INTRODUCTION TO THE THEORY OF **COMPUTATION** LECTURE NOTES

Professor Anita Wasilewska Stony Brook University (SUNY at Stony Brook)

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

Course Text Book

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

ELEMENTS OF THE THEORY OF COMPUTATION

Harry R. Lewis, and Christos H. Papadimitriou Prentice Hall, 2nd Edition

CHAPTER 1 SETS, RELATIONS, and LANGUAGES

LECTURE SLIDES

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 10 Q Q ·

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Slides Set 1 PART 1: Sets PART 2: Relations and Functions PART 3: Special types of Binary Relations

Slides Set 2

- PART 4: Finite and Infinite Sets
- PART 5: Fundamental Proof Techniques

K ロ K K 메 K K B K K B K X A K K K K H A K K

Slides Set 3

PART 6: Closures and Algorithms

Slides Set 4 PART 7: Alphabets and languages PART 8: Finite Representation of Languages

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 10 Q Q ·

Slides Set 1 PART 1: Sets

Sets

Set A set is a collection of objects

Elements The objects comprising a set are are called its elements or members

- a ∈ A denotes that a is an **element** of a set A
- $a \notin A$ denotes that **a** is not an **element** of **A**

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Empty Set is a set without elements

Empty Set is denoted by ∅

Sets

Sets can be defined by listing their elements;

Example

The set

$$
A = \{a, \emptyset, \{a, \emptyset\}\}\
$$

has 3 elements:

 $a \in A$, $\emptyset \in A$, $\{a, \emptyset\} \in A$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 10 Q Q ·

Sets

Sets can be defined by referring to other sets and to **properties** P(x) that elements may or may not have

We write it as

 $B = \{x \in A : P(x)\}\$

Example

Let N be a set of natural numbers

 $B = \{n \in \mathbb{N}: n < 0\} = \emptyset$

KORK EXTERNE PROVIDE

Set Inclusion

 $A \subseteq B$ if and only if $\forall a (a \in A \Rightarrow a \in B)$ is a **true** statement

Set Equality $A = B$ if and only if $A \subseteq B$ and $B \subseteq A$

Proper Subset $A \subset B$ if and only if $A \subseteq B$ and $A \neq B$

Subset Notations

- $A \subseteq B$ for a subset (might be improper) $A \subset B$ for a proper subset
- **Power Set** Set of all subsets of a given set

 $P(A) = {B : B \subseteq A}$

Other Notation

$$
2^A = \{B : B \subseteq A\}
$$

Union

 $A \cup B = \{x : x \in A \text{ or } x \in B\}$

We write:

 $x \in A \cup B$ if and only if $x \in A \cup x \in B$

Intersection $A \cap B = \{x : x \in A \text{ and } x \in B\}$ We write: $x \in A \cap B$ if and only if $x \in A \cap x \in B$

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

Relative Complement

 $x \in (A - B)$ if and only if $x \in A$ and $x \notin B$ We write:

$$
A - B = \{x : x \in A \cap x \notin B\}
$$

Complement is defined only for $A \subseteq U$, where U is called an **universe**

$$
-A = U - A
$$

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

We write for $x \in U$.

 $x \in -A$ if and only if $x \notin A$

Algebra of sets consists of properties of sets that are **true** for all sets involved

We use **tautologies** of propositional logic to prove **basic** properties of the algebra of sets

We then use the basic properties to **prove** more elaborated properties of sets

KORK EXTERNE PROVIDE

It is possible to form intersections and unions of **more** then two, or even a finite number o **sets**

Let $\mathcal F$ denote is any **collection** of sets

We write $\bigcup \mathcal{F}$ for the **set** whose **elements** are the elements of **all** of the sets in \mathcal{F}

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Example Let $\mathcal{F} = \{\{a\}, \{\emptyset\}, \{a, \emptyset, b\}\}\$ We get $\bigcup \mathcal{F} = \{a, \emptyset, b\}$

Observe that given

$$
\mathcal{F} = \{ \{a\}, \{0\}, \{a, \emptyset, b\} \} = \{A_1, A_2, A_3\}
$$

we have that

 ${a} \cup \{0\} \cup {a, \emptyset, b} = A_1 \cup A_2 \cup A_3 = {a, \emptyset, b} = \bigcup \mathcal{F}$

Hence we have that for any element x ,

 $x \in \left\{\right. \left. \left. \right| \mathcal{F} \right.$ if and only if there exists i, such that $x \in A_i$

KO KA (DIKKE) KE KO BI YOKO

We **define** formally **Generalized Union** of any family \mathcal{F} of sets is

 $\left| \begin{array}{cc} \end{array} \right|$ $\mathcal{F} = \{x : \text{ exists a set } S \in \mathcal{F} \text{ such that } x \in S\}$

We write it also as

$$
x \in \bigcup \mathcal{F} \quad \text{if and only if} \quad \exists_{S \in \mathcal{F}} \ \ x \in S
$$

Generalized Intersection of any family \mathcal{F} of sets is

$$
\bigcap \mathcal{F} = \{x: \ \forall_{S \in \mathcal{F}} \ x \in S\}
$$

We write

$$
x \in \bigcap \mathcal{F} \quad \text{if and only if} \quad \forall_{S \in \mathcal{F}} \ x \in S
$$

Ordered Pair

Given two sets A, B we denote by

(a, b)

an **ordered pair**, where $a \in A$ and $b \in B$ We call a a **first** coordinate of (a, b) and b its **second** coordinate We define

 $(a, b) = (c, d)$ if and only if $a = c$ and $b = d$

KORK ERKER ADAM ADAM KOR

Cartesian Product

Given two sets A and B , the set

 $A \times B = \{(a, b): a \in A \text{ and } b \in B\}$

is called a **Cartesian product** (cross product) of sets ^A, ^B We write

 $(a, b) \in A \times B$ if and only if $a \in A$ and $b \in B$

KORKA EXTER I DAR

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 10 Q Q ·

Slides Set 1 PART 2: Relations and Functions

Binary Relations

Binary Relation

Any set R such that $R \subseteq A \times A$ is called a **binary relation** defined in a set A

Domain, Range of R Given a binary relation $R \subseteq A \times A$, the set

 $D_R = \{a \in A : (a, b) \in R\}$

is called a **domain** of the relation R

The set

```
V_B = \{b \in A : (a, b) \in R\}
```
KELK KØLK VELKER I EL I DA O

is called a **range** (set of values) of the relation R

n- ary Relations

Ordered tuple

Given sets $A_1,...A_n$, an element $(a_1, a_2,...a_n)$ such that $a_i \in A_i$ for $i = 1, 2, ...n$ is called an **ordered tuple**

Cartesian Product of sets A_1, A_n is a set

 $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ... a_n) : a_i \in A_i, i = 1, 2, ... n\}$

n-ary Relation on sets A_1, \ldots, A_n is any subset of $A_1 \times A_2 \times ... \times A_n$, i.e. the set

 $R \subseteq A_1 \times A_2 \times \ldots \times A_n$

KORKA EXTER I DAR

Function as Relation

Definition

A binary relation $R \subseteq A \times B$ is a **function** from A to B if and only if the following condition holds

$\forall_{a\in A} \exists! b\in B$ $(a,b)\in R$

where $\exists!_{b \in B}$ means there is **exactly one** $b \in B$

Because the condition says that for any $a \in A$ we have **exactly one** $b \in B$, we write

 $R(a) = b$ for $(a, b) \in R$

KO KA (DIKKE) KE KO BI YOKO

Function as Relation

Given a binary relation

 $R \subseteq A \times B$

that is a **function**

The set A is called a **domain** of the function R and we write:

$$
R: A \longrightarrow B
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

to denote that the **relation** R is a **function** and say that

R **maps** the set A **into** the set B

Function notation

We denote relations that are functions by letters f, g, h,... and write

f : $A \rightarrow B$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 | K 9 Q Q

say that the function f **maps** the set A **into** the set B

Domain, Codomain

Let $f: A \longrightarrow B$.

the set A is called a **domain** of f ,

and the set B is called a **codomain** of f

Range

Given a function $f: A \longrightarrow B$

The set

 $R_f = \{b \in B: b = f(a) \text{ and } a \in A\}$

is called a **range** of the function f

By definition, the **range** of f is a subset of its **codomain** B We write $R_f = \{b \in B: \exists_{a \in A} b = f(a)\}\$

The set

$$
f = \{(a, b) \in A \times B : b = f(a)\}\
$$

KORKA EXTER I DAR

is called a **graph** of the function f

Function "onto"

The function $f: A \rightarrow B$ is an **onto** function if and only if the following condition holds

