M

We re-write it as

Definition

A word $w \in \Sigma^{*}$ is accepted by $M=(K, \Sigma, \delta, s, F)$ if and only if there is a computation

$$
(s, w),\left(q_{2}, w_{2}\right), \ldots,(q, e) \quad \text { and } \quad q \in F
$$

When the computation is such that $q \notin F$ we say that the word w is not accepted (rejected) by M

Words Accepted by M

In Plain Words:

A word $w \in \Sigma^{*}$ is accepted by $M=(K, \Sigma, \delta, s, F)$
if and only if
there is a computation such that

1. starts with the word w and M in the initial state ,
2. ends when M is in a final state, and
3. the whole word w has been read

Language Accepted by M

Definition

We define the language accepted by M as follows

$$
L(M)=\left\{w \in \Sigma^{*}: \quad w \text { is accepted by } M\right\}
$$

i.e. we write

$$
L(M)=\left\{w \in \Sigma^{*}:(s, w) \vdash_{M} \ldots \vdash_{M}(q, e) \text { for some } q \in F\right\}
$$

Examples

Example 1

Let $M=(K, \Sigma, \delta, s, F)$, where
$K=\left\{q_{0}, q_{1}\right\}, \quad \Sigma=\{a, b\}, \quad s=q_{0}, \quad F=\left\{q_{0}\right\}$
and the transition function $\delta: K \times \Sigma \longrightarrow K$
is defined as follows

Question Determine whether $a b a b b \in L(M)$ or ababb $\notin L(M)$

Examples

Solution

We must evaluate computation that starts with the configuration $\left(q_{0}, a b a b b\right)$ as $q_{0}=s$
$\left(q_{0}, a b a b b\right) \vdash_{M}$ use $\delta\left(q_{0}, a\right)=q_{0}$
$\left(q_{0}, b a b b\right) \vdash_{M}$ use $\delta\left(q_{0}, b\right)=q_{1}$
$\left(q_{1}, a b b\right) \vdash_{M}$ use $\delta\left(q_{1}, a\right)=q_{1}$
$\left(q_{1}, b b\right) \vdash_{M}$ use $\delta\left(q_{1}, b\right)=q_{0}$
$\left(q_{0}, b\right) \vdash_{M}$ use $\delta\left(q_{0}, b\right)=q_{1}$
$\left(q_{1}, e\right) \vdash_{M} \quad$ end of computation and $q_{1} \notin F=\left\{q_{0}\right\}$
We proved that ababb $\notin L(M)$
Observe that we always get unique computations, as δ is a function, hence he name Deterministic Finite Automaton (DFA)

Examples

Example 2

Let $M_{1}=(K, \Sigma, \delta, s, F)$ for all components defined as in M from Example 1, except that we take now $F=\left\{q_{0}, q_{1}\right\}$
We remind that

Exercise Show that now ababb $\in L\left(M_{1}\right)$

Language Accepted by M

 RevisitedWe have defined the language accepted by M as

$$
L(M)=\left\{w \in \Sigma^{*}:(s, w) \vdash_{M} \ldots \vdash_{M}(q, e) \text { for some } q \in F\right\}
$$

Question: how to write this definition in a more
concise and elegant way

Answer: use the notion (Chapter 1, Lecture 3) of reflexive, transitive closure of \vdash_{M} denoted by

$$
\vdash_{M}^{*}
$$

and now we write the definition of $L(M)$ as follows

Language Accepted by M
 Revisited

Definition

$$
L(M)=\left\{w \in \Sigma^{*}:(s, w) \vdash M^{*}(q, e) \text { for some } q \in F\right\}
$$

We write it also using the existential quantifier symbol as

$$
L(M)=\left\{w \in \Sigma^{*}: \exists_{q \in F}\left((s, w) \vdash_{M}^{*}(q, e)\right)\right.
$$

In order to justify the following I definition

$$
L(M)=\left\{w \in \Sigma^{*}:(s, w) \vdash M^{*}(q, e) \text { for some } q \in F\right\}
$$

We bring back the general notion of a path in a binary relation R and its reflexive, transitive closure R^{*} (Chapter 1) It follows directly from these definitions that

$$
\left(q_{1}, w_{1}\right) \vdash M^{*}\left(q_{n}, w_{n}\right)
$$

represents a path

$$
\left(q_{1}, w_{1}\right),\left(q_{2}, w_{2}\right) \ldots, \quad\left(q_{n-1}, w_{n-1},\left(q_{n}, w_{n}\right)\right.
$$

in the relation \vdash_{M}, which is defined as a computation

$$
\left(q_{1}, w_{1}\right) \vdash_{M}\left(q_{2}, w_{2}\right) \ldots, \quad\left(q_{n-1}, w_{n-1} \vdash_{M}\left(q_{n}, w_{n}\right)\right.
$$

in M from $\left(q_{1}, w_{1}\right)$ to $\left(q_{n}, w_{n}\right)$

Language Accepted by M

Revisited

Hence

$$
(s, w) \vdash M^{*}(q, e)
$$

represent a computation

$$
(s, w) \vdash_{M}\left(q_{1}, w_{1}\right), \ldots, \quad\left(q_{n}, w_{n}\right) \vdash M(q, e)
$$

from (s, w) to (q, e),
So define the language $L(M)$ as

$$
L(M)=\left\{w \in \Sigma^{*}:(s, w) \vdash^{*}(q, e) \text { for some } q \in F\right\}
$$

Example

Example

Let $M=(K, \Sigma, \delta, s, F)$ be automaton from our Example 1, i.e. we have
$K=\left\{q_{0}, q_{1}\right\}, \quad \Sigma=\{a, b\}, \quad s=q_{0}, \quad F=\left\{q_{0}\right\}$
and the transition function $\delta: K \times \Sigma \longrightarrow K$ is defined as follows

Question Show that aabba $\in L(M)$

Example

We evaluate

$$
\begin{gathered}
\left(q_{0}, \text { aabba }\right) \vdash_{M}\left(q_{0}, \text { abba }\right) \vdash_{M}\left(q_{0}, b b a\right) \vdash_{M} \\
\left(q_{1}, b a\right) \vdash_{M}\left(q_{0}, a\right) \vdash_{M}\left(q_{0}, e\right) \text { and } q_{0}=s, \quad q_{0} \in F=\left\{q_{0}\right\}
\end{gathered}
$$

This proves that

$$
(s, \text { aabba }) \vdash M^{*}\left(q_{0}, e\right) \text { for } q_{0} \in F
$$

By definition
$a a b b a \in L(M)$

General remark

To define or to give an example of

$$
M=(K, \Sigma, \delta, s, F)
$$

means that one has to specify all its components
K, Σ, δ, s, F
We usually use different symbols for K, Σ, i.e. we have that $K \cap \Sigma=\emptyset$

Exercise

Given $\Sigma=\{a, b\}$ and $K==\left\{q_{0}, q_{1}\right\}$

1. Define 3 automata M
2. Define an automaton M, such that $L(M)=\emptyset$
3. How many automata M can one define?

Exercise

1. Here are 3 automata $M_{1}-M_{3}$
$\mathbf{M}_{\mathbf{1}}: M_{1}=\left(K=\left\{q_{0}, q_{1}\right\}, \Sigma=\{a, b\}, \delta, s=q_{0}, F=\left\{q_{0}\right\}\right)$
$\delta\left(q_{0}, a\right)=q_{0}, \delta\left(q_{0}, b\right)=q_{0}, \delta\left(q_{1}, a\right)=q_{0}, \delta\left(q_{1}, b\right)=q_{0}$
$\mathbf{M}_{\mathbf{2}}: M_{2}=\left(K=\left\{q_{0}, q_{1}\right\}, \Sigma=\{a, b\}, \delta, s=q_{0}, F=\left\{q_{1}\right\}\right)$
$\delta\left(q_{0}, a\right)=q_{0}, \delta\left(q_{0}, b\right)=q_{0}, \delta\left(q_{1}, a\right)=q_{0}, \delta\left(q_{1}, b\right)=q_{1}$
$\mathbf{M}_{\mathbf{3}}: M_{3}=\left(K=\left\{q_{0}, q_{1}\right\}, \Sigma=\{a, b\}, \delta, s=q_{0}, F=\left\{q_{1}\right\}\right)$
$\delta\left(q_{0}, a\right)=q_{0}, \delta\left(q_{0}, b\right)=q_{1}, \delta\left(q_{1}, a\right)=q_{1}, \delta\left(q_{1}, b\right)=q_{0}$

Exercise

2. Define an automaton M, such that $L(M)=\emptyset$

Answer: The automata M_{2} is such that $L\left(M_{2}\right)=\emptyset$ as there is no computation that would start at initial state q_{0} and
end in the final state q_{1} as in M_{2}
We have that

$$
\delta\left(q_{0}, a\right)=q_{0}, \quad \delta\left(q_{0}, b\right)=q_{0}
$$

so we will never reach the final state q_{1}

Exercise

Here is another example:

Let M_{4} be defined as follows

$$
\begin{gathered}
M_{4}=\left(K=\left\{q_{0}, q_{1}\right\}, \Sigma=\{a, b\}, \delta, s=q_{0}, F=\emptyset\right) \\
\delta\left(q_{0}, a\right)=q_{0}, \delta\left(q_{0}, b\right)=q_{0}, \delta\left(q_{1}, a\right)=q_{0}, \delta\left(q_{1}, b\right)=q_{0}
\end{gathered}
$$

$L\left(M_{4}\right)=\emptyset$ as there is no computation that would start at initial state q_{0} and end in the final state as there is no final state

Exercise

3. How many automata M can one define?

Observe that all of M must have $\Sigma=\{a, b\}$ and
$K==\left\{q_{0}, q_{1}\right\}$ so they differ on the choices of
$\delta: K \times \Sigma \longrightarrow K$
By Counting Functions Theorem we have 2^{4} possible choices for δ

They also can differ on the choices of final states F There as many choices for final states as subsets of
$K==\left\{q_{0}, q_{1}\right\}$, i.e. $2^{2}=4$

Additionally we have to count all combinations of choices of δ with choices of F

Challenge

1. Define an automata M with $\Sigma \neq \emptyset$ such that $L(M)=\emptyset$
2. Define an automata M with $\Sigma=\emptyset$ such that $L(M) \neq \emptyset$
3. Define an automata M with $\Sigma \neq \emptyset$ such that $L(M) \neq \emptyset$
4. Define an automata M with $\Sigma \neq \emptyset$ such that $L(M)=\Sigma^{*}$
5. Prove that there always exist an automata M such that $L(M)=\Sigma^{*}$

DFA State Diagram

As we could see the transition functions can be defined in many ways but it is difficult to decipher the workings of the automata they define from their mathematical definition
We usually use a much more clear graphical representation of the transition functions that is called a state diagram Definition

The state diagram is a directed graph, with certain additional information as shown at the picture on next slide

DFA State Diagram

PICTURE 1

States are represented by the nodes
Initial state is shown by a >○
Final states are indicated by a dot in a circle \odot
Initial state that is also a final state is pictured as $>\odot$

DFA State Diagram

PICTURE 2

States are represented by the nodes
There is an arrow labelled a from node q_{1} to q_{2} whenever $\delta\left(q_{1}, a\right)=q_{2}$

A Simple Problem

Problem

Given $M=(K, \Sigma, \delta, s, F)$ described by the following diagram

1. List all components of M
2. Describe $L(M)$ as a regular expression

A Simple Problem

Given the diagram

Components are: $M=(K, \Sigma, \delta, s, F)$ for $\Sigma=\{a, b\}, \quad K=\left\{q_{0}, q_{1}, q_{2}\right\}$,
$s=q_{0}, \quad F=\left\{q_{0}, q_{1}\right\}$ and the transition function is given by following table

$$
\begin{array}{l|ll}
\delta & a & b \\
\hline q_{0} & q_{1} & q_{2} \\
q_{1} & q_{1} & q_{1} \\
q_{2} & q_{2} & q_{2}
\end{array}
$$

A Simple Problem

2. Describe $L(M)$ as a regular expression, where

$$
L(M)=\left\{w \in \Sigma^{*}:(s, w) \vdash M^{*}(q, e) \text { for } q \in F\right\}
$$

Let's look again at the diagram of M

Observe that the state q_{2} does not influence the language $L(M)$. We call such state a trap state and say:
The state q_{2} is a trap state
We read from the diagram that

$$
\begin{gathered}
L(M)=a(a \cup b)^{*} \cup e \text { as a regular expression } \\
L(M)=\{a\} \circ\{a, b\}^{*} \cup\{e\} \text { as a set }
\end{gathered}
$$

DFA Theorem

DFA Theorem

For any DFA $M=(K, \Sigma, \delta, s, F)$,

$$
e \in L(M) \quad \text { if and only if } \quad s \in F
$$

where we defined $L(M)$ as follows
$L(M)=\left\{w \in \Sigma^{*}:(s, w) \vdash_{M}{ }^{*}(q, e)\right.$ for some $\left.q \in F\right\}$

Proof

Let $e \in L(M)$, then by definition $(s, e) \vdash M^{*}(q, e)$ and $q \in F$
This is possible only when the computation is of the length one (case $n=1$), i.e when it is (s, e) and $s=q$, hence $s \in F$ Suppose now that $s \in F$
We know that $\vdash_{M^{*}}$ is reflexive, so $(s, e) \vdash_{M^{*}}(s, e)$ and as $s \in F$, we get $e \in L(M)$

Definition of TRAP States of M

Definition

A trap state of a DFA automaton M is any of its states that does not influence the language $L(M)$ of M
Example

$L(M)=b$ written in shorthand notation, $L(M)=\{b\}$, or
$L(M)=\mathcal{L}(b)=\{b\}$
States q_{2}, q_{3} are trap states

TRAP States of M

Given a diagram of M

The state q_{2} is the trap state and we can write a short diagram of M as follows

Remember that if you use the short diagram you must add statement: " plus trap states"

Short and Pattern Diagrams of M

Definition

A diagram of M with some or all of its trap states removed is called a short diagram
"Our" M becomes

We can "shorten" the diagram even more by removing the names of the states

Such diagram, with names of the states removed is called a pattern diagram

Pattern Diagrams

Pattern Diagrams are very useful when we want to "read" the language M directly out of the diagram
Lets look at M_{1} given by a diagram

It is obvious that (we write a shorthand notion!)

$$
L\left(M_{1}\right)=(a \cup b)^{*}=\Sigma^{*}
$$

Remark that the regular expression that defines the language $L\left(M_{1}\right)$ is $\alpha=(a \cup b)^{*}$
We add the description $L\left(M_{1}\right)=\Sigma^{*}$ as yet another useful informal shorthand notation notation

Pattern Diagrams

The pattern diagram for "our" M is

It is obvious that (we write a shorthand notion!) - must add: plus trap states

$$
L(M)=a L\left(M_{1}\right) \cup e
$$

We must add e to the language by DFA Theorem, as we have that $s \in F$
Finally we obtain the following regular expression that defines the language and write it as

$$
L(M)=a(a \cup b)^{*} \cup e
$$

We can also write $L(M)$ in an informal way (Σ^{*} is not a regular expression) as

Trap States

Why do we need trap states?

Let's take $\Sigma=\{a, b\}$ and let M be defined by a diagram

Obviously, the diagram means that M is such that its language is $L(M)=a a^{*}$
But by definition, $\delta: K \times \Sigma \longrightarrow K$ and we get from the diagram

We must "complete" definition of δ by making it a function (still preserving the language)
To do so introduce a new state q_{2} and make it a trap state by defining $\delta\left(q_{0}, b\right)=q_{2}, \delta\left(q_{1}, b\right)=q_{2}$

Short Problems

For all short problems presented here and given on Quizzes and Tests, you have to do the following

1. Decide and explain whether the given diagram represents
a DFA or does not, i.e. is not an automatan
2. List all components of M when it represents a DFA
3. Describe $L(M)$ as a regular expression when it does represent a DFA

Short Problems

Consider a diagram M1

1. Yes, it represents a DFA; δ is a function on $\left\{q_{0}, q_{1}\right\} \times\{a\}$ and initial state $s=q_{0}$ exists
2. $K=\left\{q_{0}, q_{1}\right\}, \Sigma=\{a\}, s=q_{0}, F=\left\{q_{1}\right\}$,

$$
\delta\left(q_{0}, a\right)=q_{1}, \delta\left(q_{1}, a\right)=q_{1}
$$

3. $L(M 1)=a a^{*}$

Short Problems

Consider a diagram M2

1. Yes, it represents a DFA; δ is a function on $\left\{q_{0}\right\} \times\{a\}$ and initial state $s=q_{0}$ exists
2. $K=\left\{q_{0}\right\}, \Sigma=\{a\}, s=q_{0}, F=\emptyset, \delta\left(q_{0}, a\right)=q_{0}$
3. $L(M 2)=\emptyset$

Short Problems

Consider a diagram M3

1. Yes, it represents a DFA; initial state $s=q_{0}$ exists
2. $K=\left\{q_{0}\right\}, \Sigma=\emptyset, s=q_{0}, F=\emptyset, \delta=\emptyset$
3. $L(M 3)=\emptyset$

Short Problems

Consider a diagram M4

1. Yes, it represents a DFA; initial state $s=q_{0}$ exists
2. $K=\left\{q_{0}\right\}, \Sigma=\{a\}, s=q_{0}, F=\left\{q_{0}\right\}, \delta\left(q_{0}, a\right)=q_{0}$
3. $L(M 4)=a^{*}$

Remark $e \in L(M 4)$ by DFA Theorem, as $s=q_{0} \in F=\left\{q_{0}\right\}$

Short Problems

Consider a diagram M5

1. NO! it is NOT DFA - initial state does not exist

Short Problems

Consider a diagram M6

1. NO! Initial state does exist, but δ is not a function; $\delta\left(q_{0}, b\right)$ is not defined and we didn't say "plus trap states"

Short Problems

Consider a diagram M7

1. Yes! it is DFA

Initial state exists and we can complete definition of δ by adding a trap state as pictured below

Short Problems

Consider a diagram M8

1. Yes! Initial state exists and it is a short diagram of a DFA We make δ a function by adding a trap state q_{2}

2. $L(M 8)=a a^{*}$

We chose to add one trap state but it is possible to add as many as one wishes
Observe that $L(M 8)=L(M 1)$ and M1, M8 are defined for different alphabets

Two Problems

P1 Let $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{1025}, \ldots, a_{2} 105\right\}$
Draw a state diagram of M such that $L(M)=a_{1025}\left(a_{1025}\right)^{*}$
P2

1. Draw a state diagram of transition function δ given by the table below
2. Give an example and automaton M with with this δ

3. Describe the language of M

P1 Let $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{1025}, \ldots, a_{2} 105\right\}$
Draw a state diagram of M such that $L(M)=a_{1025}\left(a_{1025}\right)^{*}$

Solution

PLUS a LOT of trap states!

Σ has 2^{105} elements; we need a trap state for each of them except a_{1025}

P1 Solution

Observe that we have a following pattern for any $\sigma \in \Sigma$

$$
L(M)=\sigma^{+} \quad \text { for any } \quad \sigma \in \Sigma
$$

PLUS a LOT of trap states! except for the case when
$\Sigma=\{\sigma\}$

P2 Solutions

P2

1. Draw a state diagram of transition function δ given by the table below
2. Give an example and automaton M with with this δ

Here is the example of M from our book, page 59

$L(M)=\left\{w \in\{a, b\}^{*}: w\right.$ does not contain three consecutive $\left.b^{\prime} s\right\}$

P2 Solution

Observe that the book example is only one of many possible examples of automata we can define based on δ with the following

State diagram:

Two more examples follow
Please invent some more of your own!
Be careful! This diagram is NOT an automaton!!