 $\forall_{b \in B} \exists_{a \in A} f(a) = b$

We denote it by

 $f: A \stackrel{onto}{\longrightarrow} B$

Function " one- to -one"

The function $f: A \longrightarrow B$ is called a **one- to -one** function and denoted by

 $f: A \stackrel{1-1}{\longrightarrow} B$

if and only if the following condition holds

 $\forall_{x,y\in A}$ $(x \neq y \Rightarrow f(x) \neq f(y))$

A function $f: A \rightarrow B$ is **not one- to -one** function if and only if the following condition holds

 $\exists_{x,y\in A}$ $(x \neq y \cap f(x) = f(y))$

If a function f is **1-1** and **onto** we denote it as

 $f: A \stackrel{1-1,onto}{\longrightarrow} B$

Composition of functions

Let f and **q** be two functions such that

f : $A \rightarrow B$ and $q : B \rightarrow C$

We **define** a new function

 $h : A \longrightarrow C$

called a **composition** of functions f and g as follows: for any $x \in A$ we put

 $h(x) = g(f(x))$

KORKARKKER E VAN

Composition notation

Given function f and **q** such that

f : $A \rightarrow B$ and $q : B \rightarrow C$

We **denote** the **composition** of f and g by $(f \circ g)$ in order to stress that the function

 $f : A \longrightarrow B$

"goes first" followed by the function

 $g: \mathbf{B} \longrightarrow C$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

with a **shared** set **B** between them

We write now the **definition** of composition of functions f and g using the **composition notation** (name for the composition function) $(f \circ g)$ as follows The composition $(f \circ g)$ is a **new** function

 $(f \circ g) : A \longrightarrow C$

such that for any $x \in A$ we put

 $(f \circ g)(x) = g(f(x))$

KORKARKKER E VAN

There is also other notation (name) for the **composition** of f and g that uses the symbol $(g \circ f)$, i.e. we put

 $(g \circ f)(x) = g(f(x))$ for all $x \in A$

KO KA (DIKKE) KE KO BI YOKO

This notation was invented to help calculus students to remember the formula $g(f(x))$ defining the composition of functions f and g

Inverse function

Let $f: A \longrightarrow B$ and $g: B \longrightarrow A$

g is called an **inverse** function to f if and only if the following condition holds

$\forall_{a \in A} (f \circ g)(a) = g(f(a)) = a$

KORKAPRA ERKER DAGA

If g is an **inverse** function to f we denote by $g = f^{-1}$

Identity function

A function $I: A \rightarrow A$ is called an **identity** on A if and only if the following condition holds

 $\forall_{a \in A} I(a) = a$

Inverse and Identity

Let $f: A \longrightarrow B$ and let $f^{-1}: B \longrightarrow A$ be an **inverse** to f, then the following hold

 $(f \circ f^{-1})(a) = f^{-1}(f(a)) = I(a) = a$, for all $a \in A$

 $(f^{-1} \circ f(b)) = f(f^{-1}(b) = I(b) = b, \text{ for all } b \in B$

KORKAPRASHASH SHOAC
Functions: Image and Inverse Image

Image

Given a function $f: X \longrightarrow Y$ and a set $A \subseteq X$ The set

$$
f[A] = \{y \in Y: \quad \exists x \ (x \in A \ \cap \ y = f(x))\}
$$

is called an **image** of the set A ⊆ X **under** the function f We write

 $y \in f[A]$ if and only if there is $x \in A$ and $y = f(x)$

Other symbols used to denote the **image** are

$$
f^{\rightarrow}(A) \quad \text{or} \quad f(A)
$$

KO KA (DIKKE) KE KO BI YOKO

Functions: Image and Inverse Image

Inverse Image

Given a function $f: X \rightarrow Y$ and a set $B \subseteq Y$ The set

$$
f^{-1}[B] = \{x \in X : f(x) \in B\}
$$

is called an **inverse image** of the set B ⊆ Y **under** the function f

We write

$$
x \in f^{-1}[B] \quad \text{if and only if} \quad f(x) \in B
$$

Other symbol used to denote the **inverse image** are

$$
f^{-1}(B) \quad \text{or} \quad f^{\leftarrow}(B)
$$

Sequences

Definition

A **sequence** of elements of a set A is any **function** from the set of natural numbers N into the set A , i.e. any function

 $f : N \longrightarrow A$

Any $f(n) = a_n$ is called **n-th term** of the **sequence** f **Notations**

 $f = \{a_n\}_{n \in \mathbb{N}}, \{a_n\}_{n \in \mathbb{N}}, \{a_n\}$

Sequences Example

Example

We define a **sequence f** of real numbers R as follows

 $f : N \longrightarrow R$

such that

$$
f(n)=n+\sqrt{n}
$$

We also use a shorthand notation for the function f and write it as √

 $a_n = n +$ n

Sequences Example

We often write the function $f = \{a_n\}$ in an even shorter and **informal** form as

> $a_0 = 0$, $a_1 = 1 + 1 = 2$, $a_2 = 2 +$ √ ².........

or even as

 $0, 2, 2 +$ √ $2, 3 +$ √ $3, \dots, n+$ √ ⁿ.........

Observations

Observation 1

By definition, **sequence** of elements of any set is always infinite (countably infinite) because the domain of the **sequence** function f is a set N of **natural numbers**

Observation 2

We can enumerate elements of a **sequence** by any **infinite** subset of N We usually take a set N − {0} as a **sequence** domain (enumeration)

KORK EXTERNE PROVIDE

Observations

Observation 3

We can choose as a set of indexes of a **sequence** any countably infinite set T, i. e, **not only** the set N of natural numbers

We often choose $T = N - \{0\} = N^{+}$, i.e we consider **sequences** that "start" with $n = 1$ In this case we write sequences as

 $a_1, a_2, a_3, \ldots, a_n, \ldots$

KORK EXTERNE PROVIDE

Finite Sequences

Finite Sequence

Given a finite set $K = \{1, 2, ..., n\}$, for $n \in N$ and any set A

Any function

f : $\{1, 2, ...n\} \longrightarrow A$

is called a **finite sequence** of elements of the set A of the **length** n

Case n=0

In this case the function f is an empty set and we call it an

KORKA EXTER I DAR

empty sequence

We denote the empty sequence by e

Example

Example

Consider a sequence given by a formula

$$
a_n=\frac{n}{(n-2)(n-5)}
$$

The domain of the function $f(n) = a_n$ is the set $N - \{2, 5\}$ and the **sequence** f is a function

f : $N - {2, 5}$ → R

The **first** elements of the **sequence** f are

 $a_0 = f(0), a_1 = f(1), a_3 = f(3), a_4 = f(4), a_5 = f(5), a_6 = f(6), \ldots$

KORKA SERKER SAGA

Example

Example

Let $T = \{-1, -2, 3, 4\}$ be a **finite** set and

 $f: \{-1, -2, 3, 4\} \rightarrow R$

be a function given by a formula

$$
f(n)=a_n=\frac{n}{(n-2)(n-5)}
$$

f is a finite sequence of **length** 4 with elements

 $a_{-1} = f(-1)$, $a_{-2} = f(-2)$, $a_3 = f(3)$, $a_4 = f(4)$

KORKA EXTER I DAR

Families of Sets Revisited

Family of sets

Any collection of sets is called a **family of sets** We denote the family of sets by

F

Sequence of sets

Any function

f : $N \rightarrow \mathcal{F}$

is a **sequence of sets**, i..e a sequence where all its

elements are sets

We use capital letters to denote sets and write the **sequence** of sets as

 ${A_n}_{n \in \mathbb{N}}$

KORK EXTERNE PROVIDE

Generalized Union

Generalized Union

Given a sequence $\{A_n\}_{n\in\mathbb{N}}$ of sets

We define that **Generalized Union** of the sequence of sets as

$$
\bigcup_{n\in\mathbb{N}}A_n=\{x:\ \exists_{n\in\mathbb{N}}\ x\in A_n\}
$$

We write

$$
x \in \bigcup_{n \in \mathbb{N}} A_n \quad \text{ if and only if } \quad \exists_{n \in \mathbb{N}} \; x \in A_n
$$

Generalized Intersection

Generalized Intersection

Given a sequence ${A_n}_{n \in \mathbb{N}}$ of sets We define that **Generalized Intersection** of the sequence of sets as

$$
\bigcap_{n\in N} A_n = \{x: \ \forall_{n\in N} \ x \in A_n\}
$$

We write

$$
x \in \bigcap_{n \in \mathbb{N}} A_n \quad \text{ if and only if } \quad \forall_{n \in \mathbb{N}} \ x \in A_n
$$

Indexed Family of Sets

Indexed Family of Sets

Given $\mathcal F$ be a family of sets Let $T \neq \emptyset$ be any non empty set

Any function

 $f: T \longrightarrow \mathcal{F}$

is called an indexed family of sets with the set of indexes T We write it

${A_t}_{t \in \mathcal{T}}$

Notice

Any sequence of sets is an indexed family of sets for $T = N$

KORKARKKER E VAN

Chapter 1

Some Simple Questions and Answers

Simple Short Questions

Here are some short **Yes/ No** questions Answer them and write a short **justification** of your answer

- **Q1** $2^{(1,2)} \cap \{1,2\} \neq \emptyset$
- **Q2** $\{\{a,b\}\}\in 2^{\{a,b,\{a,b\}\}}$
- **Q3** $\emptyset \in 2^{\{a,b,\{a,b\}\}}$
- **Q4** Any function f from $A \neq \emptyset$ onto A, has property

 $f(a) \neq a$ for certain $a \in A$

KO KA (DIKKE) KE KO BI YOKO

Simple Short Questions

Q5 Let $f: N \rightarrow \mathcal{P}(N)$ be given by a formula: $f(n) = \{m \in N: m < n^2\}$

then $\emptyset \in f[\{0, 1, 2\}]$

Q6 Some relations $R \subseteq A \times B$

are functions that map the set \overline{A} into the set \overline{B}

Q1 $2^{(1,2)} \cap \{1,2\} \neq \emptyset$

NO because

 $2^{(1,2)} = \{\emptyset, \{1\}, \{2\}, \{1,2\}\} \cap \{1,2\} = \emptyset$

KORKA EXTER I DAR

Q2 $\{\{a,b\}\}\in 2^{\{a,b,\{a,b\}\}}$ **YES** because have that $\{a, b\} \subseteq \{a, b, \{a, b\}\}\$ and hence $\{\{a,b\}\}\in 2^{\{a,b,\{a,b\}\}}$

by definition of the set of all subsets of a given set

Q2 $\{(a, b)\}\in 2^{\{a, b, \{a, b\}\}}$ **YES** other solution We **list** all subsets of the set $\{a, b, \{a, b\}\}\$ i.e. all **elements** of the set

 $2^{\{a,b,\{a,b\}\}}$

We start as follows

```
\{0, \{a\}, \{b\}, \{a, b\}\}, \ldots, \ldots\}
```
and observe that we can **stop** listing because we reached the set $\{ \{a, b\} \}$ This proves that $\{(a, b)\}\in 2^{\{a, b, \{a, b\}\}}$

KORKA EXTER I DAR

- **Q3** $\emptyset \in 2^{\{a,b,\{a,b\}\}}$
- **YES** because for any set A, we have that $\emptyset \subseteq A$
- **Q4** Any function f from $A \neq \emptyset$ onto A has a property

 $f(a) \neq a$ for certain $a \in A$

NO

Take a function such that $f(a) = a$ for all $a \in A$ Obviously f is "onto" and and **there is no** $a \in A$ for which $f(a) \neq a$

Q5 Let $f : N \longrightarrow P(N)$ be given by formula: $f(n) = \{m \in N: m < n^2\}$, then $\emptyset \in f[\{0, 1, 2\}]$ **YES** We evaluate $f(0) = \{m \in N: m < 0\} = \emptyset$ $f(1) = \{m \in \mathbb{N} : m < 1\} = \{0\}$ $f(2) = \{m \in \mathbb{N} : m < 2^2\} = \{0, 1, 2, 3\}$ and so by definition of $f[A]$ get that $f[{0, 1, 2}] = {0, {0}, {0, 1, 2, 3}}$ and hence $\emptyset \in f[{0, 1, 2}]$

Q6 Some $R \subseteq A \times B$ are functions that map A into B **YES**: Functions are special type of relations

KORKAPRASHASH SHOAC

Simple Short Questions

Q7 $\{(1, 2), (a, 1)\}$ is a binary relation on $\{1, 2\}$

Q8 For any binary relation $R \subseteq A \times A$, the **inverse** relation R^{-1} **exists**

Q9 For any **binary relation** $R \subseteq A \times A$ that is a function, the **inverse function** R^{−1} exists

KO KA (DIKKE) KE KO BI YOKO

Simple Short Questions

Q10 Let $A = \{a, \{a\}, \emptyset\}$ and $B = \{0, \{0\}, \emptyset\}$ there is a function $f : A \rightarrow_{onto}^{1-1} B$

Q11 Let $f: A \rightarrow B$ and $g: B \rightarrow^{onto} A$, then the **compositions** $(g \circ f)$ and $(f \circ g)$ **exist**

Q12 The function $f: N \rightarrow \mathcal{P}(R)$ given by the formula:

$$
f(n) = \{x \in R: \ x > \frac{\ln(n^3 + 1)}{\sqrt{n+6}}\}
$$

KORKAPRA ERKER DAGA

is a **sequence**

- **Q7** {(1, 2), $(a, 1)$ } is a binary relation on {1, 2}
NO because $(a, 1) \notin \{1, 2\} \times \{1, 2\}$
- **because** $(a, 1) \notin \{1, 2\} \times \{1, 2\}$
- **Q8** For any binary relation $R \subseteq A \times A$, the inverse relation R [−]¹ **exists**

YES By definition, the **inverse relation** to $R \subseteq A \times A$ is the set

$$
R^{-1} = \{ (b, a) : (a, b) \in R \}
$$

KORKA EXTER I DAR

and it is a **well defined** relation in the set A

Q9 For any **binary relation** $R \subseteq A \times A$ that is a function, the **inverse function** R^{−1} exists

NO R must be also a 1 − 1 and onto function

Q10 Let $A = \{a, \{a\}, \emptyset\}$ and $B = \{0, \{0\}, \emptyset\}$ there is a function $f : A \rightarrow_{onto}^{1-1} B$ **NO** The set A has **3** elements and the set

 $B = \{0, \{0\}, \emptyset\} = \{0, \{0\}\}\$

KORKA EXTER I DAR

has **2** elements and an onto function does not exists

Q11 Let $f: A \rightarrow B$ and $g: B \rightarrow^{onto} A$, then the **compositions** $(g \circ f)$ and $(f \circ g)$ **exist**

YES The composition $(f \circ g)$ exists because the functions f : $A \rightarrow$ **B** and $g : B \rightarrow$ ^{onto} A **share** the same set **B**

KELK KØLK VELKER I EL I DA O

The composition (g ◦ f) **exists** because the functions $g : B \longrightarrow^{\text{onto}} A$ and $f : A \longrightarrow B$ **share** the same set **A**

The information "onto" is irrelevant

Q12 The function $f: N \rightarrow \mathcal{P}(R)$ given by the formula:

$$
f(n) = \{x \in R: \ x > \frac{\ln(n^3 + 1)}{\sqrt{n+6}}\}
$$

is a **sequence**

YES It is a sequence as the **domain** of the function f is the set N of natural numbers and the formula for $f(n)$ assigns to each natural number n a certain **subset** of R, i.e. an **element** of $P(R)$

Chapter1 Sets, Relations, and Languages

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 900

Slides Set 1 PART 3: Special types of Binary Relations

SPECIAL RELATION: Equivalence Relation

Equivalence relation

A binary relation $R \subseteq A \times A$ is an **equivalence** relation defined in the set \overline{A} if and only if it is reflexive, symmetric and transitive

Symbols

We denote equivalence relation by symbols

 $∼$, ≈ or \equiv

We will use the symbol \approx to denote the equivalence relation

KORK EXTERNE PROVIDE

Equivalence Relation

Equivalence class

Let $\approx \subseteq A \times A$ be an **equivalence** relation on A The set

 $E(a) = \{b \in A : a \approx b\}$

is called an **equivalence class**

Symbol

The equivalence classes are usually **denoted** by

 $[a] = \{b \in A : a \approx b\}$

The element a is called a **representative** of the equivalence class $[a]$ defined in A

KORKA EXTER I DAR

Partitions

Partition

A family of sets $P \subseteq P(A)$ is called a **partition** of the set A if and only if the following conditions hold

KORKA EXTER I DAR

1. $\forall x \in P} (X \neq \emptyset)$

i.e. all sets in the partition are non-empty

2. \forall _{X Y∈}**p** $(X \cap Y = \emptyset)$

i.e. all sets in the partition are disjoint

 $3. \cup P = A$

i.e union of all sets from **P** is the set A

Equivalence and Partitions

Notation

 A/\approx denotes the set of **all equivalence** classes of the equivalence relation \approx , i.e.