P2 Examples

Example 1

Here is a full diagram of M1

$$
L(M)=(a \cup b)^{*}=\Sigma^{*}
$$

Observe that $e \in L(M 1)$ by the DFA Theorem and the states q_{0}, q_{1}, q_{2} are trap states

P2 Examples

Example 2

Here is a full diagram of M1 from Example 1

$$
L(M)=(a \cup b)^{*}=\Sigma^{*}
$$

Observe that we can make all, or any of the states q_{0}, q_{1}, q_{2} as final states and they will still will remain the trap states Definition
A trap state of a DFA automaton M is any of its states that does not influence the language $L(M)$ of M

P2 Examples

Example 3

Here is a full diagram of M 2 with the same transition function as M1

$$
L(M)=\emptyset
$$

Observe that $F=\emptyset$ and hence here is no computation that would finish in a final state

More Problems

P3 Construct a DFA M such that

$$
L(M)=\left\{w \in\{a, b\}^{*}: w \text { has abab as a substring }\right\}
$$

Problems Solutions

P3 Construct a DFA M such that

$$
L(M)=\left\{w \in\{a, b\}^{*}: w \text { has abab as a substring }\right\}
$$

Solution The essential part of the diagram must produce abab and it can be surrounded by proper elements on both sides and can be repeated
Here is the essential part of the diagram

Problems Solutions

We complete the essential part following the fact that it can be surrounded by proper elements on both sides and can be repeated
Here is the diagram of M

Observe that this is a pattern diagram; you need to add names of states only if you want to list all components
M does not have trap states

More Problems

P4 Construct a DFA M such that
$L(M)=\left\{w \in\{a, b\}^{*}:\right.$ every substring of length 4 in word w contains at least one b \}

More Problems

P4 Construct a DFA M such that
$L(M)=\left\{w \in\{a, b\}^{*}:\right.$ every substring of length 4 in word w contains at least one b \}

Solution Here is a short pattern diagram (the trap states are not included)

More Problems

P5 Construct a DFA M such that

$$
\begin{gathered}
L(M)=\left\{w \in\{a, b\}^{*}:\right. \text { every word w contains } \\
\text { an even number of sub-strings ba }\}
\end{gathered}
$$

More Problems

P5 Construct a DFA M such that

$$
\begin{gathered}
L(M)=\left\{w \in\{a, b\}^{*}:\right. \text { every word w contains } \\
\text { an even number of sub-strings ba }\}
\end{gathered}
$$

Solution Here is a pattern diagram

Zero is an even number so we must have that $e \in L(M)$, i.e. we have to make the initial state also a final state

More Problems

P6 Construct a DFA M such that

$$
L(M)=\left\{w \in\{a, b\}^{*}: \text { each } a \text { in } w\right. \text { is }
$$

immediately preceded and immediately followed by b \}

More Problems

P6 Construct a DFA M such that

$$
L(M)=\left\{w \in\{a, b\}^{*}: \text { each } a \text { in } w\right. \text { is }
$$

immediately preceded and immediately followed by b \}
Solution: Here is a short pattern diagram - and we need to say: plus trap states)

It is a short diagram because we omitted needed trap states (can be more then one, but one is sufficient)
Complete the diagram as an exercise

More Problems

P7 Here is a DFA M defined by the following diagram

Describe $L(M)$ as a regular expression

More Problems

P7 Here is a DFA M defined by the following diagram

Describe $L(M)$ as a regular expression
Solution

$$
L(M)=a^{*} \cup\left(a^{*} b a^{*} b a^{*}\right)^{*}
$$

Observe that $e \in L(M)$ by the DFA Theorem

Short Problems

SP1 Given an automaton M1

$$
\begin{gathered}
M 1=\left(K=\left\{q_{0}, q_{1}\right\}, \Sigma=\{a, b\}, \delta, s=q_{0}, F=\emptyset\right) \\
\delta\left(q_{0}, a\right)=q_{0}, \delta\left(q_{0}, b\right)=q_{0}, \delta\left(q_{1}, a\right)=q_{0}, \delta\left(q_{1}, b\right)=q_{0}
\end{gathered}
$$

1. Draw its state diagram
2. List trap states, if any
3. Describe $L(M 1)$

SP1 Solution

SP1

1. Here is the state diagram

2. q_{1} is a trap state - M 1 never gets there
3. $L(M 1)=\emptyset$

Short Problems

SP2 Given an automaton M2

$$
\begin{array}{r}
M 2=\left(K=\left\{q_{0}, q_{1}\right\}, \Sigma=\{a, b\}, \delta, s=q_{0}, F=\left\{q_{1}\right\}\right) \\
\delta\left(q_{0}, a\right)=q_{0}, \delta\left(q_{0}, b\right)=q_{0}, \delta\left(q_{1}, a\right)=q_{0}, \delta\left(q_{1}, b\right)=q_{1}
\end{array}
$$

1. Draw its state diagram
2. List trap states, if any
3. Describe $L(\mathrm{M} 2)$

SP2 Solution

SP2

1. Here is the state diagram

2. q_{1} is a trap state - it does not influence the language of M1
3. $L(M 2)=\emptyset$

Short Problems

SP3 Given an automaton M3

$$
\begin{aligned}
& M 3=\left(K=\left\{q_{0}, q_{1}\right\}, \Sigma=\{a, b\}, \delta, s=q_{0}, F=\left\{q_{1}\right\}\right) \\
& \delta\left(q_{0}, a\right)=q_{0}, \delta\left(q_{0}, b\right)=q_{1}, \delta\left(q_{1}, a\right)=q_{1}, \delta\left(q_{1}, b\right)=q_{0}
\end{aligned}
$$

1. Draw its state diagram
2. List trap states, if any
3. Describe $L(M 3)$

SP3 Solution

SP3

1. Here is the state diagram

2. There are no trap states
3. $L(M 3)=a^{*} b \cup a^{*} b a^{*} \cup\left(a^{*} b a^{*} b a^{*} b\right)^{*}$
$L(M 3)=a^{*} b a^{*} \cup\left(a^{*} b a^{*} b a^{*} b\right)^{*}$

Short Problems

SP4 Given an automaton $M 4=(K, \Sigma, \delta, s, F)$ for $K=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \Sigma=\{a, b\}, s=q_{0}, F=\left\{q_{0}, q_{1}, q_{2}\right\}$ and δ defined by the table below

1. Draw its state diagram
2. Give a property describing $L(M 4)$

SP4 Solution

SP4

1. Here is the state diagram

Observe that state q_{3} is a trap state and the short diagram is as follows

SP4 Solution

SP4

1. Here is the short diagram

2. The language of M 4 is
$L(M 4)=\left\{w \in \Sigma^{*}:\right.$ neither aa nor bb is a substring of $\left.w\right\}$

Short Problems

SP5 Given an automaton $M 5=(K, \Sigma, \delta, s, F)$ for $K=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \Sigma=\{a, b\}, s=q_{0}, F=\left\{q_{1}\right\}$ and δ defined by the table below

1. Draw its state diagram
2. Give a property describing $L(M 5)$

SP5 Solution

SP5

1. Here is the state diagram

2. $L(M 5)=\left\{w \in \Sigma^{*}: w\right.$ has an odd number of a 's and an even number of of b 's \}

Chapter 2

Finite Automata

Slides Set 1

PART 2: Nondeterministic Finite Automata DFA Equivalency of DFA and DFA

NDFA: Nondeterministic Finite Automata

Now we add a new powerful feature to the finite automata This feature is called nondeterminism

Nondeterminism is essentially the ability to change states in a way that is only partially determined by the current state and input symbol, or a string of symbols, empty string included

The automaton, as it reads the input string, may choose at each step to go to any of its states
The choice is not determined by anything in our model, and therefore it is said to be nondeterministic
At each step there is always a finite number of choices, hence it is still a finite automaton

NDFA - Mathematical Model

Class Definition

A Nondeterministic Finite Automata is a quintuple

$$
M=(K, \Sigma, \Delta, s, F)
$$

where
K is a finite set of states
Σ is an alphabet
$s \in K$ is the initial state
$F \subseteq K$ is the set of final states
Δ is a finite set and

$$
\Delta \subseteq K \times \Sigma^{*} \times K
$$

Δ is called the transition relation
We usually use different symbols for K, Σ, i.e. we have that $K \cap \Sigma=\emptyset$

NDFA Definition

Class Definition revisited
A Nondeterministic Finite Automata is a quintuple

$$
M=(K, \Sigma, \Delta, s, F)
$$

where
K is a finite set of states
$K \neq \emptyset$ because $s \in K$
Σ is an alphabet
Σ can be \emptyset - case to consider
$s \in K$ is the initial state
$F \subseteq K$ is the set of final states
F can be \emptyset - case to consider
Δ is a finite set and $\Delta \subseteq K \times \Sigma^{*} \times K$
Δ is called the transition relation
Δ can be \emptyset - case to consider

Some Remarks

R1 We must say that Δ is a finite set because the set $K \times \Sigma^{*} \times K$ is countably infinite, i.e. $\left|K \times \Sigma^{*} \times K\right|=\aleph_{0}$) and we want to have a finite automata and we defined it as

$$
\Delta \subseteq K \times \Sigma^{*} \times K
$$

R2 The DFA transition function $\delta: K \times \Sigma \longrightarrow K$ is (as any function!) a relation

$$
\delta \subseteq K \times \Sigma \times K
$$

R3 The set δ is always finite as the set $K \times \Sigma \times K$ is finite
R4 The DFA transition function δ is a particular case of the NDFA transition relation Δ, hence similarity of notation

NDFA Diagrams

We extend the notion of the state diagram to the case of the NDFA in natural was as follows
$\left(q_{1}, w, q_{2}\right) \in \Delta$ means that M in a state q_{1} reads the word
$w \in \Sigma^{*}$ and goes to the state q_{2}

Picture

Remember that in particular $w=e$

Examples

Example 1

Let M be given by a diagram

By definition M is not a deterministic DFA as it reads $e \in \sum^{*}$

$$
L(M)=\{e\}
$$

Examples

Example 2

Let M 1 be given by a diagram

Observe that M1 is not a deterministic DFA as $\left(q, a, q_{1}\right) \in \Delta$ and $\left(q, a, q_{2}\right) \in \Delta$ what proves that Δ is not a function

$$
L(M 1)=\{a\}
$$

Examples

Example 3

Let M be given by a diagram

M is not a deterministic DFA as $\left(q_{2}, e, q_{0}\right) \in \Delta$ and this is not admitted in DFA
$\Delta=\left\{\left(q_{0}, a, q_{1}\right),\left(q_{1}, b, q_{0}\right),\left(q_{1}, b, q_{2}\right),\left(q_{2}, a, q_{0}\right),\left(q_{2}, e, q_{0}\right)\right\}$

Examples

Example 4

Let M be given by a diagram

M is not a deterministic DFA as $\left(q, a b, q_{1}\right) \in \Delta$ and this is not admitted in DFA
$\Delta=\left\{(q, b a, q),\left(q, a b, q_{1}\right),\left(q, e, q_{3}\right)\right\}$ and $F=\emptyset$

$$
L(M 1)=\emptyset
$$

NDFA - Book Definition

Book Definition

A Nondeterministic Finite Automata is a quintuple

$$
M=(K, \Sigma, \Delta, s, F)
$$

where
K is a finite set of states
Σ as an alphabet
$s \in K$ is the initial state
$F \subseteq K$ is the set of final states
Δ, the transition relation is defined as

$$
\Delta \subseteq K \times(\Sigma \cup\{e\}) \times K
$$

Observe that Δ is finite set as both K and $\Sigma \cup\{e\}$ are finite sets

Book Definition Example

Example

Let M be automaton from Example $\mathbf{3}$ given by a diagram

M follows the Book Definition as

$$
\Delta \subseteq K \times(\Sigma \cup\{e\}) \times K
$$

Equivalence of Definitions

The Class and the Book definitions are equivalent

1. We get the Book Definition as a particular case of the Class Definition as

$$
\Sigma \cup\{e\} \subseteq \Sigma^{*}
$$

2. We will show later a general method how to transform any automaton defined by the Class Definition into an equivalent automaton defined by the Book Definition

When solving problems you can use any of these definitions

Configuration and Transition Relation

Given a NDFA automaton

$$
M=(K, \Sigma, \Delta, s, F)
$$

We define as we did in the case of DFA the notions of a configuration, and a transition relation

Definition

A configuration in a NDFA is any tuple

$$
(q, w) \in K \times \Sigma^{*}
$$

Configuration and Transition Relation

Definition

A transition relation in $M=(K, \Sigma, \Delta, s, F)$
defined by the Class Definition is a binary relation

$$
\vdash_{M} \subseteq\left(K \times \Sigma^{*}\right) \times\left(K \times \Sigma^{*}\right)
$$

such that $q, q^{\prime} \in K, \quad u, w \in \Sigma^{*}$

$$
(q, u w) \vdash_{M}\left(q^{\prime}, w\right)
$$

if and only if

$$
\left(q, u, q^{\prime}\right) \in \Delta
$$

For M defined by the Book Definition definition of the Transition Relation is the same but for the fact that

$$
u \in \Sigma \cup\{e\}
$$

Language Accepted by M

We define, as in the case of the deterministic DFA, the language accepted by the nondeterministic M as follows

Definition

$$
L(M)=\left\{w \in \Sigma^{*}:(s, w) \vdash M^{*}(q, e) \text { for } q \in F\right\}
$$

where \vdash^{*} * is the reflexive, transitive closure of \vdash_{M}

Equivalency of Automata

We define now formally an equivalency of automata as follows Definition
For any two automata M_{1}, M_{2} (deterministic or nondeterministic)

$$
M_{1} \approx M_{2} \quad \text { if and only if } \quad L\left(M_{1}\right)=L\left(M_{2}\right)
$$

Now we are going to formulate and prove the main theorem of this part of the Chapter 2, informally stated as

Equivalency Statement

The notions of a deterministic and a non-dederteministic automata are equivalent

Equivalency of Automata Theorems

The Equivalency Statement consists of two Equivalency

 TheoremsEquivalency Theorem 1
For any DFA M, there is is a NDFA M^{\prime}, such that $M \approx M^{\prime}$, i.e. such that

$$
L(M)=L\left(M^{\prime}\right)
$$

Equivalency Theorem 2
For any NDFA M, there is is a DFA M^{\prime}, such that $M \approx M^{\prime}$,
i.e. such that

$$
L(M)=L\left(M^{\prime}\right)
$$

Equivalency of Automata Theorems

Equivalency Theorem 1

For any DFA M, there is is a NDFA M^{\prime}, such that $M \approx M^{\prime}$,
i.e. such that

$$
L(M)=L\left(M^{\prime}\right)
$$

Proof
Any DFA M is a particular case of a DFA M' because any function δ is a relation

Moreover δ and its a particular case of the relation Δ as $\Sigma \subseteq \Sigma \cup\{e\}$ (for the Book Definition) and $\Sigma \subseteq \Sigma^{*}$ (for the Class Definition)

This ends the proof

Equivalency of Automata Theorems

Equivalency Theorem 2

For any NDFA M, there is is a DFA M ', such that $M \approx M^{\prime}$, i.e. such that

$$
L(M)=L\left(M^{\prime}\right)
$$

Proof

The proof is far from trivial. It is a constructive proof; We will describe, given a NDFA M, a general method of construction step by step of an DFA M' that accepts the came language as M

Before we define the poof construction we discuss some examples and some general automata properties

EXAMPLES and QUESTIONS

Examples

Example 1

Here is a diagram of NDFA M1-Class Definition

$$
L(M 1)=(a b \cup a b a)^{*}
$$

Examples

Example 2

Here is a diagram of NDFA M2-Book Definition

Observe that M 2 is not deterministic (even if we add "plus trap states) because Δ is not a function as $\left(q_{1}, b, q_{0}\right) \in \Delta$ and $\left(q_{1}, b, q_{2}\right) \in \Delta$

$$
L(M 2)=(a b \cup a b a)^{*}
$$

Examples

Example 3

Here is a diagram of NDFA M3-Book Definition

Observe that M 2 is not deterministic $\left(q_{1}, e, q_{0}\right) \in \Delta$

$$
L(M 3)=(a b \cup a b a)^{*}
$$

Question 1

All automata in Examples 1-3 accept the same language, hence by definition, they are equivalent nondeterministic automata, i.e.

$$
M 1 \approx M 2 \approx M 3
$$

Question 1
Construct a deterministic automaton M4 such that

$$
M 1 \approx M 2 \approx M 3 \approx M 4
$$

Question1 Solution

Here is a diagram of deterministic DFA M4

Observe that q_{4} is a trap state

$$
L(M 4)=(a b \cup a b a)^{*}
$$

Question 2

Given an alphabet

$$
\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \text { for } n \geq 2
$$

Question 2

Construct a nondeterministic automaton M such that
$L=\left\{w \in \Sigma^{*}:\right.$ at least one letter from Σ is missing in $\left.w\right\}$
Take $n=4$, i.e. $\Sigma=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$
Some words in L are:
$e \in L, \quad a_{1} \in L, a_{1} a_{2} a_{3} \in L, a_{1} a_{2} a_{2} a_{3} a_{3} \in L a_{1} a_{4} a_{1} a_{2} \in L, \ldots$

Question 2 Solution

Here is solution for $n=3$, i.e. $\Sigma=\left\{a_{1}, a_{2}, a_{3}\right\}$

Write a solution for $n=4$

Question 2 Solution

Here is the solution for $n=4$, i.e. $\Sigma=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$

Write a general form of solution for $n \geq 2$

Question 2 Solution

General case

$M=(K, \Sigma, \Delta, s, F)$ for $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $n \geq 2$,
$K=\left\{s=q_{0}, q_{1}, \ldots, q_{n}\right\}, F=K-\left\{q_{0}\right\}$, or $F=K$ and

$$
\Delta=\bigcup_{i=1}^{n}\left\{\left(q_{0}, e, q_{i}\right)\right\} \cup \bigcup_{i, j=1}^{n}\left\{\left(q_{i}, a_{j}, q_{i}\right): i \neq j\right\}
$$

$i \neq j$ means that a_{i} is missing in the loop at state q_{i}

PROPERTIES

Equivalence of Two Definitions

Equivalence of Two Definitions

Book Definition (BD)

$$
\Delta \subseteq K \times(\Sigma \cup\{e\}) \times K
$$

Class Definition (CD)
Δ is a finite set and

$$
\Delta \subseteq K \times \Sigma^{*} \times K
$$

Fact 1

Any (BD) automaton M is a (CD) automaton M
Proof
The (BD) of Δ is a particular case of the (CD) as

$$
\Sigma \cup\{e\} \subseteq \Sigma^{*}
$$

Equivalence of Two Definitions

Fact 2

Any (CD) automaton M can be transformed into an equivalent (BD) automaton M '
Proof
We use a " streching " technique
For any $w \neq e, w \in \Sigma^{*}$ and (CD) transition $\left(q, w, q^{\prime}\right) \in \Delta$, we transform it into a sequence of (BD) transactions each reading only $\sigma \in \Sigma$ that will at the end read the whole word $w \in \Sigma^{*}$

We leave the transactions $\left(q, e, q^{\prime}\right) \in \Delta$ unchanged

Stretching Process

Consider $w=\sigma_{1}, \sigma_{2}, \ldots \sigma_{n}$ and a transaction $(q, w, q) \in \Delta$ as depicted on the diagram

We construct Δ^{\prime} in M ' by replacing the transaction $\left(q, \sigma_{1}, \sigma_{2}, \ldots \sigma_{n}, q\right)$ by

$$
\left(q, \sigma_{1}, p_{1}\right),\left(p_{1}, \sigma_{2}, p_{2}\right), \ldots\left(p_{n-1}, \sigma_{n}, q\right)
$$

and adding new states $p_{1}, p_{2}, \ldots p_{n-1}$ to the set K of M making at this stage

$$
K^{\prime}=K \cup\left\{p_{1}, p_{2}, \ldots p_{n-1}\right\}
$$

Stretching Process

This transformation is depicted on the diagram below

We proceed in a similar way in a case of $w=\sigma_{1}, \sigma_{2}, \ldots \sigma_{n}$ and a transaction $\left(q, w, q^{\prime}\right) \in \Delta$

Equivalent M'

We proceed to do the "stretching" for all $\left(q, w, q^{\prime}\right) \in \Delta$ for $w \neq e$ and take as

$$
K^{\prime}=K \cup P
$$

where $P=\left\{p: p\right.$ added by stretching for all $\left.\left(q, w, q^{\prime}\right) \in \Delta\right\}$ We take as
$\Delta=\Delta^{\Sigma} \cup\left\{\left(q, \sigma_{i}, p\right): p \in P, w=\sigma_{1}, \ldots \sigma_{n}, \quad\left(q, w, q^{\prime}\right) \in \Delta\right\}$
where

$$
\Delta^{\Sigma}=\left\{\left(q, \sigma, q^{\prime}\right) \in \Delta: \quad \sigma \in(\Sigma \cup\{e\}), \quad q, q^{\prime} \in K\right\}
$$

Proof of Equivalency of DFA and NDFA

Equivalency of DFA and NDFA

Let's now go back now to the Equivalency Statement that consists of the following two equivalency theorems
Equivalency Theorem 1
For any DFA M, there is is a NDFA M^{\prime}, such that $M \approx M^{\prime}$, i.e. such that

$$
L(M)=L\left(M^{\prime}\right)
$$

This is already proved

Equivalency Theorem 2
For any NDFA M, there is a DFA M^{\prime}, such that $M \approx M^{\prime}$, i.e. such that

$$
L(M)=L\left(M^{\prime}\right)
$$

This is to be proved

Equivalency Theorem

Our goal now is to prove the following
Equivalency Theorem 2
For any nondeterministic automaton

$$
M=(K, \Sigma, \Delta, s, F)
$$

there is, i.e. we give an algorithm for its construction a deterministic automaton

$$
M^{\prime}=\left(K^{\prime}, \Sigma, \delta=\Delta^{\prime}, s^{\prime}, F^{\prime}\right)
$$

such that

$$
M \approx M^{\prime}
$$

i.e.

$$
L(M)=L\left(M^{\prime}\right)
$$

General Remark

General Remark

We base the proof of the equivalency of DFA and NDFA automata on the Book Definition of NDFA

Let's now explore some ideas laying behind the main points of the proof
They are based on two differences between the DFA and NDF automata

We discuss now these differences and basic ideas how to overcome them, i.e. how to "make" a deterministic automaton out of a nonderetministic one

NDFA and DFA Differences

Difference 1

DFA transition function δ even if expressed as a relation

$$
\delta \subseteq K \times \Sigma \times K
$$

must be a function, while the NDFA transition relation Δ

$$
\Delta \subseteq K \times(\Sigma \cup\{e\}) \times K
$$

may not be a function

NDFA and DFA Differences

Difference 2

DFA transition function δ domain is the set

$$
K \times \Sigma
$$

while NDFA transition relation Δ domain is the set

$$
K \times \Sigma \cup\{e\}
$$

Observe that the NDFA transition relation Δ may contain a configuration (q, e, q^{\prime}) that allows a nondeterministic automaton to read the empty word e, what is not allowed in the deterministic case
In order to transform a nondeterministic M into an equivalent deterministic M^{\prime} we have to eliminate the both Differences 1 and 2

Example

Let's look first at the following

Example

$$
\begin{aligned}
& \quad M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \Sigma=\{a, b\}, \Delta, s=q_{0}, F=\left\{q_{2}\right\}\right) \\
& \Delta=\left\{\left(q_{0}, a, q_{1}\right),\left(q_{1}, b, q_{0}\right),\left(q_{1}, b, q_{2}\right),\left(q_{2}, a, q_{0}\right)\right\} \\
& \text { Diagram of } M
\end{aligned}
$$

Example

The non-function part of the diagram is

Question

How to transform it into a FUNCTION???
IDEA 1: make the states of M^{\prime} as some SETS made out of states of M and put in this case

$$
\delta\left(\left\{q_{1}\right\}, b\right)=\left\{q_{0}, q_{2}\right\}
$$

IDEA ONE

IDEA 1: we make the states of M^{\prime} as some SETS made out of states of M
We read other transformation from the Diagram of M

$\delta\left(\left\{q_{0}\right\}, a\right)=\left\{q_{1}\right\}, \quad \delta\left(\left\{q_{2}\right\}, a\right)=\left\{q_{0}\right\}$ and of course $\delta\left(\left\{q_{1}\right\}, b\right)=\left\{q_{0}, q_{2}\right\}$
We make the state $\left\{q_{0}\right\}$ the initial state of M^{\prime} as q_{0} was the initial state of M and
we make the states $\left\{q_{0}, q_{2}\right\}$ and $\left\{q_{2}\right\}$ final states of M^{\prime} and as q_{2} was a final state of M

Example

We have constructed a part of

$$
M^{\prime}=\left(K^{\prime}, \Sigma, \delta=\Delta^{\prime}, s^{\prime}, F^{\prime}\right)
$$

The Unfinished Diagram is

There will be many trap states

IDEA ONE

IDEA ONE General Case

We take as the set K' of states of M' the set of all subsets of the set K of states of M
We take as the initial state of M^{\prime} the set $s^{\prime}=\{s\}$, where s is the initial state of M, i.e. we put

$$
K^{\prime}=2^{K}, \quad s^{\prime}=\{s\}, \quad \delta: 2^{K} \times \Sigma \longrightarrow 2^{K}
$$

We take as the set of final states F^{\prime} of M^{\prime} the set

$$
F^{\prime}=\{Q \subseteq K: \quad Q \cap F \neq \emptyset\}
$$

The general definition of the transition function δ will be given later

Example Revisited

In the case of our Example we had $K=\left\{q_{0}, q_{1}, q_{2}\right\}$
$K^{\prime}=2^{K}$ has 2^{3} states
The portion of the unfinished diagram of M^{\prime} is

It is obvious that even the finished diagram will have A LOT of trap states

Difference 2 and Idea Two

Difference 2 and Idea Two - how to eliminate the e transitions

Example 1
Consider M1

Observe that we can go from q_{0} to q_{1} reading only e, i.e. without reading any input symbol $\sigma \in \Sigma$

$$
L(M 1)=a
$$

Examples

Example 2

Consider M2

Observe that we can go from q_{1} to q_{2} reading only e, i.e. without reading any input symbol $\sigma \in \Sigma$

$$
L(M 2)=a
$$

Examples

Example 3

Consider M3

Observe that we can go from q_{2} to q_{3} and from q_{1} to q_{3} without reading any input

$$
L(M 3)=a \cup b
$$

Idea Two - Sets E(q)

The definition of the transition function δ of M' uses the following
Idea Two: a move of M' on reading an input symbol $\sigma \in \Sigma$ imitates a move of M on input symbol σ, possibly followed by any number of e-moves of M
To formalize this idea we need a special definition
Definition of $\mathrm{E}(\mathrm{q})$
For any state $q \in K$, let $E(q)$ be the set of all states in M they are reachable from state q without reading any input, i.e.

$$
E(q)=\left\{p \in K: \quad(q, e) \vdash M^{*}(p, e)\right\}
$$

Sets E(q)

Fact 1

For any state $q \in K$ we have that $q \in E(q)$

Proof

By definition

$$
E(q)=\left\{p \in K: \quad(q, e) \vdash M^{*}(p, e)\right\}
$$

and by the definition of reflexive, transitive closure $\vdash^{*}{ }^{*}$ the trivial path (case $n=1$) always exists, hence

$$
\left.(q, e) \vdash M^{*}(q, e)\right\}
$$

what proves that $q \in E(q)$

Sets E(q)

Observe that by definitions of $\vdash^{M^{*}}$ and $\mathrm{E}(\mathrm{q})$ we have the following

Fact 2

1. $E(q)$ is a closure of the set $\{q\}$ under the relation

$$
\{(p, r): \text { there is a transition }(p, e, r) \in \Delta\}
$$

2. $\mathrm{E}(\mathrm{q})$ can be computed by the following

Algorithm
Initially set $\quad E(q):=\{q\}$
while there is $\quad(p, e, r) \in \Delta$ with $p \in E(q)$ and $r \notin E(q)$
do: $\quad E(q):=E(q) \cup\{r\}$

Example

We go back to the Example 1, i.e.
Consider M1

We evaluate

$$
E\left(q_{0}\right)=\left\{q_{0}, q_{1}\right\}, E\left(q_{1}\right)=\left\{q_{1}\right\}, E\left(q_{2}\right)=\left\{q_{2}\right\}
$$

Remember that always $q \in E(q)$

Definition of M'

Definition of M'

Given a nondeterministic automaton $M=(K, \Sigma, \Delta, s, F)$ we define the deterministic automaton M ' equivalent to M as

$$
M^{\prime}=\left(K^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, F^{\prime}\right)
$$

where

$$
\begin{gathered}
K^{\prime}=2^{K}, \quad s^{\prime}=\{s\} \\
F^{\prime}=\{Q \subseteq K: \quad Q \cap F \neq \emptyset\}
\end{gathered}
$$

$\delta^{\prime}: 2^{K} \times \Sigma \longrightarrow 2^{K}$ is such that
and for each $Q \subseteq K$ and for each $\sigma \in \Sigma$
$\delta^{\prime}(Q, \sigma)=\bigcup\{E(p): \quad p \in K$ and $(q, \sigma, p) \in \Delta$ for some $q \in Q\}$

Definition of δ^{\prime}

Definition of δ^{\prime}

We re-write the definition of δ^{\prime} in a a following form that is easier to use
$\delta^{\prime}: 2^{K} \times \Sigma \longrightarrow 2^{K}$ is such that for each $Q \subseteq K$ and for each $\sigma \in \Sigma$

$$
\delta^{\prime}(Q, \sigma)=\bigcup_{p \in K}\{E(p): \quad(q, \sigma, p) \in \Delta \text { for some } q \in Q\}
$$

We write the above condition in a more clear form as

$$
\delta^{\prime}(Q, \sigma)=\bigcup_{p \in K}\left\{E(p): \exists_{q \in Q}(q, \sigma, p) \in \Delta\right\}
$$

Construction of of M^{\prime}

Given a nondeterministic automaton $M=(K, \Sigma, \Delta, s, F)$ Here are the STAGES to follow when constructing M'

STAGE 1

1. For all $q \in K$, evaluate $E(q)$

$$
E(q)=\left\{p \in K: \quad(q, e) \vdash M^{*}(p, e)\right\}
$$

2. Evaluate initial and final states: $s^{\prime}=E(s)$ and

$$
F^{\prime}=\{Q \subseteq K: \quad Q \cap F \neq \emptyset\}
$$

STAGE 2
Evaluate $\delta^{\prime}(Q, \sigma)$ for $\sigma \in \Sigma, Q \in 2^{K}$

$$
\delta^{\prime}(Q, \sigma)=\bigcup_{p \in K}\left\{E(p): \exists_{q \in Q}(q, \sigma, p) \in \Delta\right\}
$$

Evaluation of δ^{\prime}

Observe that domain of δ^{\prime} is $2^{K} \times \Sigma$ and can be very large

We will evaluate δ^{\prime} only on states that are relevant to the operation of M' and making all other states trap states
We do so to assure that

$$
M^{\prime} \approx M
$$

i.e. to be able to prove that

$$
L(M)=L\left(M^{\prime}\right)
$$

Having this in mind we adopt the following definition

Evaluation of δ^{\prime}

Definition

We say that a state $Q \in 2^{K}$ is relevant to the operation of M' and to the language $L\left(M^{\prime}\right)$ if it can be reached from the initial state $s^{\prime}=E(s)$ by reading some input string

Obviously, any state $Q \in 2^{K}$ that is not reachable from the initial state s' is irrelevant to the operation of M' and to the language L (M^{\prime})

Construction of of M' Example

Example

Let M be defined by the following diagram

STAGE 1

1. For all $q \in K$, evaluate $E(q)$

M does not have e -transitions so we get
$E\left(q_{0}\right)=\left\{q_{0}\right\}, \quad E\left(q_{1}\right)=\left\{q_{1}\right\}, E\left(q_{2}\right)=\left\{q_{2}\right\}$
2. Evaluate initial and some final states: $s^{\prime}=E\left(q_{0}\right)=\left\{q_{0}\right\}$ and $\left\{q_{2}\right\} \in F^{\prime}$

δ^{\prime} Evaluation

STAGE 2

Here is a General Procedure for δ^{\prime} evaluation
Evaluate $\delta^{\prime}(Q, \sigma)$ only for relevant $Q \in 2^{K}$, i.e. follow
the steps below
Step 1 Evaluate $\delta^{\prime}\left(s^{\prime}, \sigma\right)$ for all $\sigma \in \Sigma$, i.e. all states directly reachable from s^{\prime}

Step ($\mathrm{n}+1$)

Evaluate δ^{\prime} on all states that result from the Step n, i.e. on all states already reachable from s'
Remember

$$
\delta^{\prime}(Q, \sigma)=\bigcup_{p \in K}\left\{E(p): \exists_{q \in Q}(q, \sigma, p) \in \Delta\right\}
$$

Example STAGE 2

Diagram

STAGE 2

$$
\delta^{\prime}(Q, \sigma)=\bigcup_{p \in K}\left\{E(p): \exists_{q \in Q}(q, \sigma, p) \in \Delta\right\}
$$

Step 1 We evaluate $\delta^{\prime}\left(\left\{q_{0}\right\}, a\right)$ and $\delta^{\prime}\left(\left\{q_{0}\right\}, b\right)$
We look for the transitions from q_{0}
We have only one $\left(q_{0}, a, q_{1}\right) \in \Delta$ so we get
$\delta^{\prime}\left(\left\{q_{0}\right\}, a\right)=E\left(q_{1}\right)=\left\{q_{1}\right\}$
There is no transition $\left(q_{0}, b, p\right) \in \Delta$ for any $p \in K$, so we get $\delta^{\prime}\left(\left\{q_{0}\right\}, b\right)=E(p)=\emptyset$

Example STAGE 2

By the Step 1 we have that all states directly reachable from s^{\prime} are $\left\{q_{2}\right\}$ and \emptyset
Step 2 Evaluate δ^{\prime} on all states that result from the Step 1;
i.e. on states $\left\{q_{1}\right\}$ and \emptyset

Obviously $\quad \delta^{\prime}(\emptyset, a)=\emptyset$ and $\delta^{\prime}(\emptyset, b)=\emptyset$
To evaluate $\delta^{\prime}\left(\left\{q_{1}\right\}, a\right), \quad \delta^{\prime}\left(\left\{q_{1}\right\}, b\right)$ we first look at all transitions $\left(q_{1}, a, p\right) \in \Delta$ on the diagram

There is no transition $\left(q_{1}, a, p\right) \in \Delta$ for any $p \in K$, so

$$
\delta^{\prime}\left(\left\{q_{1}\right\}, a\right)=\emptyset \text { and } \delta^{\prime}(\emptyset, a)=\emptyset, \quad \delta^{\prime}(\emptyset, b)=\emptyset
$$

Example STAGE 2

Step 2 To evaluate $\delta^{\prime}\left(\left\{q_{1}\right\}, b\right)$ we now look at all transitions $\left(q_{1}, b, p\right) \in \Delta$ on the diagram

Here they are: $\quad\left(q_{1}, b, q_{2}\right), \quad\left(q_{1}, b, q_{0}\right)$
$\delta^{\prime}(Q, \sigma)=\bigcup_{p \in K}\left\{E(p): \exists_{q \in Q}(q, \sigma, p) \in \Delta\right\}$
$\delta^{\prime}\left(\left\{q_{1}\right\}, b\right)=E\left(q_{2}\right) \cup E\left(q_{0}\right)=\left\{q_{2}\right\} \cup\left\{q_{0}\right\}=\left\{q_{0}, q_{2}\right\}$
We evaluated

$$
\delta^{\prime}\left(\left\{q_{1}\right\}, b\right)=\left\{q_{0}, q_{2}\right\}, \quad \delta^{\prime}\left(\left\{q_{1}\right\}, a\right)=\emptyset
$$

We also have that the state $\left\{q_{0}, q_{2}\right\} \in F^{\prime}$

Example STAGE 2

Step 3 Evaluate δ^{\prime} on all states that result from the Step 2; i.e. on states $\left\{q_{0}, q_{2}\right\}, \emptyset$

Obviously $\quad \delta^{\prime}(\emptyset, a)=\emptyset$ and $\delta^{\prime}(\emptyset, b)=\emptyset$
To evaluate $\delta^{\prime}\left(\left\{q_{0}, q_{2}\right\}\right.$, a) we look at all transitions $\left(q_{0}, a, p\right)$ and $\left(q_{2}, a, p\right)$ on the diagram

Here they are: $\left(q_{0}, a, q_{1}\right),\left(q_{2}, a, q_{0}\right)$

$$
\delta^{\prime}\left(\left\{q_{0}, q_{2}\right\}, a\right)=E\left(q_{1}\right) \cup E\left(q_{0}\right)=\left\{q_{0}, q_{1}\right\}
$$

Similarly $\quad \delta^{\prime}\left(\left\{q_{0}, q_{2}\right\}, b\right)=\emptyset$

Diagram Steps 1-3

Here is the Diagram of M' after finishing STAGE 1 and Steps 1-3 of the STAGE 2

Example STAGE 2

Step 4 Evaluate δ^{\prime} on all states that result from the Step 3;
i.e. on states $\left\{q_{0}, q_{1}\right\}, \emptyset$

Obviously $\quad \delta^{\prime}(\emptyset, a)=\emptyset$ and $\delta^{\prime}(\emptyset, b)=\emptyset$
To evaluate $\delta^{\prime}\left(\left\{q_{0}, q_{1}\right\}, a\right)$ we look at all transitions $\left(q_{0}, a, p\right)$ and $\left(q_{1}, a, p\right)$ on the diagram

Here there is one $\left(q_{0}, a, q_{1}\right)$, and there is no transition $\left(q_{1}, a, p\right)$ for any $p \in K$, so

$$
\delta^{\prime}\left(\left\{q_{0}, q_{1}\right\}, a\right)=E\left(q_{1}\right) \cup \emptyset=\left\{q_{1}\right\}
$$

Similarly

$$
\delta^{\prime}\left(\left\{q_{0}, q_{1}\right\}, b\right)=\left\{q_{0}, q_{2}\right\}
$$

Example STAGE 2

Step 5 Evaluate δ^{\prime} on all states that result from the Step 4; i.e. on states $\left\{q_{1}\right\}$ and $\left\{q_{0}, q_{2}\right\}$

Observe that we have already evaluated $\delta^{\prime}\left(\left\{q_{1}\right\}, \sigma\right)$ for all $\sigma \in \Sigma$ in Step 2 and $\delta^{\prime}\left(\left\{q_{0}, q_{2}\right\}, \sigma\right)$ in Step 3

The process of defining $\delta^{\prime}(Q, \sigma)$ for relevant $Q \in 2^{K}$ is hence terminated

All other states are trap states

Diagram of of M^{\prime}

Here is the Diagram of the Relevant Part of M'

and here is its short pattern diagram version

Book Example

Book Example

Here is the nondeterministic M from book page 70
Exercise Read the example and re- write it as an exercise stage by stage as we did in class - it means follow the previous example
Diagram of M

Book Example

STAGE 1

$$
\begin{array}{lr}
E\left(q_{0}\right)=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\} \\
E\left(q_{1}\right)=\left\{q_{1}, q_{3}, q_{2}\right\} & m^{0} \text { has } \\
E\left(q_{2}\right)=\left\{q_{2}\right\} & 2^{T}=32 \\
\text { states } \\
E\left(q_{3}\right)=\left\{q_{3}\right\} & \text { we couple } \\
E\left(q_{4}\right)=\left\{q_{3}, q_{4}\right\} \in F & \text { states only }
\end{array}
$$

STAGE 2 evaluation are on page 72
Evaluate them independently of the book

Book Example

Diagram of M^{\prime}

Book Example

Some book computations

$$
\begin{gathered}
\delta^{\prime}\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}, a\right)=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}, \\
\delta^{\prime}\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}, b\right)=\left\{q_{2}, q_{3}, q_{4}\right\}, \\
\delta^{\prime}\left(\left\{q_{2}, q_{3}, q_{4}\right\}, a\right)=E\left(q_{4}\right)=\left\{q_{3}, q_{4}\right\}, \\
\delta^{\prime}\left(\left\{q_{2}, q_{3}, q_{4}\right\}, b\right)=E\left(q_{4}\right)=\left\{q_{3}, q_{4}\right\} . \\
\delta^{\prime}\left(\left\{q_{3}, q_{4}\right\}, a\right)=E\left(q_{4}\right)=\left\{q_{3}, q_{4}\right\}, \\
\delta^{\prime}\left(\left\{q_{3}, q_{4}\right\}, b\right)=\emptyset, \\
\delta^{\prime}(\emptyset, a)=\delta^{\prime}(\emptyset, b)=\emptyset .
\end{gathered}
$$

Book Diagram

NDFA and DFA Differences Revisited

Difference 1 Revisited

DFA transition function δ even if expressed as a relation
$\delta \subseteq K \times \Sigma \times K$
must be a function, while the NDFA transition relation Δ
$\Delta \subseteq K \times(\Sigma \cup\{e\}) \times K$
may not be a function
Difference 2 Revisited
DFA transition function δ domain is the set $K \times \Sigma$ while It is obvious that the definition of δ^{\prime} solves the Difference 2

Difference 1

Given a non-function diagram of M

Proposed IDEA of f solving the Difference 1 was to make the states of M ' as some subsets of the set of states of M and put in this case

$$
\delta^{\prime}\left(\left\{q_{0}\right\}, b\right)=\left\{q_{1}, q_{2}, q_{3}\right\}
$$

Exercise

Given the diagram of M

Exercise

Show that the definition of δ^{\prime}

$$
\delta^{\prime}(Q, \sigma)=\bigcup_{p \in K}\left\{E(p): \exists_{q \in Q}(q, \sigma, p) \in \Delta\right\}
$$

does exactly what we have proposed, i.e show that

$$
\delta^{\prime}\left(\left\{q_{0}\right\}, b\right)=\left\{q_{1}, q_{2}, q_{3}\right\}
$$

Proof of Equivalency Theorem

Equivalency Theorem

For any nondeterministic automaton

$$
M=(K, \Sigma, \Delta, s, F)
$$

there is (we have given an algorithm for its construction) a deterministic automaton

$$
M^{\prime}=\left(K^{\prime}, \Sigma, \delta=\Delta^{\prime}, s^{\prime}, F^{\prime}\right)
$$

such that

$$
M \approx M^{\prime} \text { i.e. } L(M)=L\left(M^{\prime}\right)
$$

Proof
M^{\prime} is deterministic directly from the definition because the formula

$$
\delta^{\prime}(Q, \sigma)=\bigcup_{p \in K}\left\{E(p): \exists_{q \in Q}(q, \sigma, p) \in \Delta\right\}
$$

defines a function and is well defined for a all $Q \in 2^{K}$ and $\sigma \in \Sigma$.