 $A/\approx = \{ [a] : a \in A \}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 → 9 Q @

We prove the following theorem 1.3.1

Theorem 1

Let $A \neq \emptyset$

If \approx is an **equivalence relation** on **A**, then the set A/\approx is a **partition** of A

Equivalence and Partitions

Theorem 1 (full statement)

Let $A \neq \emptyset$

If \approx is an equivalence relation on A,

then the set A/\approx is a **partition** of A, i.e.

1. $\forall_{\text{[aleA/}}\in([a] \neq \emptyset)$

i.e. all equivalence classes are non-empty

2. $\forall_{\text{[a]}\neq\text{[b]}\in A/\approx}$ ([a] \cap [b] = 0)

i.e. all different equivalence classes are disjoint

3.
$$
\bigcup A / \approx = A
$$

 $\bigcup A/\approx=A$
i.e the union of all equivalence classes is equal to the set A

KORKAPRASHASH SHOAC

Partition and Equivalence

We also prove a following **Theorem 2** For any **partition**

 $P \subseteq \mathcal{P}(A)$ of the set A

one can **construct** a binary relation R on A such that R is an **equivalence** on A and its equivalence classes are exactly the sets of the **partition P**

Partition and Equivalence

Observe that we **can** consider, for any binary relation R on s set A the sets that "look" like equivalence classes i.e. that are defined as follows:

 $R(a) = \{b \in A; aRb\} = \{b \in A; (a, b) \in R\}$

Fact 1

If the relation R is an **equivalence** on A, then the family ${R(a)}_{a \in A}$ is a **partition** of A **Fact 2** If the family ${R(a)}_{a \in A}$ is **not** a partition of A , then R is **not** an **equivalence** on A

Proof of Theorem 1

Theorem 1

Let $A \neq \emptyset$ If \approx is an **equivalence relation** on A, then the set A/\approx is a **partition** of A

Proof

Let $A / \approx = \{ [a] : a \in A \} = P$

We must show that all sets in **P** are nonempty, disjoint, and together exhaust the set A
Proof of Theorem 1

1. All equivalence classes are nonempty, This holds as $a \in [a]$ for all $a \in A$, reflexivity of equivalence relation

KORKA EXTER I DAR

2. All different equivalence classes are disjoint Consider two different equivalence classes $[a] \neq [b]$ Assume that $[a] \cap [b] \neq \emptyset$. We have that $[a] \neq [b]$, thus there is an element c such that $c \in [a]$ and $c \in [b]$ Hence $(a, c) \in \infty$ and $(c, b) \in \infty$ Since \approx is **transitive**, we get $(a, b) \in \approx$

Proof of Theorem 1

Since \approx is **symmetric**, we have that also $(a, b) \in \approx$

Now take any element $d \in [a]$; then $(d, a) \in \infty$, and by **transitivity**, $(d, b) \in \infty$ Hence $d \in [b]$, so that $[a] \subseteq [b]$

Likewise $[b] ⊆ [a]$ and $[a] = [b]$ what contradicts the assumption that $[a] \neq [b]$

KORKA EXTER I DAR

Proof of Theorem 1

3. To prove that

$$
\bigcup A/\approx = \bigcup \mathbf{P} = A
$$

we simply notice that each element $a \in A$ is in some set in **P** Namely we have by reflexivity that always

 $a \in [a]$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

This **ends** the proof of **Theorem 1**

Proof of the Theorem 2

Now we are going to prove that the **Theorem 1** can be reversed, namely that the following is also true

Theorem 2

For any **partition**

 $P \subseteq \mathcal{P}(A)$

of A, one can **construct** a binary relation R on A such that R is an **equivalence** and its equivalence classes are exactly the sets of the **partition P**

Proof

We define a binary relation R as follows

 $R = \{(a, b): a, b \in X \text{ for some } X \in P\}$

Chapter1 Sets, Relations, and Languages

Slides Set 1

PART 3: Equivalence Relations - Short and Long Questions

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 10 Q Q ·

Short Questions

Q1 Let $R \subseteq A \times A$ for $A \neq \emptyset$, then the set $[a] = \{b \in A : (a, b) \in R\}$

is an equivalence class with a **representative** a

Q2 The set

 $\{(0, 0), (\{a\}, \{a\}), (3, 3)\}\$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

represents a **transitive** relation

Short Questions

Q3 There is an **equivalence** relation on the set

 $A = \{\{0\}, \{0, 1\}, \{1, 2\}\}$

with **3** equivalence classes

Q4 Let $A \neq \emptyset$ be such that there are exactly **25 partitions** of A

It is possible to define **20 equivalence** relations on A

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Short Questions Answers

Q1 Let $R \subseteq A \times A$ then the set

 $[a] = \{b \in A : (a, b) \in R\}$

is an **equivalence** class with a **representative** a **NO** The set $[a] = \{b \in A : (a, b) \in R\}$ is an equivalence class only when the relation R is an **equivalence** relation

Q2 The set

 $\{(0, 0), (\{a\}, \{a\}), (3, 3)\}\$

KORKAPRASHASH SHOAC

represents a **transitive** relation

YES Transitivity condition is vacuously **true**

Short Questions Answers

Q3 There is an equivalence relation on

 $A = \{ \{0\}, \{0, 1\}, \{1, 2\} \}$

with **3** equivalence classes

YES For example, a relation R defined by the partition $P = \{ \{ \{0\} \}, \{ \{0, 1\} \}, \{1, 2\} \}$

and so By proof of **Theorem 2**

 $R = \{(a, b): a, b \in X \text{ for some } X \in P\}$

i.e. $a = b = \{0\}$ or $a = b = \{0, 1\}$ or $(a = 1$ and $b = 2)$

Short Questions Answers

Q4

Let $A \neq \emptyset$ be such that there are exactly 25 partitions of A It is possible to define **2** equivalence relations on A

YES By **Theorem 2** one can define up to 25 (as many as partitions) of equivalence classes

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Equivalence Relations

Some Long Questions

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q*

Some Long Questions

Q1 Consider a function $f : A \rightarrow B$ Show that $R = \{(a, b) \in A \times A : f(a) = f(b)\}$ is an **equivalence** relation on A

Q2 Let $f : N \rightarrow N$ be such that

 $f(n) = \begin{cases} 1 & \text{if } n \leq 6 \\ 2 & \text{if } n > 6 \end{cases}$ 2 if $n > 6$

Find equivalence classes of R from **Q1** for this particular function f

KO KA (DIKKE) KE KO BI YOKO

Q1 Consider a function $f: A \rightarrow B$ Show that

$$
R = \{(a, b) \in A \times A : f(a) = f(b)\}\
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

is an **equivalence** relation on A

Solution

1. R is **reflexive**

 $(a, a) \in R$ for all $a \in A$ because $f(a) = f(a)$

2. R is **symmetric**

Let $(a, b) \in R$, by definition $f(a) = f(b)$ and $f(b) = f(a)$ Consequently $(b, a) \in R$

3. R is **transitive**

For any $a, b, c \in A$ we get that $f(a) = f(b)$ and $f(b) = f(c)$ implies that $f(a) = f(c)$

KORK EXTERNE PROVIDE

Q2 Let $f : N \rightarrow N$ be such that $f(n) = \begin{cases} 1 & \text{if } n \leq 6 \\ 2 & \text{if } n > 6 \end{cases}$ 2 if $n > 6$

Find **equivalence classes** of

$$
R = \{ (a, b) \in A \times A : f(a) = f(b) \}
$$

KO KA (DIKKE) KE KO BI YOKO

for this particular f

Solution

We evaluate

$$
[0] = \{n \in N : f(0) = f(n)\} = \{n \in N : f(n) = 1\}
$$

= $\{n \in N : n \le 6\}$

$$
[7] = \{n \in N : f(7) = f(n)\} = \{n \in N : f(n) = 2\}
$$

$$
= \{n \in N : n > 6\}
$$

There are **two** equivalence classes:

 $A_1 = \{n \in \mathbb{N} : n \leq 6\}, A_2 = \{n \in \mathbb{N} : n > 6\}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Chapter1 Sets, Relations, and Languages

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 10 Q Q ·

Slides Set 1 PART 3: Special types of Binary Relations

SPECIAL RELATIONS: Order Relations

Order Relations

We introduce now of another type of important binary relations: the order relations

Definition

 $R \subset A \times A$ is an order relation on A iff R is 1. Reflexive, 2. Antisymmetric, and 3. Transitive, i.e. the following conditions are satisfied

KORKA EXTER I DAR

1. $\forall_{a \in A} (a, a) \in R$ 2. $\forall_{a,b\in A}((a,b)\in R\cap (b,a)\in R \Rightarrow a=b)$ 3. $\forall_{a,b,c\in A}$ $((a,b)\in R\cap (b,c)\in R \Rightarrow (a,c)\in R)$

Order Relations

Definition

 $R \subseteq (A \times A)$ is a total order on A iff R is an order and any two elements of A are comparable, i.e. additionally the following condition is satisfied

4. $\forall_{a,b} \in A$ ((a, b) ∈ R ∪ (b, a) ∈ R)

Names: order relation is also called historically a partial order

KORKA EXTER I DAR

total order is also called historically a linear order

Order Relations

Notations

order relations are usually denoted by \leq , or when we want to make a clear distinction from the natural order in sets of numbers we denote it by \leq

Remember, that even if we use ≤ as the order relation symbol, it is a SYMBOL for ANY order relation and not only a symbol for a natural order \leq in sets of numbers

KOD KOD KED KED A BARK

Posets

A set $A \neq \emptyset$ ordered by an order relation R is called a poset We write it as a tuple (depending of sumbols used)

$(A, R), (A, \leq), (A, \leq)$

Name poset stands historically for "partially ordered set".