Proof of Equivalency Theorem

We now claim that the following Lemma holds and we will prove equivalency $M \approx M^{\prime}$ from the Lemma

Lemma

For any word $w \in \Sigma^{*}$ and any states $p, q \in K$

$$
(q, w) \vdash M^{*}(p, e) \text { if and only if } \quad(E(q), w) \vdash M^{\prime}{ }^{*}(P, e)
$$

for some set P such that $p \in P$
We carry the proof of the Lemma by induction on the length
$|w|$ of w
Base Step $|w|=0$; this is possible only when $t w=e$ and we must show

$$
(q, e) \vdash M^{*}(p, e) \quad \text { if and only if } \quad(E(q), e) \vdash M^{*}(P, e)
$$

for some P such that $p \in P$

Proof of Lemma

Base Step We must show that
$(q, e) \vdash M^{*}(p, e)$ if and only if $\left.\exists_{P}\left(p \in P \cap(E(q), e) \vdash M^{\prime}{ }^{*}(P, e)\right)\right)$
Observe that $(q, e) \vdash_{M^{*}}(p, e)$ just says that $p \in E(q)$ and the right side of statement holds for $P=E(q)$
Since M^{\prime} is deterministic the statement
$\left.\exists_{P}\left(p \in P \cap(E(q), e) \vdash M^{*}{ }^{*}(P, e)\right)\right)$ is equivalent to saying that $P=E(q)$ and since $p \in P$ we get $p \in E(q)$ what is equivalent to the left side
This completes the proof of the basic step
Inductive step is similar and is given as in the book page 71

Proof of The Theorem

We have just proved that for any $w \in \Sigma^{*}$ and any states $p, q \in K$

$$
(q, w) \vdash M^{*}(p, e) \text { if and only if } \quad(E(q), w) \vdash M^{\prime}{ }^{*}(P, e)
$$

for some set P such that $p \in P$

The proof of the Equivalency Theorem continues now as follows

Proof of The Theorem

We have to prove that $L(M)=L\left(M^{\prime}\right)$
Let' s take a word $w \in \Sigma^{*}$
We have (by definition of $L(M)$) that $w \in L(M)$
if and only if $(s, w) \vdash_{M^{*}}(f, e)$ for $f \in F$
if and only if $(E(s), w)+M^{*}(Q, e)$ for some Q such that $f \in Q$ (by the Lemma)
if and only if $\left(s^{\prime}, w\right) \vdash M^{*}(Q, e)$ for some $Q \in F$ (by definition of M^{\prime})
if and only if $w \in L\left(M^{\prime}\right)$
Hence $L(M)=L\left(M^{\prime}\right)$
This end the proof of the Equivalency Theorem

Finite Automata

We have proved that the class (CD) and book (BD) definitions of a nondeterministic automaton are equivalent

Hence by the Equivalency Theorem deterministic and ondeterministic automata defined by any of the both ways are equivalent

We will use now a name
FINITE AUTOMATA
when we talk about deterministic or nondeterministic automata

Chapter 2

Finite Automata

Slides Set 2

PART 3: Finite Automata and Regular Expressions
PART 4: Languages that are Not Regular

Chapter 2

Finite Automata

Slides Set 2

PART 3: Finite Automata and Regular Expressions

Finite Automata and Regular Expressions

The goal of this part of chapter 2 is to prove a theorem that establishes a relationship between Finite Automata and Regular languages, i.e to prove that following

MAIN THEOREM

A language L is regular if and only if it is accepted by a finite automaton, i.e.
A language L is regular if and only if there is a finite automaton M, such that

$$
L=L(M)
$$

Closure Theorem

To achieve our goal we first prove the following

CLOSURE THEOREM
The class of languages accepted by Finite Automata (FA) is closed under the following operations

1. union
2. concatenation
3. Kleene's Star
4. complementation
5. intersection

Observe that we used the term Finite Automata (FA) so in the proof we can choose a DFA or a NDFA, as we have already proved their equivalency

Closure Theorem

Remember that languages are sets, so we have the set em[] operations \cup, \cap, , defined for any $L_{1}, L_{2} \subseteq \Sigma^{*}$, i.e the languages

$$
L=L_{1} \cup L_{2}, \quad L=L_{1} \cap L_{2}, \quad L=\Sigma^{*}-L_{1}
$$

We also defined the languages specific operations of concatenation and Kleene's Star, i.e. the languages

$$
L=L_{1} \circ L_{2} \quad \text { and } \quad L=L_{1}^{*}
$$

Closure Under Union

1. The class of languages accepted by Finite Automata (FA) is closed under union

Proof

Let M_{1}, M_{2} be two NDFA finite automata
We construct a NDF automaton M, such that

$$
L(M)=L\left(M_{1}\right) \cup L\left(M_{2}\right)
$$

Let $M_{1}=\left(K_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right)$ and
$M_{2}=\left(K_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right)$
Where (we rename the states, if needed)
$\Sigma=\Sigma_{1} \cup \Sigma_{2}, \quad s_{1} \neq s_{2}, \quad K_{1} \cap K_{2}=\emptyset \quad F_{1} \cap F_{2}=\emptyset$

Closure Under Union

We picture M, such that $L(M)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$ as follows

M goes nondeterministically to M_{1} or to M_{2} reading nothing so we get

$$
w \in L(M) \text { if and only if } w \in M_{1} \text { or } w \in M_{2}
$$

and hence

$$
L(M)=L\left(M_{1}\right) \cup L\left(M_{2}\right)
$$

Closure Under Union

We define formally

$$
M=M_{1} \cup M_{2}=(K, \Sigma, \Delta, s, F)
$$

where
$K=K_{1} \cup K_{2} \cup\{s\} \quad$ for $s \notin K_{1} \cup K_{2}$
s is a new state and
$F=F_{1} \cup F_{2}, \quad \Delta=\Delta_{1} \cup \Delta_{2} \cup\left\{\left(s, e, s_{1}\right),\left(s, e, s_{2}\right)\right\}$
for s_{1} - initial state of M_{1} and
s_{2} the initial state of M_{2}
Observe that by Mathematical Induction we construct, for any $n \geq 2$ an automaton $M=M_{1} \cup M_{2} \cup \ldots M_{n}$ such that

$$
L(M)=L\left(M_{1}\right) \cup L\left(M_{2}\right) \cup \ldots L\left(M_{n}\right)
$$

Closure Under Union

Formal proof
Directly from the definition we get
$w \in L(M)$ if and only if
$\exists_{q}\left(\left(q \in F=F_{1} \cup F_{2}\right) \cap\left((s, w) \vdash_{M^{*}}(q, e)\right)\right.$ if and only if
$\exists_{q}\left(\left(\left(q \in F_{1}\right) \cup\left(q \in F_{2}\right)\right) \cap\left((s, w) \vdash_{M}^{*}(q, e)\right)\right.$ if and only if
$\exists_{q}\left(\left(q \in F_{1}\right) \cap\left((s, w) \vdash_{M}{ }^{*}(q, e)\right) \cup\right.$
$\exists_{q}\left(\left(q \in F_{2}\right) \cap\left((s, w) \vdash_{M^{*}}(q, e)\right)\right)$ if and only if
$w \in L\left(M_{1}\right) \cup w \in L\left(M_{2}\right)$, what proves that

$$
L(M)=L\left(M_{1}\right) \cup L\left(M_{2}\right)
$$

We used the following Law of Quantifiers

$$
\exists_{x}(A(x) \cup B(x)) \equiv\left(\exists_{x} A(x) \cup \exists_{x} B(x)\right)
$$

Examples

Example 1

Diagram of M_{1} such that $L\left(M_{1}\right)=a b a^{*}$ is

Diagram of M_{2} such that $L\left(M_{2}\right)=b^{*} a b$ is

We construct $M=M_{1} \cup M_{2}$ such that

$$
L(M)=a b a^{*} \cup b^{*} a b=L\left(M_{1}\right) \cup L\left(M_{2}\right)
$$

as follows

Examples

Example 1

Diagram of M such that $L(M)=a b a^{*} \cup b^{*} a b$ is

Examples

Example 2

Diagram of M_{1} such that $L\left(M_{1}\right)=b^{*} a b c$ is

Diagram of M_{2} such that $L\left(M_{2}\right)=(a b)^{*} a$ is

We construct $M=M_{1} \cup M_{2}$ such that

$$
L(M)=b^{*} a b c \cup(a b)^{*} a=L\left(M_{1}\right) \cup L\left(M_{2}\right)
$$

as follows

Examples

Diagram of M such that $L(M)=b^{*} a b c \cup(a b)^{*} a$ is

This is a schema diagram
If we need to specify the components we put names on states on the diagrams

Closure Under Concatenation

2. The class of languages accepted by Finite Automata is closed under concatenation

Proof
Let M_{1}, M_{2} be two NDFA
We construct a NDF automaton M, such that

$$
L(M)=L\left(M_{1}\right) \circ L\left(M_{2}\right)
$$

Let $M_{1}=\left(K_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right)$ and
$M_{2}=\left(K_{2}, \Sigma, \Delta_{2}, s_{2}, F_{2}\right)$
Where (if needed we re-name states)
$\Sigma=\Sigma_{1} \cup \Sigma_{2}, \quad s_{1} \neq s_{2}, \quad K_{1} \cap K_{2}=\emptyset \quad F_{1} \cap F_{2}=\emptyset$

Closure Under Concatenation

We picture M, such that $L(M)=L\left(M_{1}\right) \circ L\left(M_{2}\right)$ as follows

The final states from F_{1} of M_{1} become internal states of M The initial state s_{2} of M_{2} becomes an internal state of M M goes nondeterministically from ex-final states of M_{1} to the ex-initial state of M_{2} reading nothing

Closure Under Concatenation

We define formally

$$
M=M_{1} \circ M_{2}=\left(K, \Sigma, \Delta, s_{1}, F_{2}\right)
$$

where
$K=K_{1} \cup K_{2}$
s_{1} of M_{1} is the initial state
F_{2} of M_{2} is the set of final states
$\Delta=\Delta_{1} \cup \Delta_{2} \cup\left\{\left(q, e, s_{2}\right):\right.$ for $\left.q \in F_{1}\right\}$
Directly from the definition we get
$w \in L(M)$ iff $w=w_{1} \circ w_{2}$ for $w_{1} \in L_{1}, w_{2} \in L_{2}$
and hence

$$
L(M)=L\left(M_{1}\right) \circ L\left(M_{2}\right)
$$

Examples

Diagram of M_{1} such that $L\left(M_{1}\right)=a b a^{*}$ is

Diagram of M_{2} such that $L\left(M_{2}\right)=b^{*} a b$ is

We construct $M=M_{1} \circ M_{2}$ such that

$$
L(M)=a b a^{*} \circ b^{*} a b=L\left(M_{1}\right) \circ L\left(M_{2}\right)
$$

as follows

Examples

Given a language $\quad L=a b a^{*} b^{*} a b$
Observe that we can reprezent L as, for example, the following concatenation

$$
L=a b \circ a^{*} \circ b^{*} \circ a b
$$

Then we construct "easy" automata $M_{1}, M_{2}, M_{3}, M_{4}$ as follows

Examples

We know, by Mathematical Induction that we can construct, for any $n \geq 2$ an automaton

$$
M=M_{1} \circ M_{2} \circ \circ M_{n}
$$

such that

$$
L(M)=L\left(M_{1}\right) \circ \ldots \circ L\left(M_{n}\right)
$$

In our case $\mathrm{n}=4$ and we get
Diagram of M

and $L(M)=a b a^{*} b^{*} a b$

Question

Question

Why we have to go be the transactions $\left(q, e, s_{2}\right)$ between M_{1} and M_{2} while constructing $M=M_{1} \circ M_{2}$?
Example of a construction when we can't SKIP the transaction $\left(q, e, s_{2}\right)$
Here is a correct construction of $M=M_{1} \circ M_{2}$

Observe that \quad abbabab $\notin L(M)$

Question

Here is a construction of $M^{\prime}=M_{1} \circ M_{2}$ without the transaction (q, e, s_{2})

Observe that abbabab $\in L\left(M^{\prime}\right)$ and abbabab $\notin L(M)$
We hence proved that skipping the transactions (q, e, s_{2}) between M_{1} and M_{2} leads to automata accepting different languages

Closure Under Kleene’s Star

3. The class of languages accepted by Finite Automata is closed under Kleene's Star
Proof Let $M_{1}=\left(K_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right)$
We construct a NDF automaton $M=M_{1}{ }^{*}$, such that

$$
L(M)=L\left(M_{1}\right)^{*}
$$

Here is a diagram

Closure Under Kleene’s Star

Given $M_{1}=\left(K_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right)$
We define formally

$$
M=M_{1}^{*}=(K, \Sigma, \Delta, s, F)
$$

where
$K=K_{1} \cup\{s\}$ for $s \notin K_{1}$
s is new initial state, s_{1} becomes an internal state
$F=F_{1} \cup\{s\}$
$\Delta=\Delta_{1} \cup\left\{\left(s, e, s_{1}\right)\right\} \cup\left\{\left(q, e, s_{1}\right):\right.$ for $\left.q \in F_{1}\right\}$
Directly from the definition we get

$$
L(M)=L\left(M_{1}\right)^{*}
$$

Closure Under Kleene’s Star

The Book diagram is

Given $M_{1}=\left(K_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right)$
We define

$$
M_{1}^{*}=\left(K_{1} \cup\{s\}, \Sigma, \Delta, s, F_{1} \cup\{s\}\right)
$$

where s is a new initial state and
$\Delta=\Delta_{1} \cup\left\{\left(s, e, s_{1}\right)\right\} \cup\left\{\left(q, e, s_{1}\right):\right.$ for $\left.q \in F_{1}\right\}$

Two Questions

Here two questions about the construction of $M=M_{1}{ }^{*}$
Q1 Why do we need to make the NEW initial state s of M also a FINAL state?
Q2 Why can't SKIP the introduction of the NEW initial state and design $M=M_{1}{ }^{*}$ as follows

Q1 + Q2 give us answer why we construct $M=M_{1}{ }^{*}$ as we did, i.e. provides the motivation for the correctness of the construction

Question 1 Answer

Observe that the definition of $M=M_{1}{ }^{*}$ must be correct for ALL automata M_{1} and hence in particular for M_{1} such that $F_{1}=\emptyset$,
In this case we have that $L\left(M_{1}\right)=\emptyset$
But we know that

$$
L(M)=L\left(M_{1}\right)^{*}=\emptyset^{*}=\{e\}
$$

This proves that $M=M_{1}{ }^{*}$ must accept e, and hence we must make s of M also a FINAL state

Diagram

Question 2 Answer

Q2 Why can't SKIP the introduction of the NEW initial state and design $M=M_{1}{ }^{*}$

Here is an example
Let M_{1}, such that $L\left(M_{1}\right)=a(b a)^{*}$
M_{1} is defined by a diagram

$$
L\left(M_{1}\right)^{*}=\left(a(b a)^{*}\right)^{*}
$$

Question 2 Answer

Here is a diagram of M where we skipped the introduction of a new initial state

Observe that $a b \in L(M)$, but

$$
a b \notin\left(a(b a)^{*}\right)^{*}=L\left(M_{1}\right)^{*}
$$

This proves incorrectness of the above construction

Correct Diagram

The CORRECT diagram of $M=M_{1}{ }^{*}$ is
CORRECT $M=M_{1}^{*}$
is

Exercise 1

Exercise 1

Construct M such that

$$
L(M)=\left(a b^{*} b a \cup a^{*} b\right)^{*}
$$

Observe that

$$
L(M)=\left(L\left(M_{1}\right) \cup L\left(M_{2}\right)\right)^{*}
$$

and

$$
M=\left(M_{1} \cup M_{2}\right)^{*}
$$

Exercise 1

Solution

We construct M such that $L(M)=\left(a b^{*} b a \cup a^{*} b\right)^{*}$ in the following steps using the Closure Theorem definitions
Step 1 Construct M_{1} for $L\left(M_{1}\right)=a b^{*}$ ba

Step 2 Construct M_{2} for $L\left(M_{2}\right)=a^{*} b$

Exercise

Step 3 Construct $M_{1} \cup M_{2}$

Step 4 Construct $M=\left(M_{1} \cup M_{2}\right)^{*}$

$$
L(M)=\left(a b^{*} b a \cup a^{*} b\right)^{*}
$$

Exercise 2

Exercise 2

Construct M such that $L(M)=\left(a^{*} b \cup a b c^{*}\right) a^{*} b^{*}$
Solution We construct M in the following steps using the Closure Theorem definitions Step 1 Construct N_{1}, N_{2} for $L=a^{*} b$ and $L=a b c^{*}$

Step 2 Construct $M_{1}=N_{1} \cup N_{2}$

Exercise 2

Step 3 Construct M_{2} for $L=a^{*} b^{*}$

Step 4 Construct $M=\left(M_{1} \circ M_{2}\right)^{*}$

$$
L(M)=\left(a^{*} b \cup a b c^{*}\right) a^{*} b^{*}
$$

Back to Closure Theorem

CLOSURE THEOREM

The class of languages accepted by Finite Automata FA) is closed under the following operations

1. union
2. concatenation proved
3. Kleene's Star proved
4. complementation
5. intersection

Observe that we used the term Finite Automata (FA) so in the
proof we can choose a DFA or NDFA, as we have already proved their equivelency

Closure Under Complementation

4. The class of languages accepted by Finite Automata is closed under complementation
Proof Let

$$
M=(K, \Sigma, \delta, s, F)
$$

be a deterministic finite automaton DFA
The complementary language $\bar{L}=\Sigma^{*}-L(M)$ is accepted by the DFA denoted by \bar{M} that is identical with M except that final and nonfinal states are interchanged, i.e. we define

$$
\bar{M}=(K, \Sigma, \delta, s, K-F)
$$

and we have

$$
L(\bar{M})=\Sigma^{*}-L(M)
$$

Closure Under Intersection

4. The class of languages accepted by Finite Automata is closed under intersection

Proof 1

Languages are sets so we have have the following property

$$
L_{1} \cap L_{2}=\Sigma^{*}-\left(\left(\Sigma^{*}-L_{1}\right) \cup\left(\Sigma^{*}-L_{2}\right)\right)
$$

Given finite automata M_{1}, M_{2} such that

$$
L_{1}=L\left(M_{1}\right) \text { and } L_{2}=L\left(M_{2}\right)
$$

We construct M such that $L(M)=L_{1} \cap L_{2}$ as follows

1. Transform M_{1}, M_{2} into equivalent DFA automata N_{1}, N_{2}
2. Construct $\overline{N_{1}}, \overline{N_{2}}$ and then $N=\overline{N_{1}} \cup \overline{N_{2}}$
3. Transform NDF automaton N into equivalent DFA automaton N^{\prime}
4. $M=\overline{N^{\prime}}$ is the required finite automata

This is an indirect Construction
Homework: describe the direct construction

Closure Theorem

CLOSURE THEOREM

The class of languages accepted by Finite Automata FA) is closed under the following operations

1. union proved
2. concatenation proved
3. Kleene's Star proved
4. complementation proved
5. intersection proved

Observe that we used the term Finite Automata (FA) so in the
proof we can choose a DFA or NDFA, as we have already proved their equivelency

Intersection Direct Construction

Direct Construction

Case 1 deterministic
Given deterministic automata M_{1}, M_{2} such that

$$
M_{1}=\left(K_{1}, \Sigma_{1}, \delta_{1}, s_{1}, F_{1}\right), \quad M_{2}=\left(K_{2}, \Sigma_{2}, \delta_{2}, s_{2}, F_{2}\right)
$$

We construct $M=M_{1} \cap M_{2}$ such that $L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$ as follows

$$
M=(K, \Sigma, \delta, s, F)
$$

where. $\quad \Sigma=\Sigma_{1} \cup \Sigma_{2}$

$$
\begin{gathered}
K=K_{1} \times K_{2}, \quad s=\left(s_{1}, s_{2}\right), \quad F=F_{1} \times F_{2} \\
\delta\left(\left(q_{1}, q_{2}\right), \sigma\right)=\left(\delta_{1}\left(q_{1}, \sigma\right), \delta_{2}\left(q_{2}, \sigma\right)\right)
\end{gathered}
$$

Intersection Direct Construction

Proof of correctness of the construction
$w \in L(M)$ if and only if
$\left.\left(\left(s_{1}, s_{2}\right), w\right) \vdash M^{*}\left(\left(f_{1}, f_{2}\right), e\right)\right)$ and $f_{1} \in F_{1}, f_{2} \in F_{2}$
if and only if
$\left(s_{1}, w\right) \vdash M_{1}{ }^{*}\left(f_{1}, e\right)$ for $f_{1} \in F_{1}$ and
$\left(s_{2}, w\right) \vdash_{M_{2}}{ }^{*}\left(f_{2}, e\right)$ for $f_{2} \in F_{2}$
if and only if
$w \in L\left(M_{1}\right)$ and $w \in L\left(M_{2}\right)$
if and only if
$w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$