Diagram of order relation is a graphical representation of a poset

It is a simplified graph constructed as follows.

1. As the order relation is reflexive, i.e. $(a, a) \in R$ for all $a \in A$, we draw a point with symbol a instead of a point with symbol a and the loop

2. As the order relation is antisymmetric we draw a point b **above** point a (connected, but without the arrow) to indicate that $(a, b) \in R$.

3. As the order relation in transitive, we connect points a, b, c without arrows**KORKAPRA ER ET AQO**

Posets Special Elements

Special elements in a poset (A, \leq) are: maximal, minimal, greatest (largest) and smallest (least) and are defined below.

Smallest (least) $a_0 \in A$ is a smallest (least) element in the poset (A, \leq) iff $\forall_{a \in A} (a_0 \leq a)$

Greatest (largest) $a_0 \in A$ is a greatest (largest) element in the poset (A, \leq) iff $\forall_{a \in A} (a \leq a_0)$

KORKAPRASHASH SHOAC

Posets Special Elements

Maximal (formal) $a_0 \in A$ is a maximal element in the poset (A, \leq) iff $\neg \exists_{a \in A} (a_0 \leq a \cap a_0 \neq a)$

Maximal (informal) $a_0 \in A$ is a maximal element in the poset (A, \leq) iff on a diagram of (A, \leq) there is no element placed above a_0

Minimal (formal) $a_0 \in A$ is a minimal element in the poset (A, \leq) iff $\neg \exists_{a \in A} (a \leq a_0 \cap a_0 \neq a)$

Minimal (informal) $a_0 \in A$ is a minimal element in the poset (A, \leq) iff on the diagram of (A, \leq) there is no element placed below a_0

Some Properties of Posets

Use Mathematical Induction to prove the following property of finite posets

Property 1 Every non-empty finite poset has at least one maximal element

Proof

Let (A, \leq) be a finite, not empty poset (partially ordered set by \leq , such that A has n-elements, i.e. $|A| = n$

We carry the Mathematical Induction over $n \in N - \{0\}$

Reminder: an element $a_0 \in A$ ia a maximal element in a poset (A, \leq) iff the following is true.

 $\neg \exists_{a \in A} (a_0 \neq a \cap a_0 \leq a)$

KORKAPRA ER ET AQO

Inductive Proof

Base case: $n = 1$, so $A = \{a\}$ and a is maximal (and minimal, and smallest, and largest) in the poset $(\{a\}, \leq)$ **Inductive step:** Assume that any set A such that $|A| = n$ has

a maximal element;

Denote by a_0 the maximal element in (A, \leq)

Let B be a set with $n + 1$ elements; i.e. we can write B as

KORKA EXTER I DAR

 $B = A \cup \{b_0\}$ for $b_0 \notin A$, for some A with n elements

Inductive Proof

By **Inductive Assumption** the poset (A, \leq) has a maximal element a_0

To show that (B, \leq) has a maximal element we need to consider 3 cases.

1. $b_0 \le a_0$; in this case a_0 is also a maximal element in (B, \leq)

2. $a_0 \le b_0$; in this case b_0 is a new maximal in (B, \le)

3. a_0, b_0 are not compatible; in this case a_0 remains maximal in (B, \leq)

KORKAPRA ER ET AQO

By Mathematical Induction we have proved that

 $\forall_{n\in\mathbb{N}-\{0\}}(|A|=n \Rightarrow A$ has a maximal element)

Some Properties of Posets

We just proved

Property 1 Every non-empty finite poset has at least one maximal element

Show that the **Property 1** is not true for an infinite set

Solution: Consider a poset (Z, \leq) , where Z is the set on integers and \leq is a natural order on Z. Obviously no maximal element!

Exercise: Prove

Property 2 Every non-empty finite poset has at least one minimal element

KORK EXTERNE PROVIDE

Show that the **Property 2** is not true for an infinite set

Chapter1 Sets, Relations, and Languages

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 10 Q Q ·

Slides Set 2 PART 4: Finite and Infinite Sets PART 5: Fundamental Proof Techniques

Chapter1 Sets, Relations, and Languages

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Slides Set 2 PART 4: Finite and Infinite Sets

Equinumerous Sets

Equinumerous sets

We call two sets A and B are equinumerous if and only if there is a **bijection** function $f: A \rightarrow B$, i.e. there is f is such that

$$
f: A \xrightarrow{1-1, onto} B
$$

Notation

We write $A \sim B$ to denote that the sets A and B are equinumerous and write symbolically

$$
A \sim B
$$
 if and only if $f: A \stackrel{1-1,onto}{\longrightarrow} B$

KORK EXTERNE PROVIDE

Equinumerous Relation

Observe that for any set X, the relation ∼ is an **equivalence** on the set 2^X , i.e.

\sim \subseteq 2^X \times 2^X

is reflexive, symmetric and transitive and for any set \overline{A} the equivalence class

$$
[A] = \{B \in 2^X : A \sim B\}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

describes for **finite** sets all sets that have the **same number** of elements as the set A

Equinumerous Relation

Observe also that the relation ∼ when considered for any sets ^A, ^B **is not** an equivalence relation as its **domain** would have to be the set of all sets that **does not** exist

We extend the notion of "the same number of elements" to **any** sets by introducing the notion of cardinality of sets

KORK EXTERNE PROVIDE

Cardinality of Sets

Cardinality definition

We say that \overline{A} and \overline{B} have the same **cardinality** if and only if they are equipotent, i.e.

$A \sim B$

Cardinality notations

If sets A and B have the same **cardinality** we denote it as:

 $|A| = |B|$ or card $A = \text{card }B$

KORK EXTERNE PROVIDE

Cardinality of Sets

Cardinality

We put the above together in one definition

 $|A| = |B|$ if and only if there is a function f is such that

 $f : A \stackrel{1-1,onto}{\longrightarrow} B$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Finite and Infinite Sets

Definition

A set A is **finite** if and only if there is $n \in N$ and there is a function

$$
f: \{0, 1, 2, ..., n-1\} \stackrel{1-1, onto}{\longrightarrow} A
$$

In this case we have that

 $|A| = n$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

and say that the set \overline{A} **has** \overline{n} elements

Finite and Infinite Sets

Definition

A set A is **infinite** if and only if A is **not finite**

Here is a theorem that characterizes infinite sets

Dedekind Theorem

A set A is **infinite** if and only if

there is a **proper** subset \overline{B} of the set \overline{A} such that

 $|A| = |B|$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*
Infinite Sets Examples

E1 Set N of natural numbers is infinite

Consider a function f given by a formula $f(n) = 2n$ for all $n \in \mathbb{N}$ **Obviously** $f: N \stackrel{1-1, onto}{\longrightarrow} 2N$

By **Dedekind Theorem** the set N is infinite as the set 2N of even numbers are a proper subset of natural numbers N

KORK EXTERNE PROVIDE

Infinite Sets Examples

E2 Set R of real numbers is infinite

Consider a function f given by a formula $f(x) = 2^x$ for all $x \in R$ **Obviously** $f: R \stackrel{1-1, onto}{\longrightarrow} R^+$

By **Dedekind Theorem** the set R is infinite as the set R^+ of positive real numbers are a proper subset of real numbers R

KORKARKKER E VAN

Countably Infinite Sets Cardinal Number \aleph_0

Definition

A set A is called **countably infinite** if and only if it has the same cardinality as the set N natural numbers, i.e. when

$|A| = |N|$

The **cardinality** of natural numbers N is called \aleph_0 (Aleph zero) and we write