Intersection Direct Construction

Direct Construction

Case 2 nondeterministic
Given nondeterministic automata M_{1}, M_{2} such that

$$
M_{1}=\left(K_{1}, \Sigma_{1}, \Delta_{1}, s_{1}, F_{1}\right), \quad M_{2}=\left(K_{2}, \Sigma_{2}, \Delta_{2}, s_{2}, F_{2}\right)
$$

We construct $M=M_{1} \cap M_{2}$ such that $L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$ as follows

$$
M=(K, \Sigma, \Delta, s, F)
$$

where $\quad \Sigma=\Sigma_{1} \cup \Sigma_{2}$

$$
K=K_{1} \times K_{2}, \quad s=\left(s_{1}, s_{2}\right), \quad F=F_{1} \times F_{2}
$$

and Δ is defined as follows

Intersection Direct Construction

Δ is defined as follows

$$
\Delta=\Delta^{\prime} \cup \Delta^{\prime \prime} \cup \Delta^{\prime \prime \prime}
$$

$\Delta^{\prime}=\left\{\left(\left(q_{1}, q_{2}\right), \sigma,\left(p_{1}, p_{2}\right)\right): \quad\left(q_{1}, \sigma, p_{1}\right) \in \Delta_{1}\right.$ and $\left.\left(q_{2}, \sigma, p_{2}\right) \in \Delta_{2}, \quad \sigma \in \Sigma\right\}$
$\Delta^{\prime \prime}=\left\{\left(\left(q_{1}, q_{2}\right), \sigma,\left(p_{1}, p_{2}\right)\right): \sigma=e, \quad\left(q_{1}, e, p_{1}\right) \in \Delta_{1}\right.$ and $\left.q_{2}=p_{1}\right\}$
$\Delta^{\prime \prime}=\left\{\left(\left(q_{1}, q_{2}\right), \sigma,\left(p_{1}, p_{2}\right)\right): \quad \sigma=e, \quad\left(q_{2}, e, p_{2}\right) \in \Delta_{2}\right.$ and $\left.q_{1}=p_{1}\right\}$
Observe that if M_{1}, M_{2} have each at most n states, our direct construction of produces $M=M_{1} \cap M_{2}$ with at most n^{2} states.
The indirect construction from the proof of the theorem might generate M with up to $2^{2^{n+1}+1}$ states

Direct Construction Example

Example

Let M_{1}, M_{2} be given by the following diagrams

Observe that $L\left(M_{1}\right) \cap L\left(M_{2}\right)=a^{*} \cap a^{+}=a^{+}$

Direct Construction Example

Formally M_{1}, M_{2} are defined as follows
$M_{1}=\left(\left\{s_{1}\right\},\{a\}, \delta_{1}, s_{1},\left\{s_{1}\right\}\right), M_{2}=\left(\left\{s_{2}, q\right\},\{a\}, \delta_{2}, s_{2},\{q\}\right)$ for $\quad \delta_{1}\left(s_{1}, a\right)=s_{1} \quad$ and $\quad \delta_{2}\left(s_{2}, a\right)=q, \quad \delta_{2}(q, a)=q$

By the deterministic case definition we have that $M=M_{1} \cap M_{2}$ is

$$
M=(K, \Sigma, \delta, s, F)
$$

for $\Sigma=\{a\}$

$$
\begin{gathered}
K=K_{1} \times K_{2}=\left\{s_{1}\right\} \times\left\{s_{2}, q\right\}=\left\{\left(s_{1}, s_{2}\right),\left(s_{1}, g\right)\right\} \\
s=\left(s_{1}, s_{2}\right), \quad F=\left\{s_{1}\right\} \times\{q\}=\left\{\left(s_{1}, q\right)\right\}
\end{gathered}
$$

Direct Construction Example

By definition

$$
\delta\left(\left(q_{1}, q_{2}\right), \sigma\right)=\left(\delta_{1}\left(q_{1}, \sigma\right), \delta_{2}\left(q_{2}, \sigma\right)\right)
$$

In our case we have

$$
\begin{gathered}
\delta\left(\left(s_{1}, s_{2}\right), a\right)=\left(\delta_{1}\left(s_{1}, a\right), \delta_{2}\left(s_{2}, a\right)\right)=\left(s_{1}, q\right) \\
\delta\left(\left(s_{1}, q\right), a\right)=\left(\delta_{1}\left(s_{1}, a\right), \delta_{2}(q, a)\right)=\left(s_{1}, q\right)
\end{gathered}
$$

The diagram of $M=M_{1} \cap M_{2}$ is

Main Theorem

Now our goal is to prove a theorem that established the relationship between languages and finite automata
This is the most important Theorem of this section so we call it a Main Theorem

Main Theorem

A language L is regular
if and only if
L is accepted by a finite automata

Main Theorem

The Main Theorem consists of the following two parts

Theorem 1
For any a regular language L
there is a e finite automata M , such that $L=L(M)$

Theorem 2
For any a finite automata M, the language $L(M)$ is regular

Main Theorem

Definition

A language $L \subseteq \Sigma^{*}$ is regular if and only if there is a regular expression $r \in \mathcal{R}$ that represents L, i.e. such that

$$
L=\mathcal{L}(r)
$$

Reminder: the function $\mathcal{L}: \mathcal{R} \longrightarrow 2^{\Sigma^{*}}$ is defined recursively as follows

1. $\mathcal{L}(\emptyset)=\emptyset, \quad \mathcal{L}(\sigma)=\{\sigma\}$ for all $\sigma \in \Sigma$
2. If $\alpha, \beta \in \mathcal{R}$, then

$$
\begin{gathered}
\mathcal{L}(\alpha \beta)=\mathcal{L}(\alpha) \circ \mathcal{L}(\beta) \quad \text { concatenation } \\
\mathcal{L}(\alpha \cup \beta)=\mathcal{L}(\alpha) \cup \mathcal{L}(\beta) \quad \text { union } \\
\mathcal{L}\left(\alpha^{*}\right)=\mathcal{L}(\alpha)^{*} \quad \text { Kleene's Star }
\end{gathered}
$$

Regular Expressions Definition

Reminder

We define a \mathcal{R} of regular expressions over an alphabet Σ as follows
$\mathcal{R} \subseteq(\Sigma \cup\{(,), \emptyset, \cup, *\})^{*}$ and \mathcal{R} is the smallest set such that

1. $\emptyset \in \mathcal{R} \quad$ and $\quad \Sigma \subseteq \mathcal{R}$, i.e. we have that

$$
\emptyset \in \mathcal{R} \text { and } \forall_{\sigma \in \Sigma}(\sigma \in \mathcal{R})
$$

2. If $\alpha, \beta \in \mathcal{R}$, then

$$
\begin{gathered}
(\alpha \beta) \in \mathcal{R} \quad \text { concatenation } \\
(\alpha \cup \beta) \in \mathcal{R} \quad \text { union } \\
\alpha^{*} \in \mathcal{R} \quad \text { Kleene's Star }
\end{gathered}
$$

Proof of Main Theorem Part 1

Now we are going to prove the first part of the Main Theorem, i.e.

Theorem 1
For any a regular language L
there is a finite automata M, such that $L=L(M)$
Proof
By definition of regular language, L is regular if and only if there is a regular expression $r \in \mathcal{R}$ that represents L, what we write in shorthand notation as $L=r$

Given a regular language, L, we construct a finite automaton M such that $L(M)=L$ recursively following the definition of the set \mathcal{R} of regular expressions as follows

Proof Theorem 1

1. $r=\emptyset$, i.e. the language is $L=\emptyset$

Diagram of M , such that $L(M)=\emptyset$ is

We denote M as $M=M_{\emptyset}$

Proof Theorem 1

2. $r=\sigma$, for any $\sigma \in \Sigma$ i.e. the language is $L=\sigma$

Diagram of M, such that $L(M)=\emptyset$ is

We denote M as $\mathrm{M}=\mathrm{M}_{\sigma}$

Proof Theorem 1

3. $r \neq \emptyset, r \neq \sigma$

By the recursive definition, we have that $L=r$ where

$$
r=\alpha \cup \beta, \quad r=\alpha \circ \beta, \quad r=\alpha^{*}
$$

for any $\alpha, \beta \in \mathcal{R}$
We construct as in the proof of the Closure Theorem the automata

$$
M_{r}=M_{\alpha} \cup M_{\beta}, \quad M_{r}=M_{\alpha} \circ M_{\beta}, \quad M_{r}=\left(M_{r}\right)^{*}
$$

respectively, and it ends the proof

Example

Use construction defined in the proof of Theorem 1 to construct an automaton M such that

$$
L(M)=(a b \cup a a b)^{*}
$$

We construct M in the following stages

Stage 1

For $a, b \in \Sigma$ we construct M_{a} and M_{b}

Example

Stage 2

For $a b$, aab we use M_{a} and M_{b} and concatenation construction to construct $M_{a b}$

and $M_{a a b}$

Example

Stage 3

We use union construction to construct $M_{1}=M_{a b} \cup M_{a a b}$

Stage 4 We use Kleene's star construction to construct $M=M_{1}{ }^{*}$

Use construction defined in the proof of Theorem 1 to construct an automaton M such that

$$
L(M)=\left(a^{*} \cup a b c \cup a^{*} b\right)^{*}
$$

We construct (draw diagrams) M in the following stages
Stage 1
Construct $M_{a}, M_{b}, \quad M_{c}$
Stage 2
Construct $M_{1}=M_{a b c}$
Stage 3
Construct $M_{2}=M_{a}{ }^{*}$
Stage 4
Construct $M_{3}=M_{a}{ }^{*} M_{b}$
Stage 5
Construct $M_{4}=M_{1} \cup M_{2} \cup M_{3}$
Stage 6
Construct $M=M_{4}{ }^{*}$

Main Theorem Part 2

Theorem 2

For any a finite automaton M there is a regular expression $r \in \mathcal{R}$, such that

$$
L(M)=r
$$

Proof

The proof is constructive; given M we will give an algorithm how to recursively generate the regular expression r, such that $L(M)=r$
We assume that M is nondeterministic

$$
M=(K, \Sigma, \Delta, s, F)
$$

We use the BOOK definition, i.e.

$$
\Delta \subseteq K \times(\Sigma \cup\{e\}) \times K
$$

Proof of Theorem 2

We put states of M into a one- to - one sequence

$$
K: \quad s=q_{1}, q_{2}, \ldots q_{n} \text { for } n \geq 1
$$

We build r using the following expressions

$$
\begin{gathered}
R(i, j, k) \text { for } i, j=1,2, \ldots n, \quad k=0,1,2, \ldots n \\
R(i, j, k)=\left\{w \in \Sigma^{*} ; \quad\left(q_{i}, w\right) \vdash_{M, k^{*}}\left(q_{j}, w^{\prime}\right)\right\}
\end{gathered}
$$

$R(i, j, k)$ is the set of all words "spelled" by all PATHS from q_{i} to q_{j} in such way that we do not pass through an intermediate state numbered $k+1$ or greater
Observe that $\neg(m \geq k+1) \equiv m \leq k$ so we get the following

Proof of Theorem 2

We say that a PATH has a RANK k when

$$
\left(q_{i}, w\right) \vdash_{M, k}^{*}\left(q_{j}, w^{\prime}\right)
$$

I.e. when M can pass ONLY through states numbered $m \leq k$ while going from q_{i} to q_{j}
RANK 0 case $k=0$

$$
R(i, j, 0)=\left\{w \in \Sigma^{*} ; \quad\left(q_{i}, w\right) \vdash_{M, 0}{ }^{*}\left(q_{j}, w^{\prime}\right)\right\}
$$

This means; M "goes" from q_{i} to q_{j} only through states numbered $m \leq 0$

There is no such states as $K=\left\{q_{1}, q_{2}, \ldots q_{n}\right\}$

Proof of Theorem 2

Hence $R(i, j, 0)$ means that M "goes" from q_{i} to q_{j} DIRECTLY, i.e. that

$$
R(i, j, 0)=\left\{w \in \Sigma^{*} ; \quad\left(q_{i}, w\right) \vdash m^{*}\left(q_{j}, w^{\prime}\right)\right\}
$$

Reminder: we use the BOOK definition so
$R(i, j, 0)= \begin{cases}a \in \Sigma \cup\{e\} & \text { if } i \neq j \text { and }\left(q_{i}, a, q_{j}\right) \in \Delta \\ \{e\} \cup a \in \Sigma \cup\{e\} & \text { if } i=j \text { and }\left(q_{i}, a, q_{j}\right) \in \Delta\end{cases}$
Observe that we need $\{e\}$ in the second equation to include the following special case

Proof of Theorem 2

We read $R(i, j, 0)$ from the diagram of M as follows

$$
R(i, j, 0)=\left\{@ \in \sum u\{e\}: \underset{q_{i}}{\substack{a \\ q_{j}}}\right\}
$$

and

Proof of Theorem 2

RANK n case $k=n$

$$
R(i, j, n)=\left\{w \in \Sigma^{*} ; \quad\left(q_{i}, w\right) \vdash_{M, n}^{*}\left(q_{j}, w^{\prime}\right)\right\}
$$

This means; M "goes" from q_{i} to q_{j} through states numbered $m \leq n$

It means that M "goes" all states as $|K|=n$
It means that M will read any $w \in \Sigma$ and hence

$$
R(i, j, n)=\left\{w \in \Sigma^{*} ; \quad\left(q_{i}, w\right) \vdash M^{*}\left(q_{j}, e\right)\right\}
$$

Observe that

$$
w \in L(M) \quad \text { iff } \quad w \in R(1, j, n) \quad \text { and } \quad q_{j} \in F
$$

Proof of Theorem 2

By definition of the $L(M)$ we get

$$
L(M)=\bigcup\left\{R(1, j, n): q_{j} \in F\right\}
$$

Fact
All sets $R(i, j, k)$ are regular and hence $\mathrm{L}(\mathrm{M})$ is also regular

Proof by induction on k
Base case: $k=0$
All sets $\mathrm{R}(\mathrm{i}, \mathrm{j}, 0)$ are FINITE, hence are regular

Proof of Theorem 2

Inductive Step

The recursive formula for $R(i, j, k)$ is
$R(i, j, k)=R(i, j, k-1) \cup R(i, k, k-1) R(k, k, k-1)^{*} R(k, j, k-1)$
where n is the number of states of M and
$k=0, \ldots, n, \quad i, j=1, \ldots, n$
By Inductive assumption, all sets
$R(i, j, k-1), R(i, k, k-1), R(k, k, k-1), R(k, j, k-1)$ are regular and by the Closure Theorem so is the set $R(i, j, k)$
This ends the proof of Theorem 2
Observe that the recursive formula for $R(i, j, k)$ computes r such that $L(M)=r$

Example

Example

For the automaton M such that

$$
\begin{gathered}
M=\left(\left\{q_{1}, q_{2}, q_{3}\right\},\{a, b\}, s=q_{1},\right. \\
\Delta=\left\{\left(q_{1}, b, q_{2}\right),\left(q_{1}, a, q_{3}\right),\left(q_{2}, a, q_{1}\right),\left(q_{2}, b, q_{1}\right),\right. \\
\left.\left.\left(q_{3}, a, q_{1}\right),\left(q_{3}, b, q_{1}\right)\right\}, F=\left\{q_{1}\right\}\right)
\end{gathered}
$$

Evaluate 4 steps, in which you must include at least one $R(i, j, 0)$, in the construction of regular expression that defines $L(M)$

Example

Reminder

$$
\begin{gathered}
L(M)=\bigcup\left\{R(1, j, n): q_{j} \in F\right\} \\
R(i, j, k)=R(i, j, k-1) \cup R(i, k, k-1) R(k, k, k-1)^{*} R(k, j, k-1) \\
R(i, j, 0)= \begin{cases}a \in \Sigma \cup\{e\} & \text { if } i \neq j \text { and }\left(q_{i}, a, q_{j}\right) \in \Delta \\
\{e\} \cup a \in \sum \cup\{e\} & \text { if } i=j \text { and }\left(q_{i}, a, q_{j}\right) \in \Delta\end{cases}
\end{gathered}
$$

Example Solution

Solution

Step $1 \quad L(M)=R(1,1,3)$
Step 2
$R(1,1,3)=R(1,1,2) \cup R(1,3,2) R(3,3,2) * R(3,1,2)$
Step 3
$R(1,1,2)=R(1,1,1) \cup R(1,2,1) R(2,2,1)^{*} R(2,1,1)$
Step 4
$R(1,1,1)=R(1,1,0) \cup R(1,1,0) R(1,1,0)^{*} R(1,1,0)$ and $R(1,1,0)=\{e\} \cup \emptyset=\{e\}$, so we get
$R(1,1,1)=\{e\} \cup\{e\}\{e\}^{*}\{e\}=\{e\}$

Generalized Automata

Generalized Automaton

Definition

We define now a Generalized Automaton GM as the following generalization of of a nondeterministic automaton
$M=(K, \Sigma, \Delta, s, F)$ as follows

$$
G M=\left(K_{G}, \Sigma_{G}, \Delta_{G}, s_{G}, F_{G}\right)
$$

1. $G M$ has a single final state, i,e. $F_{G}=\{f\}$
2. $\Sigma_{G}=\Sigma \cup \mathcal{R}_{0}$ where \mathcal{R}_{0} is a FINITE subset of the set \mathcal{R} of regular expressions over Σ
3. Transitions of GM may be labeled not only by symbols in
$\Sigma \cup\{e\}$ but also by regular expressions $r \in \mathcal{R}$, i.e. Δ_{G} is a FINITE set such that

$$
\Delta_{G} \subseteq K \times(\Sigma \cup\{e\} \cup \mathcal{R}) \times K
$$

4. There is no transition going into the initial state s nor out of the final state f
if $(q, u, p) \in \Delta_{G}$, then $q \neq f, p \neq s$

Generalized Automata

Given a nondeterministic automaton

$$
M=(K, \Sigma, \Delta, s, F)
$$

We present now a new method of construction of a regular expression $r \in \mathcal{R}$ that defines $L(M)$, i.e. such that $L(M)=r$ by the use of the notion of of Generalized Automaton
The method consists of a construction of a sequence of generalized automata that are all equivalent to M

Construction

Steps of construction are as follows

Step 1

We extend M to a generalized automaton M_{G}, such that $L(M)=L\left(M_{G}\right)$ as depicted on the diagram below
Diagram of M_{G}

M_{G} Definition

Definition of M_{G}
We re-name states of M as $s=q_{1}, q_{2}, \ldots, q_{n-2}$ for appropriate n and make the initial state $s=q_{1}$ and all final states of M the internal non-final states of G_{M}
We ADD TWO states: initial and one final, which me name q_{n-1}, q_{n}, respectively, i.e. we put

$$
s_{G}=q_{n-1} \quad \text { and } \quad f=q_{n}
$$

We take

$$
\Delta_{G}=\Delta \cup\left\{\left(q_{n-1}, e, s\right)\right\} \cup\left\{\left(q, e, q_{n}\right): \quad q \in F\right\}
$$

Obviously $\quad L(M)=L\left(M_{G}\right), \quad$ and so $M \approx M_{G}$

States of G_{M} Elimination

We construct now a sequence GM1, GM2, ..., GM($n-2$) such that

$$
M \approx M_{G} \approx G M 1 \approx \cdots \approx G M(n-2)
$$

where $G M(n-2)$ has only two states q_{n-1} and q_{n} and only one transition $\left(q_{n-1}, r, q_{n}\right)$ for $r \in \mathcal{R}$, such that

$$
L(M)=r
$$

We construct the sequence GM1, GM2, ..., GM(n-2) by eliminating states of M one by one following rules given by the following diagrams

States of G_{M} Elimination

Case 1 of state elimination

Given a fragment of GM diagram

we transform it into

The state $q \in K$ has been eliminated preserving the language of $G M$ and we constructed $G M^{\prime} \approx G M$

States of G_{M} Elimination

Case 2 of state elimination

Given a fragment of GM diagram

we transform it into

The state $q \in K$ has been eliminated preserving the language of $G M$ and we constructed $G M^{\prime} \approx G M$

Example 1

Example 1

Use the Generalized Automata Construction and States of G_{M} Elimination procedure to evaluate $r \in \mathcal{R}$, such that

$$
\mathcal{L}(r)=L(M)
$$

, where M is an automata that accepts the language

$$
L=\left\{w \in\{a, b\}^{*}: w \text { has } 3 k+1 b^{\prime} s, \text { for some } k \in N\right\}
$$