 $|N| = N_0$

Definition

For any set A,

$$
|A| = N_0 \quad \text{if and only if} \quad |A| = |N|
$$

Directly from definitions we get the following

Fact 1

A set A is **countably infinite** if and only if $|A| = \aleph_0$

KO KA (DIKKE) KE KO BI YOKO

Fact 2 A set A is **countably infinite** if and only if all elements of \overline{A} can be put in a 1-1 sequence

Other name for **countably infinite** set is **infinitely countable** set and we will use both names

In a case of an infinite set \bm{A} and not 1-1 sequence we can "prune" all repetitive elements to get a 1-1 sequence, i.e. we prove the following

Fact 2a

An infinite set A is **countably infinite** if and only if all elements of \overline{A} can be put in a sequence

Definition

A set A is **countable** if and only if A is finite or countably infinite

Fact 3

A set A is **countable** if and only if A is finite or $|A| = N_0$, i.e. $|A| = |N|$

Definition

A set A is **uncountable** if and only if A **is not** countable

Fact 4

A set A is **uncountable** if and only if A is infinite and $|A| \neq \aleph_0$, i.e. $|A| \neq |N|$

Fact 5

A set A is **uncountable** if and only if its elements **can not** be put into a sequence

Proof proof follows directly from definition and Facts 2, 4

We have proved the following

Fact 2a

An infinite set A is **countably infinite** if and only if all elements of \bf{A} can be put in a sequence

We use it now to prove two **theorems** about countably infinite sets

Union Theorem

Union of two countably infinite sets is a countably infinite set **Proof**

Let \overline{A} , \overline{B} be two disjoint infinitely countable sets

By Fact 2 we can list their elements as 1-1 sequences

 $A: a_0, a_1, a_2, \ldots$ and $B: b_0, b_1, b_2, \ldots$

and their **union** can be listed as 1-1 sequence

 $A \cup B$: $a_0, b_0, a_1, b_1, a_2, b_2, \ldots, \ldots$

In a case not disjoint sets we proceed the same and then "prune" all repetitive elements to get a 1-1 sequence

Product Theorem

Cartesian Product of two countably infinite sets is a countably infinite set

Proof

Let A , B be two infinitely countable sets By Fact 2 we can list their elements as 1-1 sequences

 $A: a_0, a_1, a_2, \ldots$ and $B: b_0, b_1, b_2, \ldots$

We list their **Cartesian Product** $A \times B$ as an infinite table $(a_0, b_0), (a_0, b_1), (a_0, b_2), (a_0, b_3), \ldots$ $(a_1, b_0), (a_1, b_1), (a_1, b_2), (a_1, b_3), \ldots$ $(a_2, b_0), (a_2, b_1), (a_2, b_2), (a_2, b_3), \ldots$ $(a_3, b_0), (a_3, b_1), (a_3, b_2), (a_3, b_3), \ldots$

KORKAPRASHASH SHOAC

. . . . , , , , , , , , <u>.</u>

Cartesian Product Theorem Proof

Observe that even if the table is infinite each of its **diagonals** is **finite**

$$
(a_0, b_0), (a_0, b_1), (a_0, b_2), (a_0, b_3), (a_0, b_4), \ldots
$$

\n
$$
(a_1, b_0), (a_1, b_1), (a_1, b_2), (a_1, b_3), \ldots
$$

\n
$$
(a_2, b_0), (a_2, b_1), (a_2, b_2), (a_2, b_3), \ldots
$$

\n
$$
(a_3, b_0), (a_3, b_1), (a_3, b_2), (a_3, b_3), \ldots
$$

. . . , . . . , . . . , . . . ,

We **list** now elements of $A \times B$ one **diagonal** after the other Each **diagonal** is finite, so now we know when one finishes and other starts

Cartesian Product Theorem Proof

 $A \times B$ becomes now the following sequence

```
(a_0, b_0),
(a_1, b_0), (a_0, b_1),(a_2, b_0), (a_1, b_1), (a_0, b_2),(a_3, b_0), (a_2, b_1), (a_1, b_2), (a_0, b_3),
(a_3, b_1), (a_2, b_2), (a_1, b_3), (a_0, b_4), \ldots,
```
. . . , . . . , . . . , . . . ,

We prove by Mathematical induction that the sequence is **well defined** for all $n \in \mathbb{N}$ and hence that $|A \times B| = |N|$ It **ends** the proof of the **Product Theorem**

Union and Cartesian Product Theorems

Observe that the both **Union** and **Product Theorems** can be generalized by Mathematical Induction to the case of Union or Cartesian Products of **any finite** number of sets

Uncountable Sets

Theorem 1

The set R of real numbers is **uncountable**

Proof

We first prove (homework problem 1.5.11) the following

Lemma 1

The set of all real numbers in the interval $[0,1]$ is **uncountable**

Then we use the Lemma 2 below (to be proved it as an exercise) and the fact that $[0, 1] \subseteq R$ and this **ends** the proof

Lemma 2 For any sets A, B such that $B \subseteq A$ and B is **uncountable** we have that also the set A is **uncountable**

Cardinal Number C **- Continuum**

We denote by C the cardinality of the set R of real numbers C is a new **cardinal number** called continuum and we write

 $|R| = C$

Definition

We say that a set \overline{A} has **cardinality** \overline{C} (continuum) if and only if $|A| = |R|$ We write it

 $|A| = C$

KORKA EXTER I DAR

Sets of Cardinality C

Example

The set of positive real numbers R^+ has cardinality C because a function f given by the formula

 $f(x) = 2^x$ for all $x \in R$

KO KA (DIKKE) KE KO BI YOKO

is $1-1$ function and maps R onto the set R^+

Sets of Cardinality C

Theorem 2

The set 2 ^N of all subsets of natural numbers is **uncountable Proof**

We will prove it in the PART 5.

Theorem 3

The set 2^N has cardinality C , i.e.

 $|2^N|=C$

Proof

The proof of this theorem is not trivial and is not in the scope of this course

KORK EXTERNE PROVIDE

Cantor Theorem

Cantor Theorem (1891)

For any set A,

 $|A| < |2^A|$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

where we **define**

- $|A| \leq |B|$ if and only if $A \sim C$ and $C \subseteq B$
- $|A| < |B|$ if and only if $|A| \leq |B|$ and $|A| \neq |B|$

Cantor Theorem

Directly from the definition we have the following **Fact 6** If $A \subseteq B$ then $|A| \leq |B|$

We know that $|N| = \aleph_0$, $C = |R|$, and $N \subseteq R$ hence from Fact 6, $\aleph_0 \leq C$, but $\aleph_0 \neq C$, as the set N is **countable** and the set R is **uncountable**

Hence we proved

Fact 7

 $\aleph_0 < C$

KORK EXTERNE PROVIDE

Uncountable Sets of Cardinality Greater then C

By **Cantor Theorem** we have that

 $|N| < |\mathcal{P}(N)| < |\mathcal{P}(\mathcal{P}(N))| < |\mathcal{P}(\mathcal{P}(\mathcal{P}(N)))| < \dots$

All sets

 $\mathcal{P}(\mathcal{P}(N)), \mathcal{P}(\mathcal{P}(\mathcal{P}(N)))$...

are **uncountable** with **cardinality greater** then C, as by Theorem 3, Fact 7, and **Cantor Theorem** we have that

 $\aleph_0 < C < |\mathcal{P}(\mathcal{P}(N))| < |\mathcal{P}(\mathcal{P}(\mathcal{P}(N)))| < \dots$

KORKAPRASHASH SHOAC

Here are some basic **Theorem** and **Facts**

Union 1

Union of two infinitely countable (of cardinality \aleph_0) sets is an infinitely countable set

This means that

 $\aleph_0 + \aleph_0 = \aleph_0$

Union 2

Union of a finite (of cardinality n) set and infinitely countable (of cardinality \aleph_0) set is an infinitely countable set

This means that

$$
\aleph_0+n=\aleph_0
$$

Union 3

Union of an infinitely countable (of cardinality \aleph_0) set and a set of the same cardinality as real numbers i.e. of the cardinality C has the same cardinality as the set of real numbers

This means that

 $\aleph_0 + C = C$

Union 4 Union of two sets of cardinality the same as real numbers (of cardinality C) has the same cardinality as the set of real numbers

This means that

$$
C+C=C
$$

KORKA EXTER I DAR

Product 1

Cartesian Product of two infinitely countable sets is an infinitely countable set

 $\aleph_0 \cdot \aleph_0 = \aleph_0$

Product 2

Cartesian Product of a non-empty finite set and an infinitely countable set is an infinitely countable set