This is the Book example, page 80

Example 1

The Diagram of M is

Step 1

We extend M with $K=\left\{q_{1}, q_{2}, q_{3}\right\}$ to a generalized M_{G} by adding two states

$$
s_{G}=q_{4} \quad \text { and } \quad f=q_{5}
$$

We take

$$
\Delta_{G}=\Delta \cup\left\{\left(q_{4}, e, q_{1}\right)\right\} \cup\left\{\left(q_{3}, e, q_{5}\right)\right\}
$$

Example 1

The Diagram of M_{G} is

Step 2

We construct $G M 1 \approx M_{G} \approx M$ by elimination of q_{1}
The Diagram of GM1 is

Example 1

The Diagram of GM1 is

Step 3

We construct GM2 \approx GM1 by elimination of q_{2}
The Diagram of GM2 is

Example 1

The Diagram of GM2 is

Step 4

We construct $G M 3 \approx G M 2$ by elimination of q_{3} The Diagram of GM2 is

$$
L(G M 3)=a^{*} b\left(a \cup b a^{*} b a^{*} b\right)^{*}=L(M)
$$

Example 2

Example 2

Given the automaton

$$
M=(K, \Sigma, \Delta, s, F)
$$

where

$$
\begin{gathered}
K=\left\{q_{1}, q_{2}, q_{3}\right\}, \quad \Sigma=\{a, b\}, \quad s=q_{1}, \quad F=\left\{q_{1}\right\} \\
\Delta=\left\{\left(q_{1}, b, q_{2}\right), \quad\left(q_{1}, a, q_{3}\right), \quad\left(q_{2}, a, q_{1}\right),\right. \\
\left(q_{2}, b, q_{1}\right), \quad\left(q_{3}, a, q_{1}\right), \quad\left(q_{3}, b, q_{1}\right)
\end{gathered}
$$

Use the Generalized Automata Construction and States of G_{M} Elimination procedure to evaluate $r \in \mathcal{R}$, such that

$$
\mathcal{L}(r)=L(M)
$$

Example 2

The diagram of M is

Step 1

The diagram of $M_{G} \approx M$ is

Example 2

Step 1

The components of $M_{G} \approx M$ are

$$
\begin{gathered}
M_{G}=\left(K=\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}, \quad \Sigma=\{a, b\}, \quad s_{G}=q_{4},\right. \\
\Delta_{G}=\left\{\left(q_{1}, b, q_{2}\right),\left(q_{1}, a, q_{3}\right),\left(q_{2}, a, q_{1}\right),\right. \\
\left(q_{2}, b, q_{1}\right),\left(q_{3}, a, q_{1}\right),\left(q_{3}, b, q_{1}\right), \quad\left(q_{4}, e, q_{1}\right), \\
\left.\left.\left(q_{1}, e, q_{5}\right)\right\}, \quad F=\left\{q_{5}\right\}\right)
\end{gathered}
$$

Example 2

The Diagram of M_{G} is

Step 2

We construct $G M 1 \approx M_{G} \approx M$ by elimination of q_{2} The Diagram of GM1 is

Example 2

Step 2

The components of $G M 1 \approx M_{G} \approx M$ are

$$
\begin{gathered}
G M 1=\left(K=\left\{q_{1}, q_{3}, q_{4}, q_{5}\right\}, \quad \Sigma=\{a, b\}, \quad s_{G}=q_{4}\right. \\
\Delta_{G}=\left\{\left(q_{1}, a, q_{3}\right),\left(q_{1},(b b \cup b a), q_{1}\right),\right. \\
\left(q_{3}, a, q_{1}\right), \quad\left(q_{3}, b, q_{1}\right), \quad\left(q_{4}, e, q_{1}\right), \\
\left.\left.\left(q_{1}, e, q_{5}\right)\right\}, \quad F=\left\{q_{5}\right\}\right)
\end{gathered}
$$

Example 2

The Diagram of GM1 is

Step 3

We construct $G M 2 \approx$ GM1 by elimination of q_{3} The Diagram of GM2 is

Example 2

Step 3

The components of $G M 2 \approx G M 1 \approx M_{G} \approx M$ are

$$
\begin{aligned}
G M 2= & \left(K=\left\{q_{1}, q_{4}, q_{5}\right\}, \quad \Sigma=\{a, b\}, \quad s_{G}=q_{4}\right. \\
\Delta_{G}= & \left\{\left(q_{1},(b b \cup b a), q_{1}\right), \quad\left(q_{1},(a a \cup a b), q_{1}\right),\right. \\
& \left.\left.\left(q_{4}, e, q_{1}\right),\left(q_{1}, e, q_{5}\right)\right\}, \quad F=\left\{q_{5}\right\}\right)
\end{aligned}
$$

Example 2

The Diagram of GM2 is

Step 4

We construct $G M 3 \approx G M 2$ by elimination of q_{1}
The Diagram of GM3 is

Example 2

We have constructed

$$
G M 3 \approx G M 2 \approx G M 1 \approx M_{G} \approx M
$$

The Diagram of GM3 is

Hence the language
$L(G M 3)=(b b \cup b a \cup a a \cup a b)^{*}=((a \cup b)(a \cup b))^{*}=L(M)$

Chapter 2

Finite Automata

Slides Set 2

PART 4: Languages that are Not Regular

Languages that are Not Regular

We know that there are uncountably many and exactly C of all languages over any alphabet $\Sigma \neq \emptyset$

We also know that there are only \mathbb{N}_{0}, i.e. infinitely countably many regular languages

It means that we have uncountably many and. exactly C languages that are not regular

Reminder

A language $L \subseteq \Sigma^{*}$ is regular if and only if there is a regular expression $r \in \mathcal{R}$ that represents L, i.e. such that

$$
L=\mathcal{L}(r)
$$

Regular or not Regular Languages

We look now at some simple examples of languages that might be, or not be regular

E1 The language $L_{1}=a^{*} b^{*}$ is regular because is defined by a regular expression
E2 The language

$$
L_{2}=\left\{a^{n} b^{n}: \quad n \geq 0\right\} \subseteq L_{1}
$$

is not regular
We will prove prove it using a very important theorem to be proved that is called Pumping Lemma

Regular or not Regular Languages

Intuitively we can see that

$$
L_{2}=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

can't be regular as we can't construct a finite automaton accepting it
Such automaton would need to have something like a memory to store, count and compare the number of a's with the number of b's

Regular or not Regular Languages

We will define and study in Chapter 3 a new class of automata that would accommodate the "memory" problem

They are called Push Down Automata

We will prove that they accept a larger class of languages, called context free languages

Regular or not Regular Languages

E3 The language $L_{3}=a^{*}$ is regular because is defined by a regular expression

E4 The language $L_{4}=\left\{a^{n}: n \geq 0\right\}$ is regular because in fact $L_{3}=L_{4}$

E5 The language $L_{4}=\left\{a^{n}: n \in\right.$ Prime $\}$ is not regular We will prove it using Pumping Lemma

Regular or not Regular Languages

E6 The language $L_{6}=\left\{a^{n}: n \in E V E N\right\}$ is regular because in fact $L_{6}=(\mathrm{aa})^{*}$
E7 The language
$L_{7}=\left\{w \in\{a, b\}^{*}: w\right.$ has an equal number of a ' s and b's $\}$
is not regular
Proof
Assume that L_{7} is regular
We know that $L_{1}=a^{*} b^{*}$ is regular
Hence the language $L=L_{7} \cap L_{1}$ is regular, as the class of regular languages is closed under intersection
But obviously, $L=\left\{a^{n} b^{n}: n \in N\right\}$ and was proved to be not regular
This contradiction proves that L_{7} is not regular

Regular aor not Regular Languages

E8 The language $L_{8}=\left\{w w^{R}: w \in\{a, b\}^{*}\right\}$ is not regular
We prove it using Pumping Lemma

E9 The language $L_{9}=\left\{w w: w \in\{a, b\}^{*}\right\}$
is not regular
We prove it using Pumping Lemma

Regular or not Regular Languages

E10 The language $L_{10}=\left\{w c w: w \in\{a, b\}^{*}\right\}$ is not regular
We prove it using Pumping Lemma

E11 The language $L_{11}=\left\{w \bar{w}: w \in\{a, b\}^{*}\right\}$
where \bar{w} stands for w with each occurrence of a is replaced by b, and vice versa
is not regular
We prove it using Pumping Lemma

Regular or not Regular Languages

E12 The language

$$
L_{12}=\left\{x y \in \Sigma^{*}: x \in L \text { and } y \notin L \text { for any regular } L \subseteq \Sigma^{*}\right\}
$$

is regular
Proof Observe that $L_{12}=L \circ \bar{L}$ where \bar{L} denotes a complement of L, i.e.

$$
\bar{L}=\left\{w \in \Sigma^{*}: \quad w \in \Sigma^{*}-L\right\}
$$

L is regular, and so is \bar{L}, and $L_{12}=L \circ \bar{L}$ is regular by the following, already already proved theorem
Closure Theorem The class of languages accepted by Finite Automata FA is closed under $\cup, \cap,-, \circ$,*

Regular or not Regular Languages

E13 The language

$$
L_{13}=\left\{w^{R}: \quad w \in L \text { and } L \text { is regular }\right\}
$$

is regular
Definition For any language L we call the language

$$
L_{R}=\left\{w^{R}: w \in L\right\}
$$

the reverse language of L
The E13 says that the following holds

Fact

For any regular language L, its reverse language L^{R} is regular

Regular or not Regular Languages

Fact

For any regular language L, its reverse language L^{R} is regular
Proof Let $M=(K, \Sigma, \Delta, s, F)$ be such that $L=L(M)$
The reverse language L^{R} is accepted by a finite automata

$$
M^{R}=\left(K \cup s^{\prime}, \Sigma, \Delta^{\prime}, s^{\prime}, F=\{s\}\right)
$$

where $s^{\prime} \notin K$ and
$\Delta^{\prime}=\left\{(r, w, p): \quad(p, w, r) \in \Delta, w \in \Sigma^{*}\right\} \cup\left\{\left(s^{\prime}, e, q\right): q \in F\right\}$
We used the Lecture Definition of M

Regular and NOT Regular Languages

Proof of E13 pictures
Diagram of M

Diagram of M^{R}

Regular and NOT Regular Languages

E14

Any finite language is regular
Proof Let $L \subseteq \Sigma^{*}$ be a finite language, i.e.

$$
\left.L=\emptyset \text { or } L=\left\{w_{1}, w_{2}, \ldots w_{n}\right\} \text { for } n>0\right\}
$$

We construct the finite automata M such that

$$
L(M)=L=\left\{w_{1}\right\} \cup\left\{w_{2}\right\} \cup \ldots\left\{w_{n}\right\}=L_{w_{1}} \cup \cdots \cup L_{w_{n}}
$$

as $\quad M=M_{w_{1}} \cup \cdots \cup M_{w_{n}} \cup M_{\emptyset}$
where

Exercises

Exercise 1

Show that the language

$$
L=\left\{x y x^{R}: \quad x, y \in \Sigma\right\}
$$

is regular for any Σ

Exercises

Exercise 1

Show that the language

$$
L=\left\{x y x^{R}: \quad x, y \in \Sigma\right\}
$$

is regular for any Σ
Proof
For any $x \in \Sigma, x^{R}=x$
Σ is a finite set, hence

$$
L=\{x y x: x, y \in \Sigma\}
$$

is also finite and we just proved that any finite language is regular

Exercises

Exercise 2

Show that the class of regular languages is not closed with respect to subset relation.

Exercise 3

Given L_{1}, L_{2} regular languages, is $L_{1} \cap L_{2}$ also a regular language?

Exercises

Exercise 2

Show that the class of regular languages is not closed with respect to subset relation.

Solution

Consider two languages

$$
L_{1}=\left\{a^{n} b^{n}: \quad n \in N\right\} \text { and } L_{2}=a^{*} b^{*}
$$

Obviously, $L_{1} \subseteq L_{2}$ and L_{1} is a non-regular subset of a regular L_{2}
Exercise 3
Given L_{1}, L_{2} regular languages, is $L_{1} \cap L_{2}$ also a regular language?

Solution

YES, it is because the class of regular languages is closed under \cap

Exercises

Exercise 4

Given L_{1}, L_{2}, such that $L_{1} \cap L_{2}$ is a regular language
Does it imply that both languages L_{1}, L_{2} must be regular?

Exercises

Exercise 4

Given L_{1}, L_{2}, such that $L_{1} \cap L_{2}$ is a regular language
Does it imply that both languages L_{1}, L_{2} must be regular? Solution

NO, it doesn't. Take the following L_{1}, L_{2}

$$
L_{1}=\left\{a^{n} b^{n}: n \in N\right\} \text { and } L_{2}=\left\{a^{n}: n \in \text { Prime }\right\}
$$

The language $L_{1} \cap L_{2}=\emptyset$ is a regular language none of L_{1}, L_{2} is regular

Exercises

Exercise 5

Show that the language

$$
L=\left\{x y x^{R}: \quad x, y \in \Sigma^{*}\right\}
$$

is regular for any Σ

Exercises

Exercise 5

Show that the language

$$
L=\left\{x y x^{R}: \quad x, y \in \Sigma^{*}\right\}
$$

is regular for any Σ

Solution

Take a case of $x=e \in \Sigma^{*}$
We get a language

$$
L_{1}=\left\{e y e^{R}: e, y \in \Sigma^{*}\right\} \subseteq L
$$

and of course $L_{1}=\Sigma^{*}$ and so $\Sigma^{*} \subseteq L \subseteq \Sigma^{*}$
Hence $L=\Sigma^{*}$ and Σ^{*} is regular
This proves that L is regular

Exercises

Exercise 6

Given a regular language $L \subseteq \Sigma^{*}$
Show that the language

$$
L_{1}=\left\{x y \in \Sigma^{*}: x \in L \quad \text { and } \quad y \notin L\right\}
$$

is also regular

Exercises

Exercise 6

Given a regular language $L \subseteq \Sigma^{*}$
Show that the language

$$
L_{1}=\left\{x y \in \Sigma^{*}: x \in L \quad \text { and } \quad y \notin L\right\}
$$

is also regular

Solution

Observe that $L_{1}=L \circ\left(\Sigma^{*}-L\right)$
L is regular, hence $\left(\Sigma^{*}-L\right)$ is regular (closure under complement), and so is L_{1} by closure under concatenation

Review Questions

Review Questions

Write SHORT answers
Q1
For any language $L \subseteq \Sigma^{*}, \Sigma \neq \emptyset$ there is a deterministic automata M, such that $L=L(M)$

Q2

Any regular language has a finite representation.

Q3

Any finite language is regular
Q4
Given L_{1}, L_{2} languages over Σ, then
$\left(\left(L_{1} \cap\left(\Sigma^{*}-L_{2}\right)\right) \cup L_{2}\right) L_{1} \quad$ is a regular regular language

Review Questions

SHORT answers

Q1

For any language $L \subseteq \Sigma^{*}, \Sigma \neq \emptyset$ there is a deterministic automata M, such that $L=L(M)$
True only when L is regular
Q2
Any regular language has a finite representation.
True by definition of regular language and the fact that regular expression is a finite string
Q3
Any finite language is regular
True as we proved it
Q4
Given L_{1}, L_{2} languages over Σ, then
$\left(\left(L_{1} \cap\left(\Sigma^{*}-L_{2}\right)\right) \cup L_{2}\right) L_{1}$ is a regular regular language
True only when both are regular languages

Review Questions for Quiz

Write SHORT answers

Q5

For any finite automata M

$$
L(M)=\bigcup\left\{R(1, j, n): \quad q_{j} \in F\right\}
$$

Q6

Σ in any Generalized Finite Automaton includes some regular expressions
Q7
Pumping Lemma says that we can always prove that a language is not regular
Q8
$L=\left\{a^{n} c^{n}: n \geq 0\right\}$ is regular

Review Questions

SHORT answers
Q5
For any finite automata M

$$
L(M)=\bigcup\left\{R(1, j, n): \quad q_{j} \in F\right\}
$$

True only when M has n states and they are put in 1-1 sequence and $q_{1}=s$

Q6
Σ in any Generalized Finite Automaton includes some regular expressions
True by definition

Review Questions

Q7

Pumping Lemma says that we can always prove that a language is not regular
Not True PL serves as a tool for proving that some languages are not regular

Q8

$L=\left\{a^{n} c^{n}: n \geq 0\right\}$ is regular
Not True we proved by PL that it is not regular

PUMPING LEMMA

Pumping Lemma

Pumping Lemma is one of a general class of Theorems called pumping theorems

They are called pumping theorems because they assert the existence of certain points in certain strings where a substring can be repeatedly inserted (pumping) without affecting the acceptability of the string

Pumping Lemma

We present here two versions of the Pumping Lemma

First is the Lecture Notes version adopted from the first edition of the Book
The second is the Book version (page 88) from the second edition

The Book version is a slight generalization of the Lecture version

Pumping Lemma

Pumping Lemma 1

Let L be an infinite regular language over $\Sigma \neq \emptyset$
Then there are strings $x, y, z \in \Sigma^{*}$ such that

$$
y \neq e \quad \text { and } \quad x y^{n} z \in L \text { for all } n \geq 0
$$

Observe that the Pumping Lemma 1 says that in an infinite regular language L, there is a word $w \in L$ that can be re-written as $w=x y z$ in such a way that $y \neq e$ and we "pump" the part y any number of times and still have that such obtained word is still in L, i.e. that $x y^{n} z \in L$ for all $n \geq 0$

Hence the name Pumping Lemma

Role of Pumping Lemma

We use the Pumping Lemma as a tool to carry proofs that some languages are not regular

Problem

Given an infinite language L we want to prove it to be nor REGULAR
We proceed as follows

1. We assume that L is REGULAR
2. Hence by Pumping Lemma we get that there is a word $w \in L$ that can be re-written as $w=x y z, y \neq e$, and $x y^{n} z \in L$ for all $n \geq 0$
3. We examine the fact $x y^{n} z \in L$ for all $n \geq 0$
4. If we get a CONTRADICTION we have proved that the language L is not regular

Proof of Pumping Lemma

Pumping Lemma 1

Let L be an infinite regular language over $\Sigma \neq \emptyset$
Then there are strings $x, y, z \in \Sigma^{*}$ such that

$$
y \neq e \quad \text { and } \quad x y^{n} z \in L \text { for all } n \geq 0
$$

Proof

Since L is regular, L is accepted by a deterministic finite automaton

$$
M=(K, \Sigma, \delta, s, F)
$$

Suppose that M has n states, i.e. $|K|=n$ for $n \geq 1$ Since L is infinite, M accepts some string $w \in L$ of length n or greater, i.e. there is $w \in L$ such that $|w|=\mathbf{k}>\mathbf{n}$ and

$$
w=\sigma_{1} \sigma_{2} \ldots \sigma_{k} \quad \text { for } \quad \sigma_{i} \in \Sigma, \quad 1=1,2, \ldots, k
$$

Proof of Pumping Lemma

Consider a computation of $w=\sigma_{1} \sigma_{2} \ldots \sigma_{k} \in L$:

$$
\begin{gathered}
\left(q_{0}, \sigma_{1} \sigma_{2} \ldots \sigma_{k}\right) \vdash_{M}\left(q_{1}, \sigma_{2} \ldots \sigma_{k}\right), \vdash_{M} \\
\ldots \ldots \vdash_{M}\left(q_{k-1}, \sigma_{k}\right), \vdash_{M}\left(q_{k}, e\right)
\end{gathered}
$$

where q_{0} is the initial state s of M and q_{k} is a final state of M Since $|w|=\mathbf{k}>\mathbf{n}$ and M has only n states, by Pigeon Hole Principle we have that there exist i and $\mathrm{j}, 0 \leq i<j \leq k$, such that $q_{i}=q_{j}$ That is, the string $\sigma_{i+1} \ldots \sigma_{j}$ is nonempty since $i+1 \leq j$ and drives M from state q_{i} back to state q_{i}
But then this string $\sigma_{i+1} \ldots \sigma_{j}$ could be removed from w, or we could insert any number of its repetitions just after σ_{j} and M would still accept such string

Proof of Pumping Lemma

We just showed by Pigeon Hole Principle that automaton M that accepts $w=\sigma_{1} \sigma_{2} \ldots \sigma_{k} \in L$ also accepts the string

$$
\sigma_{1} \sigma_{2} \ldots \sigma_{i}\left(\sigma_{i+1} \ldots \sigma_{j}\right)^{n} \sigma_{j+1} \ldots \sigma_{k} \text { for each } n \geq 0
$$

Observe that $\sigma_{i+1} \ldots \sigma_{j}$ is non-empty string since $i+1 \leq j$
That means that there exist strings
$\mathbf{x}=\sigma_{1} \sigma_{2} \ldots \sigma_{\mathbf{i}}, \quad \mathbf{y}=\sigma_{\mathbf{i}+\mathbf{1}} \ldots \sigma_{\mathbf{j}}, \quad \mathbf{z}=\sigma_{\mathbf{j}+\mathbf{1}} \ldots \sigma_{\mathbf{k}}$ for $y \neq e$
such that

$$
y \neq e \quad \text { and } \quad x y^{n} z \in L \text { for all } n \geq 0
$$

Proof of Pumping Lemma

The computation of M that accepts $x y^{n} z$ is as follows

$$
\begin{gathered}
\left(q_{0}, x y^{n} z\right) \vdash M^{*}\left(q_{i}, y^{n} z\right) \vdash M^{*}\left(q_{i}, y^{n-1} z\right) \\
\vdash_{M^{*}}^{*} \ldots \vdash M^{*}\left(q_{i}, y^{n-1} z\right) \vdash \vdash^{*}\left(q_{k}, e\right)
\end{gathered}
$$

This ends the proof

Observe that the proof of the holds for for any word $w \in L$ with $|w| \geq n$, where n is the number of states of deterministic M that accepts L

We get hence another version of the Pumping Lemma 1

Pumping Lemma 2

Pumping Lemma 2

Let L be an infinite regular language over $\Sigma \neq \emptyset$
Then there is an integer $n \geq 1$ such that for any word
$w \in L$ with lengths greater then n, i.e. $|w| \geq n$ there are
$x, y, z \in \sum^{*}$ such that w can be re-written as $w=x y z$ and

$$
y \neq e \quad \text { and } \quad x y^{n} z \in L \text { for all } n \geq 0
$$

Proof

Since L is regular, it is accepted by a deterministic finite automaton M that has $n \geq 1$ states
This is our integer $n \geq 1$
Let w be any word in L such that $|w| \geq n$
Such words exist as L in infinite
The rest of the proof exactly the same as in the previous case
of the Pumping Lemma 1

Pumping Lemma

We write the Pumping Lemma 2 symbolically using quantifiers symbols as follows

Pumping Lemma 2

Let L be an infinite regular language over $\Sigma \neq \emptyset$
Then the following holds

$$
\begin{gathered}
\exists_{n \geq 1} \forall_{w \in L}(|w| \geq n \Rightarrow \\
\left.\exists_{x, y, z \in \Sigma^{*}}\left(w=x y z \cap y \neq e \cap \forall_{n \geq 0}\left(x y^{n} z \in L\right)\right)\right)
\end{gathered}
$$

Book Pumping Lemma

Book Pumping Lemma is a STRONGER version of the Pumping Lemma 2

It applies to any any regular language, not to an infinite regular language, as the Pumping Lemmas 1, 2

Book Pumping Lemma

Book Pumping Lemma

Let L be a regular language over $\Sigma \neq \emptyset$
Then there is an integer $n \geq 1$ such that any word $w \in L$ with $|w| \geq n$ can be re-written as $w=x y z$ such that
$y \neq e, \quad|x y| \leq n, \quad x, y, z \in \sum^{*}$ and $x y^{i} z \in L$ for all $i \geq 0$
Proof The proof goes exactly as in the case of Pumping
Lemmas 1, 2
Notice that from the proof of Pumping Lemma 1

$$
\left.x=\sigma_{1} \sigma_{2} \ldots \sigma_{i}, \quad z=\sigma_{j+1} \ldots \sigma_{k}\right\} \text { for } 0 \leq i<j \leq n
$$

and so by definition $|x y| \leq n$ for n being the number of states of the deterministic M that accepts L

Book Pumping Lemma

We write the Book Pumping Lemma symbolically using quantifiers symbols as follows

Book Pumping Lemma

Let L be a regular language over $\Sigma \neq \emptyset$
Then the following holds

$$
\begin{gathered}
\exists_{n \geq 1} \forall_{w \in L}(|w| \geq n \Rightarrow \\
\left.\exists_{x, y, z \in \Sigma^{*}}\left(w=x y z \cap y \neq e \cap|x y| \leq n \cap \forall_{i \geq 0}\left(x y^{i} z \in L\right)\right)\right)
\end{gathered}
$$

Book Pumping Lemma

A natural question arises:

WHY the Book Pumping Lemma applies also when L is a finite regular language?

We know that when L is a finite regular language the Lecture Pumping Lemma does not apply

Book Pumping Lemma

Let's look at an example of a finite, and hence a regular language

$$
L=\{a, b, a b, b b\}
$$

Observe that the condition

$$
\begin{gathered}
\exists_{n \geq 1} \forall_{w \in L}(|w| \geq n \Rightarrow \\
\left.\exists_{x, y, z \in \Sigma^{*}}\left(w=x y z \cap y \neq e \cap|x y| \leq n \cap \forall_{i \geq 0}\left(x y^{i} z \in L\right)\right)\right)
\end{gathered}
$$

of the Book Pumping Lemma holds because there exists $n=3$ such that the conditions becomes as follows

Book Pumping Lemma

Take $n=3$, or any $n \geq 3$ we get statement:

$$
\begin{gathered}
\exists_{n=3} \forall_{w \in L}(|w| \geq 3 \Rightarrow \\
\left.\exists_{x, y, z \in \Sigma^{*}}\left(w=x y z \cap y \neq e \cap|x y| \leq n \cap \forall_{i \geq 0}\left(x y^{i} z \in L\right)\right)\right)
\end{gathered}
$$

Observe that the above is a TRUE statement because the statement $|w| \geq 3$ is FALSE for all $w \in L=\{a, b, a b, b b\}$ By definition, the implication FALSE \Rightarrow (anything) is always TRUE, hence the whole statement is TRUE

Book Pumping Lemma

The same reasoning applies for any finite (and hence regular) language
In general, let L be any finite language
Let $\quad m=\max \{|w|: w \in L\}$
Such m exists because L is finite
Take $n=m+1$ as the n in the condition of the Book Pumping Lemma
The Lemma condition is TRUE for all $w \in L$, because the statement
$|w| \geq m+1$ is FALSE for all $w \in L$
By definition, the implication FALSE \Rightarrow (anything) is always TRUE, hence the whole statement is TRUE

Pumping Lemma Applications

Pumping Lemma Applications

We ese now Pumping Lemma to prove the following

Fact 1

The language $L \subseteq\{a, b\}^{*}$ defined as follows

$$
L=\left\{a^{n} b^{n}: n>0\right\}
$$

IS NOT regular

Obviously, L is infinite and we can use the Lecture version, i.e. the following

Pumping Lemma Applications

Pumping Lemma 1

Let L be an infinite regular language over $\Sigma \neq \emptyset$
Then there are strings $x, y, z \in \Sigma^{*}$ such that

$$
y \neq e \quad \text { and } \quad x y^{n} z \in L \text { for all } n \geq 0
$$

Pumping Lemma Applications

Reminder: we proceed as follows

1. We assume that L is REGULAR
2. Hence by Pumping Lemma we get that there is a word $w \in L$ that can be re-written as $w=x y z$ for $y \neq e$ and $x y^{n} z \in L$ for all $n \geq 0$
3. We examine the fact $x y^{n} z \in L$ for all $n \geq 0$
4. If we get a CONTRADICTION we have proved that L is NOT REGULAR

Pumping Lemma Applications

Assume that

$$
L=\left\{a^{m} b^{m}: m \geq 0\right\}
$$

IS REGULAR
L is infinite hence Pumping Lemma 1 applies, so there is a word $w \in L$ that can be re-written as $w=x y z$ for $y \neq e$ and $x y^{n} z \in L$ for all $n \geq 0$

There are three possibilities for $y \neq e$

We will show that in each case we prove that $x y^{n} z \in L$ is impossible, i.e. we get a contradiction

Pumping Lemma Applications

Consider $w=x y z \in L$, i.e. $\quad x y z=a^{m} b^{m}$ for some $m \geq 0$
We have to consider the following cases

Case 1

y consists entirely of a's
Case 2
y consists entirely of b's
Case 3
y contains both some a's followed by some b's
We will show that in each case assumption that $x y^{n} z \in L$ for all n leads to CONTRADICTION

Pumping Lemma Applications

Consider $w=x y z \in L$, i.e. $\quad x y z=a^{m} b^{m}$ for some $m \geq 0$
Case 1: y consists entirely of a's
So x must consists entirely of a's only and z must consists of some a's followed by some b's
Remember that only we must have that $y \neq e$
We have the following situation
$x=a^{p} \quad$ for $\quad p \geq 0$ as x can be empty
$y=a^{q} \quad$ for $\quad q>0$ as y must be nonempty
$z=a^{r} b^{s} \quad$ for $\quad r \geq 0, s>0$ as we must have some b's

Pumping Lemma Applications

The condition
$x y^{n} z \in L$ for all $n \geq 0$ becomes as follows

$$
a^{p}\left(a^{q}\right)^{n} a^{r} b^{s}=a^{p+n q+r} b^{s} \in L
$$

for all p, q, n, r, s such that the following conditions hold

$$
\text { C1: } p \geq 0, \quad q>0, \quad n \geq 0, \quad r \geq 0, \quad s>0
$$

By definition of L

$$
a^{p+n q+r} b^{s} \in L \quad \text { iff }[p+n q+r=s
$$

Take case: $\quad p=0, \quad r=0, \quad q>0, \quad n=0$
We get $s=0$ CONTRADICTION with C1: $s>0$

Pumping Lemma Applications

Consider $x y z=a^{m} b^{m}$ for some $m \geq 0$
Case 2: y consists of b's only
So x must consists of some a's followed by some b's and z must have only b's, possibly none
We have the following situation
$x=a^{p} b^{r}$ for $p>0$ as y has at least one b and $r \geq 0$
$y=b^{q} \quad$ for $\quad q>0$ as y must be nonempty
$z=b^{s} \quad$ for $\quad s \geq 0$

Pumping Lemma Applications

The condition
$x y^{n} z \in L$ for all $n \geq 0$ becomes as follows

$$
a^{p} b^{r}\left(b^{q}\right)^{n} b^{s}=a^{p} b^{r+n q+r} \in L
$$

for all p, q, n, r, s such that the following conditions hold

$$
\text { C2: } p>0, r \geq 0 \quad q>0, \quad n \geq 0, \quad s \geq 0
$$

By definition of L

$$
a^{p} b^{r+n q+r} \in L \quad \text { iff } \quad[p=r+q n+s
$$

Take case: $\quad r=0, \quad n=0, \quad q>0$
We get $p=0$ CONTRADICTION with C2: $p>0$

Pumping Lemma Applications

Consider $x y z=a^{m} b^{m}$ for some $m \geq 0$
Case 3: y contains both a's and a's
So $y=a^{p} b^{r}$ for $p>0$ and $r>0$
Case $y=b^{r} a^{p}$ is impossible
Take case: $\quad y=a b, \quad x=e, \quad z=e$ and $n=2$
By Pumping Lemma we get that $y^{2} \in L$
But this is a CONTRADICTION with $y^{2}=a b a b \notin L$ We covered all cases and it ends the proof

Pumping Lemma Applications

Use Pumping Lemma to prove the following
Fact 2
The language $L \subseteq\{a\}^{*}$ defined as follows

$$
L=\left\{a^{n}: n \in \text { Prime }\right\}
$$

IS NOT regular
Obviously, L i infinite and we use the Lecture version Proof

Assume that L is regular, hence as L is infinite, so there is a word $w \in L$ that can be re-written as $w=x y z$ for $y \neq e$ and $x y^{n} z \in L$ for all $n \geq 0$
Consider $w=x y z \in L$, i.e. $\quad x y z=a^{m}$ for some $m>0$ and $m \in$ Prime

Pumping Lemma Applications

Then

$$
x=a^{p}, \quad y=a^{q}, \quad z=a^{r} \text { for } \quad p \geq 0, \quad q>0, \quad r \geq 0
$$

The condition $\quad x y^{n} z \in L$ for all $n \geq 0$ becomes as follows

$$
a^{p}\left(a^{q}\right)^{n} a^{r}=a^{p+n q+r} \in L
$$

It means that for all n, p, q, r the following condition hold
C $n \geq 0, p \geq 0, \quad q>0, \quad r \geq 0$, and $p+n q+r \in$ Prime
But this is IMPOSSIBLE

Pumping Lemma Applications

Take $n=p+2 q+r+2$ and evaluate:

$$
\begin{gathered}
p+n q+r=p+(p+2 q+r+2) q+r= \\
p(1+q)+2 q(q+1)+r(q+1)=(q+1)(p+2 q+r)
\end{gathered}
$$

By the above and the condition \mathbf{C} we get that
$p+n q+r \in$ Prime and $p+n q+r=(q+1)(p+2 q+r)$
and both factors are natural numbers greater than 1 what is a CONTRADICTION
This ends the proof

Chapter 2

Finite Automata

Slides Set 3

PART 5: State Minimization

State Minimalization

STATE MININALIZATTON
(Ch, 2.5)
Problem:
Given M, find M^{\prime} such that M^{\prime} has fewer states than M (as few as possible) and $M \approx M^{\prime}$
(We want both $M_{1} M^{\prime}$ be deterministic)
(1) Rewove all UNREACHABLE states: q is unreadrable z there is mo path from IVITAC (start) state to g.
and remove all transitions that lead in ane out of the wurewhable states.
IDENTIFICATION of all Neadeabla(RK)
states is easy to do m POLYNOMIAL time became RK is the dosure of $\{S\}$ (InITIAL)

State Minimalization
under the relation
$\left\{(p, q): \delta(p, a)=q\right.$, for some $\left.a \in \sum\right\}$
Alqorithur:

$$
R K:=\{s\}
$$

white there is a state $p \in R K$ and $a \in Z$ such that $\delta(p, a) \notin R K$ do
add $\delta(p, a)$ to $R K$.
Unreadrable states NRK

$$
N R K=K-R K
$$

This construction was implicit in our conversion of a non-detetemimsh' f.ant. to ts equivalent deterministic. We omitted all states that were mot reachable

State Minimalization

EXAMPIE M given by a diagram

q_{7} is UnREACHABLE State We can crosscut 97 and all transitions in and out of q_{7}.
We get the following state diagrams:

State Minimalization

Look at states q_{4} and 2_{6} It we are in either state, precisely the same strings lead the automaton to acceptance!
We mil call suorstates equivalent and we mil "merge" them int one one state.

State Minimalization

DEFINITION \approx
Let $L \subseteq \sum^{\lambda}$ be a language and let $x, y \in \Sigma^{*}$

$$
x \approx y \text { inf } \forall z \in \Sigma *(x z \in L \Rightarrow(y z \in L)
$$

$x \approx y$ if either both x and y are L or neither is in $L \quad(z=e)$; and morover, appending ally fixed string to x and y results in two strings that are either Goth wi L ($T \bar{z} T$) or both not in L ($F \equiv F$)
\approx_{L} is equivalence on Σ^{*}

- $x \tilde{x}_{L} x$ ff t $\forall 2 \in E^{2}(x z \in L \equiv x z \in L)$ (T)
- symunety obvious

$$
\begin{align*}
& x \approx_{L} y \wedge y=t \Rightarrow x \approx_{z} t \\
& x z \in L \equiv y z \in L \quad y \quad y \in L=t z \in L \quad \\
& x z \in L \equiv t z \in L \tag{1}
\end{align*}
$$

State Minimalization

Lode at our $L=L(M)=(a b \cup b a)^{*}$

$$
\begin{aligned}
& {[e]=\left\{y \in \Sigma^{*}: \forall z \in z^{*}(z \in L \equiv y z \in L\}\right.} \\
& {[e]=L}
\end{aligned}
$$

$$
[a]=\left\{y \in \Sigma^{A}: \forall z \in \Sigma^{*}\left(\frac{0}{0}, \quad \equiv L \in y^{2} \in L\right)\right\}
$$

$$
[a]=L a
$$

$$
\begin{gathered}
\text { RUb } \\
\text { Runstbe } \\
\text { in } L a
\end{gathered}
$$

(1) $y \in[a] \rightarrow y$ must be in $L a$
(2) $x \in L a \rightarrow$ needs $2 \in b b$ such
that $x z \in L$

$$
\begin{gathered}
\text { such } \\
L=(a b \cup b a)^{t} \\
2=\overrightarrow{b 1}=
\end{gathered}
$$

ie $x \in[a]$
Proved: $[a]=L a$

$$
\begin{aligned}
& =\left\{y \in \Sigma^{N}: \forall z \in \Sigma^{a}\left(x z \in L=y^{2} \in L\right)\right\}
\end{aligned}
$$

Look at the diagram；it we read（aa）on bb）we get into the trap state
Lode at $\approx_{c} \subset \Sigma^{x} \times \Sigma^{-}$
$[a a]=\left\{y \in \Sigma^{x}: \forall z \in \sum^{x}(a a z \in L \equiv(y z \in L)\}\right.$
（F）f゙ール $2 \in \Sigma^{\prime \prime}$
Find y，such
that $y z \in L$ is F for $y \in L(a a \cup b b)$

veprezertat［ahab］$\angle(a a v b)=l a a c l b b)$
anole

State Minimalization

We have 4 equivalence classes in $\Sigma \% / \approx_{L}$

They fem a PARTITION of Σ^{*}
$L \cup L a \cup L b \cup L(a a \cup b b) \Sigma^{*}=\sum_{i}^{*}$
$L \cap L a \cap L b \cap L(a a u b b) \sum^{*}=\phi$ (all disjoint!)
all nou-eupty;
(\approx_{L} depends on $\operatorname{lANGA} A\left(\sim_{M}\right.$ depends \tilde{X}_{2}, \sim_{M} defined on Σ^{*}

State Minimalization

DEFINTION \sim_{M} on $\tau^{*} \sim_{H} \leq \Sigma^{*} * \Sigma^{*}$ 9

$$
\operatorname{Let}_{x, u \in \Sigma x} M=(k, \Sigma, \delta, s, f) \text { be d.f.a. }
$$

$$
x, y \in \Sigma x
$$

 M from S to 2

$$
\begin{array}{r}
x \sim_{M} y \text { ut } \exists_{g \in K}\left((s, x) \frac{\neq}{M}(q, e) \wedge\right. \\
\left.\wedge(s, y) \frac{+}{M}(g, e)\right)
\end{array}
$$

$$
\begin{aligned}
& \text { (1) } \sim_{M} \text { is equivalence } \\
& x \sim_{M} x \text { H } \exists_{q \in K}\left((s, x) \frac{m}{m}(q, e)\right. \\
& \text { etc... } \\
& {[x]=\left\{y \in \Sigma^{*}: \begin{array}{l}
\exists_{g \in K}(s, x) \neq(g, e) \hat{*} \\
(s, y) \neq(g, e))\}
\end{array}\right.} \\
& x_{x, y \in[z] \equiv \exists_{q \in k}(q \cdot i \text { is readralle forums }}^{\text {by reading } x, y, z)} \\
& \text { by reading } x, y, 2 \text {) } \\
& E_{2}=\left\{y \in \sum^{*}:(s, y) \frac{\omega}{m}(g, e)\right\} \text { New NaTE }
\end{aligned}
$$

State Minimalization
bach to Qur Example

$L(M)=(a b \cup b a)^{*}$

$$
\begin{aligned}
& E q_{1}=(b a)^{*}=[b a]=\left[\begin{array}{l}
{[\text { baba }]=[e] \ldots} \\
\text { Six equivaleve }
\end{array}\right. \\
& E_{q_{2}}=a \times L a \\
& \text { dasses! } \\
& E q_{q_{3}}=a b L \\
& E_{q_{4}}=b(a b)^{*} \\
& E_{q_{s}}=L(b b v a a) \Sigma^{*} \\
& E_{q_{6}}=a b L b \quad E_{g}=\left\{y \in L^{*}:\left.(s, y)\right|_{M}(q, e)\right. \\
& \left\{E_{q_{1}}, E_{q_{2}} \ldots E_{q_{6}}\right\} \begin{array}{c}
\text { PARTTION } \\
\text { ot } \\
\Sigma_{*}
\end{array}
\end{aligned}
$$

State Minimalization

Correspondence between

$$
\approx_{L(M)} \text { aude } \sim_{M}
$$

THEOREM (1)
For any d.f.a. $M=(K, \Sigma, \delta, s, F)$ aud any $x, y \in \sum x$
IF $x \sim_{M} y$ THEN $x \approx_{L(M)} y$
proof: $x \in \Sigma^{*}$, let $g(x)$ be a (unique)
stale of M such that $x \in \Sigma^{*}=$
Assume $(S, x) \stackrel{+}{M}(q(x), e)$ $\exists_{2} \in K \quad x \in E_{2}$

$$
\begin{aligned}
x \sim_{n} y & \stackrel{\text { deft }}{\equiv} \exists_{q \in K} x, y \in E_{q} \\
& \equiv q(x)=q(y)
\end{aligned}
$$

$$
\left\{\epsilon_{q} \cdot G_{n}\right\} \text { PATTON }
$$

We want 1 show that $x \approx_{L(M)^{y}}$

$$
\begin{aligned}
& x z_{\text {unI) }} \text { y } \frac{\text { dep }}{=} \forall z \in \Sigma^{*}\left(x z \in L(T) \equiv y^{2} \in L(M)\right) \\
& \text { But } x z \in L(n)=(q(x), z) \vdash^{n}(f, e), f \in F
\end{aligned}
$$

State Minimalization

DEFINITION \sim is A REFIDETEGT OF ≈ 12
Equivalene relation \sim is
a REFINEMENT of \approx (another equi.
iH

$$
\begin{array}{r}
\forall x, y(x \sim y \Rightarrow x \approx y) \\
\sim \sim 1 \approx \subset A \times A
\end{array}
$$

Property:
If \sim is a refinement of \approx iff eade equivaleme dass of \sim is in cluded in some equiv. dass of \approx.
Theorem (1) can be re-stated
Let $\sim_{M,} \approx_{L(M)} \subseteq \Sigma^{x \times \Sigma^{x}}(M-d . f \cdot a)$
\sim_{M} is a refinement of $\sim_{L(M)}$
1.e Eadr equiu. dass of $\sim M$ is inchuded in' joure eq. dass of $\approx_{(y)}$

State Minimalization

$$
\begin{aligned}
& \Sigma * / \approx_{L(H)}=\left\{L, L a, L b, L(a a \cup b b) \sum^{*}\right\}^{B} \\
& \{[(b),[a),[b),[a a]\} \\
& \Sigma{ }^{*} /_{\sim_{M}}=\left\{E_{q_{1}}, E_{q_{2}}, \ldots E_{q_{6}}\right\} \\
& =\left\{(b a)^{*}, a b l a, a b l, b(a b)^{*}\right. \text {, } \\
& \text { L(bbuaa) } \left.\sum^{*}, a b L b\right\} \\
& {[a a]=E_{q_{5}} \quad E_{q_{1},} E_{q_{3}}, \quad[e] \text { etc... }} \\
& \text { ImPORTANT OBSERUATTON: } E_{q_{q}}, E_{2} C_{E}\left[M_{6}\right]
\end{aligned}
$$

Given M, any other auteriatio M that accepts $L(M)$ must have at least as many states as equiv. $\approx_{u(n)}$.
$1 \Sigma \% / \approx_{\text {um s }} \left\lvert\, \begin{aligned} & \text { is a natival lower } \\ & \text { BOND on number of }\end{aligned}\right.$
States of amy $M^{\prime}, M \approx M^{\prime}$.