 $n \cdot \aleph_0 = \aleph_0$ for $n > 0$

KORK EXTERNE PROVIDE

Product 3

Cartesian Product of an infinitely countable set and an uncountable set of cardinality C has the cardinality C

 $\aleph_0 \cdot C = C$

Product 4

Cartesian Product of two uncountable sets of cardinality C has the cardinality C

 $C \cdot C = C$

KOD KOD KED KED A BARK

Power 1

The set 2^N of all subsets of natural numbers (or of any countably infinite set) is uncountable set of cardinality C , i.e. has the same cardinality as the set of real numbers

 $2^{\aleph_0} = C$

Power 2

There are C of all functions that map N into N

Power 3

There are C possible **sequences** that can be form out of an infinitely countable set

$$
\aleph_0^{\aleph_0}=C
$$

KORK EXTERNE PROVIDE

Power 4

The set of **all functions** that map R into R has the cardinality $\mathcal{C}^\mathcal{C}$

Power 5

The set of **all real functions** of one variable has the same cardinality as the set of **all subsets** of real numbers

$$
C^C=2^C
$$

Theorem 4

$$
n<\aleph_0
$$

Theorem 5

For any non empty, finite set A, the set A [∗] of all **finite sequences** formed out of A is countably infinite, i.e

 $|A^*| = \aleph_0$

We write it as

If $|A| = n$, $n \ge 1$, then $|A^*| = \aleph_0$

Simple Short Questions

Simple Short Questions

Q1 Set A is uncountable iff $A ⊆ R$ (R is the set of real numbers)

Q2 Set A is countable iff $N ⊆ A$ where N is the set of natural numbers

Q3 The set 2^N is infinitely countable

Q4 The set $A = \{(n) \in 2^N : n^2 + 1 \le 15\}$ is **infinite**

Q5 The set $A = \{(\{n\}, n) \in 2^N \times N : 1 \le n \le n^2\}$ is **infinitely**
countable **countable**

KORKA EXTER I DAR

Q6 Union of an infinite set and a finite set is an infinitely countable set

Q1 Set A is uncountable if and only if $A ⊆ R$ (R is the set of real numbers)

NO

The set 2^R is **uncountable**, as $|R| < |2^R|$ by **Cantor**
Theorem, but 2^R is not a subset of B **Theorem**, but 2^R **is not** a subset of R

Also for example. $N \subseteq R$ and N **is not** uncountable

KORKA EXTER I DAR

Q2 Set A is **countable** if and only if N ⊆ A , where N is the set of natural numbers

NO

For example, the set $A = \{0\}$ is countable as it is finite, but ¯

$N \nsubseteq \{0\}$

In fact, A can be any **finite** set or any A can be any **infinite** set that does not include N, for example,

 $A = \{ \{n\} : n \in \mathbb{N} \}$

KORKA EXTER I DAR

KO KA (DIKKE) KE KO BI YOKO

Q3 The set 2^N is infinitely countable **NO** $|2^N| = |R| = C$ and hence 2^N is **uncountable Q4**

The set $A = \{n\} \in 2^N : n^2 + 1 \le 15\}$ is **infinite NO**

The set $\{n \in \mathbb{N} : n^2 + 1 \leq 15\} = \{0, 1, 2, 3\}$

Hence the set $A = \{ \{0\}, \{1\}, \{2\}, \{3\} \}$ is **finite**

Q5 The set $A = \{(\{n\}, n) \in 2^N \times N : 1 \le n \le n^2\}$ is **infinitely**
countable, (countably infinite) **countable** (countably infinite)

YES

Observe that the condition $n \leq n^2$ holds for all $n \in N$, so the set $B = \{n : n \leq n^2\}$ is **nfinitely countable** The set $C = \{ (\{n\} \in 2^N : 1 \le n \le n^2 \}$ is also **infinitely countable** as the function given by a formula $f(n) = \{n\}$ is 1 − 1 and maps B onto C, i.e $|B| = |C|$

The set $A = C \times B$ is hence **infinitely countable** as the Cartesian Product of two infinitely countable sets

Chapter1 Sets, Relations, and Languages

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Slides Set 2

PART 5: Fundamental Proof Techniques

- 1. Mathematical Induction
- 2. The Pigeonhole Principle
- 3. The Diagonalization Principle

Mathematical Induction Applications **Examples**

Counting Functions Theorem

For any finite, non empty sets A, B, there are

functions that map \overline{A} into \overline{B}

Proof

We conduct the proof by Mathematical Induction over the **number of elements** of the set A, i.e. over $n \in N - \{0\}$, where $n = |A|$

KORKA EXTER I DAR

 $|B|^{|\mathcal{A}|}$
Counting Functions Theorem Proof

Base case $n = 1$

We have hence that $|A| = 1$ and let $|B| = m$, $m \ge 1$, i.e.

$$
A = \{a\}
$$
 and $B = \{b_1, ... b_m\}$, $m \ge 1$

We have to prove that there are

 $|B|^{|A|} = m^1$

functions that map \overline{A} into \overline{B}

The **base case** holds as there are exactly $m^1 = m$ functions $f : \{a\} \longrightarrow \{b_1, ... b_m\}$ defined as follows

$$
f_1(a) = b_1, f_2(a) = b_2, \ \ldots, f_m(a) = b_m
$$

KORKAPRA ERKER DAGA

Counting Functions Theorem Proof

Inductive Step

Let $A = A_1 \cup \{a\}$ for $a \notin A_1$ and $|A_1| = n$ By inductive assumption, there are m^n functions

 $f: A \longrightarrow B = \{b_1, ... b_m\}$

We group all functions that map A_1 as follows **Group** 1 contains all functions f_1 such that

 $f_1 : A \longrightarrow B$

and they have the following property

 $f_1(a) = b_1$, $f_1(x) = f(x)$ for all $f : A \longrightarrow B$ and $x \in A_1$

By inductive assumption there are $mⁿ$ functions in the **Group** 1

Counting Functions Theorem Proof

Inductive Step

We define now a **Group** i, for $1 \le i \le m$, $m = |B|$ as follows Each **Group** *i* contains all functions f_i such that

 $f_i: A \longrightarrow B$

and they have the following property

 $f_i(a) = b_1$, $f_i(x) = f(x)$ for all $f : A \longrightarrow B$ and $x \in A_1$

By inductive assumption there are $mⁿ$ functions in each of the **Group** i

There are $m = |B|$ groups and each of them has $mⁿ$ elements, so all together there are

 $m(m^n) = m^{n+1}$

KORKAPRA ER ET AQO

functions, what **ends the proof**

Mathematical Induction Applications Pigeonhole Principle

Pigeonhole Principle Theorem

If A and B are non-empy finite sets and $|A| > |B|$, then **there is no** one-to one function from A to B **Proof**

We conduct the proof by by Mathematical Induction over

```
n \in N - \{0\}, where n = |B| and B \neq \emptyset
```
Base case $n = 1$

Suppose $|B| = 1$, that is, $B = \{b\}$, and $|A| > 1$.

If $f : A \longrightarrow \{b\}$

then there are at least two distinct elements $a_1, a_2 \in A$, such that $f(a_1) = f(a_2) = \{b\}$

Hence the function f **is not** one-to one

Pigeonhole Principle Proof

Inductive Assumption

We assume that any $f : A \longrightarrow B$ is **not one-to one** provided

 $|A| > |B|$ and $|B| \le n$, where $n \ge 1$

Inductive Step

Suppose that $f : A \longrightarrow B$ is such that

 $|A| > |B|$ and $|B| = n + 1$

KORKAPRA ERKER DAGA

Choose some $b \in B$

Since $|B| \ge 2$ we have that $B - \{b\} \ne \emptyset$

Pigeonhole Principle Proof

Consider the set $f^{-1}(\{b\}) \subseteq A$. We have two cases

1. $|f^{-1}(\{b\})| \ge 2$

Then by definition there are $a_1, a_2 \in A$,

such that $a_1 \neq a_2$ and $f(a_1) = f(a_2) = b$ what proves that

the function f **is not** one-to one

2. $|f^{-1}(\{b\})| \leq 1$

Then we consider a function

$$
g: A - f^{-1}(\{b\}) \longrightarrow B - \{b\}
$$

such that

$$
g(x) = f(x)
$$
 for all $x \in A - f^{-1}(\{b\})$

KORKA EXTER I DAR

Pigeonhole Principle Proof

Observe that the inductive assumption **applies** to the function g because $|B - \{b\}| = n$ for $|B| = n + 1$ and

$$
|A - f^{-1}(\{b\})| \ge |A| - 1 \text{ for } |f^{-1}(\{b\})| \le 1
$$

We know that $|A| > |B|$, so

 $|A|-1>|B|-1=n=|B-\{b\}|$ and $|A-f^{-1}(\{b\})|>|B-\{b\}|$

By the inductive assumption applied to q we get that

g **is not** one -to one

Hence $g(a_1) = g(a_2)$ for some distinct $a_1, a_2 \in A - f^{-1}(\{b\}),$ but then $f(a_1) = f(a_2)$ and **f is not** one -to one either