State Minimalization

Theorem 2 MYHILL-NERODE
Let $L S \Sigma^{X}$ be a REGulAR language
Then there is a d.f.a with
precisely $\left|\sum^{*} / \approx_{L}\right|$ states, such
that $L=L(T)$, 1 lower bound?
Proof: $x \in \Sigma^{*},[x]=\left\{y \in \Sigma^{2}: \forall z \quad x z \in L=y^{2}+\mathbb{H}\right\}$
Given $L \approx_{c}$ we construct a STANDARD
Auforiaton ger L, such that $L=L(M)$

$$
\begin{aligned}
& \frac{\text { Automaton }}{M=(K, \Sigma, \delta, s, F) \text { as follows: }} \\
& K=\left\{[x]: x \in \Sigma^{x}\right\}, s=[e] \\
& F=\{[x]: x \in L\}, \quad \delta: K \times \Sigma \rightarrow K \\
& \delta([x], a)=[x a]
\end{aligned}
$$

PRONE: (1) K is FINITE (chare L vequian)
(2) δ is well defined
(3) $L=L(M)$

State Minimalization
(1) L is requiae, hence there is d.f.a M^{\prime} juch that $L=L\left(T^{\prime}\right)$
By theorem $1 \sim_{M}$ is a refine ment of \approx_{L} i, e each equiv. dass of $\sim M^{\prime}$ is indudene in soure equiu. dan of ≈ 4

Heme $\left|\Sigma N / \approx_{L}\right|=|K|=$ finite number OUR STANOARD AUTRAREN
(2)

$$
\delta([x], a)=[x a]
$$ MAs a mininwotk

of the string $x \in[x]$
$x^{\prime} \in[x], x^{\prime \prime} \in[x]$ and $x^{\prime} \approx_{L} x^{\prime \prime}$
then $\left[x^{\prime} a\right]=\left[x^{\prime \prime} a\right]$ i.e $x^{\prime} a \approx x^{\prime \prime} a$

$$
\begin{aligned}
& x^{\prime} \approx x^{\prime \prime} \equiv \forall z\left(x^{\prime} z \in L \equiv x^{\prime \prime} z \in L\right) \\
& x^{\prime} a \approx x^{\prime \prime} a \equiv \forall_{2}\left(x^{\prime} a z \in L \equiv x^{\prime \prime} a z \in L\right)^{a \in \Sigma} \\
& \text { ? } \quad 2 \in \Sigma^{*}, a z \in \Sigma^{*}!
\end{aligned}
$$

State Minimalization
(3) $L=L(M) \quad \delta([x], a)=[x, a]$

FIRsT
Plove: fer all $x, y \in \Sigma^{*}$

$$
([x], y) \stackrel{*}{M}([x, y], e)
$$

proot by induction on lenghter of y
(1) $y=e$
$([x], e) \frac{A}{M}([x], e)$ Refaxive $\begin{gathered}\text { closure }\end{gathered}$
(2) $|y| \leqslant n$ the

Let $y=y^{\prime} a$ and $\left|y^{\prime}\right| \leq x$

$$
\begin{aligned}
& \left([x] y^{\prime} a\right) \stackrel{{ }_{M}^{M}}{M}\left(\left[x y^{\prime}\right] a\right) \\
& \text { INa. Assumerion } \\
& \left([x], y^{\prime}\right) \vdash_{M}^{H}\left(\left[x y^{\prime}\right] e\right) \\
& \vdash_{M}^{*}([x, y], e) \\
& \delta\left(\left[x y^{\prime}\right], a\right)^{\downarrow}=\left[x y^{\prime} a\right]=[x y]
\end{aligned}
$$

We read a

State Minimalization

Tale $x \in \Sigma^{x}$

$$
\begin{aligned}
& \text { Tale } x \in \sum^{x} \\
& x \in L(M) \stackrel{\text { dat }}{\equiv}([e], x) \stackrel{x}{M}(2, e) q \in F
\end{aligned}
$$

but $q \in F$ means $q=[x], x \in L$

$$
\equiv x \in L \text {. } F=\{[x]: x \in L\}
$$

OWe EXAMPLE $\left\{L, L a, L b, L\right.$ (aaubb) \sum^{x}

$$
\begin{aligned}
& \left\{\sum^{*} / \approx_{L}\right\}=\{[e\},[a],[b],[a, a]\} \\
& |k|=4 \quad \delta([e], a)=[a], \delta([e], b)=\bar{c}] \\
& \delta([a], a)=[a a] \\
& L=(a b \cup b a)^{*} \\
& \delta([a], b)=[a b]=[e]=L \\
& \delta([b], a)=[b a]=[e]
\end{aligned}
$$

"minimal Autruatu"

Theorem
A language L is REGuLAR

$$
\left|\Sigma \infty / \approx_{L}\right|=\text { finite number }
$$

Requear $L, \rightarrow L=L(M)$, $M d f a$ and M has at least as many states as \approx_{L} las eq. doses. So \approx_{L} has sininetly mams er. dassen. converse, it © has finite \#ot eq. lasses, then STANDARD autenter accepts L, so L is regular.

State Minimalization

Corollary(ot Myhill-Nerode them)
A laupuge is REOULAR if
\approx_{L} has finitely many equivalence cases.

Proof
L regular $\rightarrow L=L(M), \pi$ d.f.a and M has at least as many states as \approx_{L} has equiv. Cases Hence $\left|\Sigma \pi / \approx_{L}\right|$ finite.
Let $\mid \Sigma \% / \approx / 1$ be finite, them
we have a STANDARD autewaten for L, M_{L} that accepts L. were

Another proof that

$$
L=\left\{a^{n} b^{x}: \quad x \geqslant 1\right\}
$$

is NOT REGULAR

Use corollary: we are going to prove that $|\Sigma x / L|=\lambda_{0}$
i.e that \approx_{L} has infinitely maury equip. Cases $\rightarrow L$ is NOT REG.
Reminder:

$$
x \approx y \equiv \forall z \in \Sigma^{*}(x z \in L=y z \in L)
$$

OBSERVE: $x \in \Sigma^{x} \quad y \in \Sigma^{*}$
If $x=a^{i}$ and $y=a^{d}$ and $i \neq j$ then $x \neq, y$

$$
\begin{aligned}
& a^{i} \approx a^{j} \equiv \forall z \in \Sigma^{*}\left(a^{i}, \quad \leq a^{j}{ }_{2} \in L\right. \\
& i \neq j \quad=\quad \text { True } \quad a \cdot \frac{a^{k} \cdot b^{n}}{k} \in L \\
& \frac{2=a^{k} b^{k}+j+j+k=n}{i+k=n} \neq
\end{aligned}
$$

State Minimalization
$a^{i} \not \psi_{c} a^{j}$ means that

$$
i \neq j
$$

$$
\left[a^{i}\right] \neq\left[a^{j}\right]
$$

$$
\text { all } i \neq j
$$

In particular
Infinite, many !

$$
[e] \neq[a] \neq[a a] \neq[a a a] \neq \cdots
$$

OUR STANDARD autermaten M_{L}
for L had less stats than M - but finding equivalence classes of \approx_{2} is not easy, not obvious are more important - not alqorithuic!
NEXT: develop an ALGORITREM for constructing MINITAL AUTOMATON for $M(d . f, a), M=L(M)$

DEFINITiON
Let $M=(K, \Sigma, \delta, s, F)$ d.f.a
We define a binary relation

$$
(q, \omega) \in A_{M} \equiv \exists f \in F(g, \omega) \frac{x}{M}(f, e)
$$

words:
$(g, w) \in A_{M}$ inf ω drives M from 2 do AN ACCEPTING state (final state)
DEFINITION $\equiv_{M} \subset K \times K$ Equivalence

$$
q \equiv_{M} p \quad \text { iff } \quad \forall 2 \in \sum^{*}\left((q, 2) \in A_{H}=p, 2\right) \in A_{H}^{\prime}
$$

words: $q \equiv_{n} p$ Ht
$\forall 2 \in \sum^{*}(2$ divines M free 2 to final state $\equiv 2$ drives r groom $p+$ stative)

State Minimalization

Reminder: $\sim_{M}, \approx_{L(M)}$

$$
\begin{aligned}
& E_{p}=\left\{y \in \Sigma^{*}:\left.(s, y)\right|_{H} ^{*}(p, e)\right\} \quad \sim_{M} \\
& {[x]=\left\{y \in \Sigma^{2}: \forall z \in \Sigma^{*}\left(x z \in L \equiv y_{2} \in L\right)\right\} \approx_{L_{n}}} \\
& \text { TиM: } \sim_{n} \subseteq \approx_{L(M)} \\
& {[q]=\left\{p \in K: \forall z \in \Sigma^{2}\left((q, 2) \in A_{M} \equiv(p, z) \in A_{M}\right\}\right.} \\
& =\left\{p \in K: \forall z<\tau^{*}(\exists f \in F(q, 2) \stackrel{\rightharpoonup}{n}(f, e))\right. \\
& \left.\left.\equiv \exists_{t \in F}(p, 2) \frac{\neq}{M}(0, e)\right\}\right\}
\end{aligned}
$$

Observe:

$$
\begin{aligned}
& q \equiv_{n p} \text { ift } \exists_{[x] \in}=\approx_{\tilde{Z}_{L(N)}} E_{q}, E_{p} \leqslant[x] \\
& {[2]=\left\{p \in K: \exists_{[x] \in T_{2}^{2}} E_{(4)} E_{\{1} E_{p} \subset[x]\right\}} \\
& \text { woros: } \\
& \begin{array}{l}
\text { what ing Mr } \\
\text { bgeten } \\
\sim_{n} \\
\sim_{m}
\end{array} \\
& E_{E_{p}}=\{\rho \in K \text { : }
\end{aligned}
$$

State Minimalization

we had: $E_{q_{1}}, E_{q_{3}} \subseteq[e]$

$$
\begin{gathered}
E_{q_{2}} \subseteq[a] \\
E_{q_{4}} E_{q_{6}} \subseteq[b] \\
E_{q_{5}} \subseteq[a a]
\end{gathered}
$$

So we get:

State Minimalization

State Minimalization

$$
\begin{aligned}
& \text { 三。 } \\
& q \equiv 0 p \text { inf } \quad \forall 1 z \leq 0 \quad(q, 2) \in A_{M} \equiv(p, 2) \in A_{M} \\
& \text { oft }(q, e) \in A_{M} \equiv(p, e) \in A_{M}
\end{aligned}
$$

三．has two equivalence cluster：

We knew that $\equiv_{n} c \exists_{n+1}$ but we want to know Tore about their dependence． （to get our algorithm！）

Lemma

$$
\begin{aligned}
& \text { For all } p, q \in K, m \geqslant 1 \\
& q \equiv_{m} p \text { Hf } 102 \equiv_{n-1} p \quad \text { AND } \\
& \\
& \\
& \text { (2) } \forall a \in \Sigma \delta(q, a) \equiv_{n-1} \delta(p, a)
\end{aligned}
$$

Prot ($q \equiv_{n} p$ +t $\left.\forall|z| \leq n \quad(q, 2) \in A_{M}=(p, 2) \in A_{n}\right)$
$q \equiv_{m} p$ it $q=_{n+1} p$ and

$$
(\mid 21 \leqslant n-1)
$$

any string $\omega=a \cdot(v)$ of $|\omega|=x$
drive p and g to Acceptence ($T=T$) ore notaceptence ($F \equiv F$)

$$
\begin{aligned}
& \text { but this means exactly } \\
& \delta(q, a) \equiv_{m-1} \delta(p, a), f r \text { all } a \in E \text { ! } \\
& (q, z) \in A_{M} \equiv \exists f \in F(q, z) H_{1}^{\prime}(f, e) \\
& (q, a v) \in A_{M} \equiv \exists f \in f(q a v) r_{\sigma(a, a)=e^{\prime}}^{\left(q^{\prime}, v\right)+\ldots(f, e)} \underbrace{}_{|v| \leqslant n-1}
\end{aligned}
$$

State Minimalization

Algorithur

- Compute ${ }^{k} / \equiv_{0}:$ (Always $\{F, K-F\}$

Repeat for $n:=1,2, \ldots$

- Compute k / Ξ_{n} frem $\mathrm{k} / \equiv_{n-1}$
until $\equiv_{n}=\equiv_{n-1}$

$$
p \in[q]_{E_{n}} \text { iff (1) } q \equiv_{n-1} p
$$

(2) $\forall a \in \sum \delta(q, a) \equiv_{n_{-1}} \delta(p, a)$
$[q]=\{p:$ (1) and (2) TenE $\}$
Exarple comring!

State Minimalization

Algorithen

$$
\equiv m c K \times k
$$

TERMINATION:
at eack step when $\equiv_{n} \neq \equiv_{n-1}$ we have $\sum_{n-1} 4 \equiv_{n}$ i.e \equiv_{n} has at least one wore equivalenu dass than \equiv_{n-1}. But k is fimete, here * number of equivalance dasses elenetrious) of K is Finite and (patitious) of K is $\leqslant|K|$, solalgonith iteratious

Output $=$ ミM
When algonither temuinates
When algonither tem by our lemura

$$
\begin{aligned}
& \equiv_{n}=\equiv_{n+1}=\equiv_{n+2} \\
& \text { i.e } \equiv_{m}=\equiv_{n+3}=\cdots \\
& \text { mean me Any } \\
& \text { mength! }
\end{aligned}
$$

State Minimalization

BACK TO OUR EXAMPLE

$$
\begin{aligned}
& \equiv_{0}: \quad k / \equiv_{0}=\left\{\left\{q_{1} q_{3}\right\},\left\{q_{2}, q_{4}, q_{5}, q_{6}\right\}\right. \\
& \begin{array}{rl}
\equiv 1 & q \equiv_{1} p \text { if } \begin{array}{l}
\text { (1) } q \equiv_{0} p \\
\\
\\
\\
\text { (2) } \forall a \in \Sigma \\
\\
\end{array} \quad \delta(q, a) \equiv_{0} \delta(p, a)
\end{array} \\
& q_{1} \equiv_{1} q_{3} \text { itt (1) } q_{1} \equiv_{0} q_{3} \text { yes } \\
& \text { (2) } \forall a \in \sum \quad \delta\left(q_{1}, a\right) \equiv \sum_{0} \delta\left(q_{3} a\right) \\
& \delta(q, a)=q_{2} \stackrel{\vdots}{=}{ }_{0} q_{2}^{\prime \prime} \text { yes } \\
& \begin{array}{l}
\left\{q, q_{3}\right\} \\
\text { is } \mathrm{min} \mathrm{k} / \sum_{1}
\end{array} \\
& \delta(q, b)=q_{4} \stackrel{!}{\stackrel{!}{0}_{0}} \delta(z, b)=q_{2}
\end{aligned}
$$

State Minimalization

三2 c．d
deor（h2）
（1）$q_{2} \equiv 0 q_{4}$ yes
（1）$q_{2} \equiv \equiv_{2} q_{4}$ ift
（2）$\forall a \in \Sigma \quad \delta\left(q_{2}, a\right) \div \delta\left(q_{4}, a\right)$

$$
\delta\left(q_{2}, a\right)=q_{5} \vdots{ }^{\vdots} q_{1} n_{0}
$$

$$
\text { so } q_{2} ⿻ 三 丨_{1} q_{4} q_{2} \equiv_{1} q_{2} \text { Retaris }
$$

（1）

$$
\begin{aligned}
& q_{2} \equiv q_{5} \text { iH } \begin{array}{l}
\text { (1) yes } \\
\delta\left(q_{2}, a\right)=q_{5} \equiv_{0} \delta\left(q_{5}, a\right)=q_{r}
\end{array} \\
& \text { yes } \\
& q_{2} \ddagger_{1} q_{5} \quad \delta\left(q_{2} b\right)=q_{3} \cong \delta\left(q_{5}, b\right)=q_{r}
\end{aligned}
$$

（3）
$q_{2} \equiv q_{6}$ iff（1）yes
q_{2} 韦，$_{2}$
Nert eaviv class

State Minimalization
arede (24) $q_{4} \equiv q_{4}$ rethexive in $q_{4} \equiv q_{2}$ chelead out

$$
\left(\begin{array}{llll}
q_{4} \equiv, q_{5} & \text { ift yes } \\
\text { NO }
\end{array}\right.
$$

$$
\left(\begin{array}{ll}
q_{4} \equiv_{1} q_{6} & \text { itf } 0 \text { yes } \\
\text { yes! } & \text { (2) } \delta\left(q_{4}, a\right)=q_{1} \\
\equiv_{0} q_{3} \text { yes }
\end{array}\right.
$$

Next equiv. class:

$$
\left\{2_{4}, 2_{6}\right\}
$$

we knew $q_{5} \neq q_{4}, q_{5} \neq q_{2}$
chech

State Minimalization

Minimal autornata

$$
\begin{aligned}
& M^{\prime}=\left(K^{\prime}, \Sigma, \delta_{1} S^{\prime}, F^{\prime}\right) \\
& \text { - } K^{\prime}=\left(K_{m}\right. \text { compute bo, algorithm } \\
& \text { - } S^{\prime}=\{Q: Q \cap\{s\} \neq \phi\} \\
& F^{\prime}=\{Q: Q n F \neq \phi\} \\
& \delta^{\prime}(Q, a)=\{\delta(q, a): q \in Q\}
\end{aligned}
$$

OUR anlemater

$$
\begin{array}{ll}
K / \Xi_{M}=\left\{\left\{q_{1}, q_{3}\right\},\left\{q_{2}\right\},\left\{q_{4}, q_{6}\right\},\left\{q_{5}\right\}\right\} \\
S^{\prime}=\left\{q_{1}, q_{3}\right\} \quad \text { Initial } \\
F^{\prime}=\left\{\left\{q_{1} q_{3}\right\}\right\} \quad \text { Final } \\
\delta^{\prime}\left(\left\{q_{1}, q_{3}\right\}, a\right)=\left\{q_{2}\right\} & \delta\left(q_{1} a\right)=q_{2} \\
\delta\left(q_{3} a\right)=q_{2} \\
\delta^{\prime}\left(\left\{q_{1}, q_{3}\right\}, b\right)=\left\{q_{4}, q_{6}\right\} & \delta\left(q_{1} b\right)=q_{4} \\
\delta^{\prime}\left(\left\{q_{4}, q_{6}\right\}, a\right)=\left\{z_{1}, 2_{3}\right\} & \delta\left(q_{3} b\right)=q_{6} \\
\delta^{\prime}\left(\left\{q_{4}, q_{6}\right\}, b\right)=\{25\} \quad \text { etc }
\end{array}
$$

State Minimalization