We now formulate a bit stronger version of the the pigeonhole principle and present its slightly different proof

Pigeonhole Principle Theorem

If A and B are finite sets and $|A| > |B|$,

then **there is no** one-to one function from A to B

Proof

We conduct the proof by by Mathematical Induction over

 $n \in \mathbb{N}$, where $n = |B|$

Base case $n = 0$

Assume $|B| = 0$, that is, $B = \emptyset$. Then **there is no** function $f: A \longrightarrow B$ whatsoever; let alone a one-to one function

Inductive Assumption Any function $f : A \longrightarrow B$ is **not one-to one** provided $|A| > |B|$ and $|B| \le n$, $n \ge 0$ **Inductive Step** Suppose that $f : A \longrightarrow B$ is such that $|A| > |B|$ and $|B| = n + 1$ We have to show that f is **not one-to one** under the

Inductive Assumption

KORKARKKER E VAN

We proceed as follows We **choose** some element $a \in A$ Since $|A| > |B|$, and $|B| = n + 1 \ge 1$ such choice is possible

Observe now that if there is another element $a' \in A$ such that $a' \neq a$ and $f(a) = f(a')$, then obviously the function f is **not one-to one** and we are done

So, **suppose now** that the chosen $a \in A$ is the only element mapped by f to $f(a)$

KORKA EXTER I DAR

Consider then the sets $A - \{a\}$ and $B - \{f(a)\}$ and a function

$$
g: A - \{a\} \longrightarrow B - \{f(a)\}\
$$

such that

$$
g(x) = f(x) \quad \text{for all} \quad x \in A - \{a\}
$$

Observe that the *inductive* assumption applies to g because

 $|B - f(a)| = n$ and

 $|A - \{a\}| = |A| - 1 > |B| - 1 = |B - \{f(a)\}|$

KO KA (DIKKE) KE KO BI YOKO

Hence by the inductive assumption the function

g is **not one-to one**

Therefore, there are two distinct elements elements of

 $A - \{a\}$ that are mapped by g to the same element of $B - \{f(a)\}\$

The function g is, by definition, such that

 $g(x) = f(x)$ for all $x \in A - \{a\}$

KORKA EXTER I DAR

so the function f is **not one-to one** either This **ends** the proof

The Pigeonhole Principle Theorem is a quite simple fact but is used in a large variety of proofs including many in this course We present here just one simple application which we will use in later Chapters

Path Definition

Let $A \neq \emptyset$ and $B \subseteq A \times A$ be a binary relation in the set A A **path** in the binary relation R is a finite sequence

 a_1,\ldots,a_n such that $(a_i,a_{i+1})\in R$, for $i=1,2,\ldots n-1$ and $n\geq 1$

The path a_1, \ldots, a_n is said to be from a_1 to a_n The **length** of the path a_1, \ldots, a_n is n The path a_1, \ldots, a_n is a **cycle** if a_i are all distinct and also $(a_n, a_1) \in R$

Pigeonhole Principle Theorem Application

Path Theorem

Let R be a binary relation on a finite set A and let $a, b \in A$ If there is a **path** from a to b in R, then there is a **path** of length at most |A|

Proof

Suppose that a_1, \ldots, a_n is the **shortest path** from $a = a_1$ to $b = a_n$, that is, the path with the smallest length, and suppose that $n > |A|$. By **Pigeonhole Principle** there is an element in A that repeats on the path, say $a_i=a_j$ for some $1 \leq i < j \leq n$

But then $a_1, \ldots, a_i, a_{j+1}, \ldots, a_n$ is a shorter path from a to b, contradicting a_i as being the **shortest path** contradicting a_1, \ldots, a_n being the **shortest path**

The Diagonalization Principle

Here is yet another Principle which justifies a new important proof technique

Diagonalization Principle (Georg Cantor 1845-1918)

Let \overline{R} be a binary relation on a set \overline{A} , i.e.

 $R \subseteq A \times A$ and let D, the diagonal set for R be as follows

 $D = \{a \in A : (a, a) \notin R\}$

For each $a \in A$, let

 $R_a = \{b \in A : (a, b) \in R\}$

KORKAPRA ER ET AQO

Then D is **distinct** from each R^a

The Diagonalization Principle Applications

Here are two theorems whose proofs are the "classic" applications of the Diagonalization Principle

Cantor Theorem 2

Let N be the set on natural numbers

The set 2^N is uncountable

Cantor Theorem 3

The set of real numbers in the interval [0, ¹] is **uncountable**

KORKA EXTER I DAR

Cantor Theorem 2

Let N be the set on natural numbers

The set 2^N is uncountable

Proof

We apply proof by contradiction method and the Diagonalization Principle Suppose that 2 ^N is **countably infinite**. That is, we assume that we can put sets of 2^{N} in a one-to one sequence ${R_n}_{n \in \mathbb{N}}$ such that

 $2^N = \{R_0, R_1, R_2, \ldots\}$

We define a binary relation $R \subseteq N \times N$ as follows

 $R = \{(i, j) : j \in R_i\}$

This means that for any $i, j \in N$ we have that

 $(i,j)\in R$ $(i,j)\in R$ $(i,j)\in R$ $(i,j)\in R$ $(i,j)\in R$ if and only if $j\in R_i$

In particular, for any $i, j \in N$ we have that

 $(i, j) \notin R$ if and only if $j \notin R_i$

and the **diagonal set** D for R is

 $D = \{n \in \mathbb{N} : n \notin R_n\}$

By definition $D \subseteq N$, i.e.

$$
D \in 2^N = \{R_0, R_1, R_2, \ldots\}
$$

and hence

 $D = R_k$ for some $k > 0$

KORKAPRA ERKER DAGA

We obtain **contradiction** by asking whether $k \in R_k$ for

 $D = R_k$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

We have two cases to consider: $k \in R_k$ or $k \notin R_k$

c1 Suppose that $k \in R_k$

Since $D = \{n \in \mathbb{N} : n \notin R_n\}$ we have that $k \notin D$

But $D = R_k$ and we get $k \notin R_k$

Contradiction

c2 Suppose that $k \notin R_k$

Since $D = \{n \in \mathbb{N} : n \notin R_n\}$ we have that $k \in D$

But $D = R_k$ and we get $k \in R_k$

Contradiction

This ends the **proof**

Cantor Theorem 3

The set of real numbers in the interval [0, ¹] is **uncountable**

Proof

We carry the proof by the contradiction method

We assume hat the set of real numbers in the interval

[0, ¹] is **infinitely countable**

This means, by definition , that there is a function f such that $f: N \stackrel{1-1, onto}{\longrightarrow} [01]$

Let f be any such function. We write $f(n) = d_n$ and denote by

$$
d_0, d_1, \ldots, d_n, \ldots,
$$

a sequence of of **all elements** of [01] **defined** by f We will get a **contradiction** by showing that one can always fi[n](#page-164-0)d [a](#page-162-0)n element $d \in [01]$ such that $d \neq d_n$ f[or](#page-164-0) a[ll](#page-163-0) $n \in N$ $n \in N$

We use **binary** representation of real numbers Hence we assume that all numbers in the interval $[01]$ form a one to one sequence

> $d_0 = 0.a_{00} a_{01} a_{02} a_{03} a_{04} \ldots$ $d_1 = 0.a_{10} a_{11} a_{12} a_{13} a_{04} \ldots$ $d_2 = 0.a_{20} a_{21} a_{22} a_{23} a_{0} \ldots \ldots$ $d_3 = 0.a_{30} a_{31} a_{32} a_{33} a_{04} \ldots \ldots$

> > **KORK EXTERNE PROVIDE**

where all $a_{ii} \in \{0, 1\}$

We use Cantor Diagonatization idea to define an element $d \in [01]$, such that $d \neq d_n$ for all $n \in N$ as follows For each element a_{nn} of the "diagonal"

 a_{00} , a_{11} , a_{22} , ... a_{nn} , ... , ...

of the sequence $d_0, d_1, \ldots, d_n, \ldots$, of binary representation of all elements of the interval $[01]$ we define an element $b_{nn} \neq a_{nn}$ as

$$
b_{nn} = \left\{ \begin{array}{ll} 0 & \text{if } a_{nn} = 1 \\ 1 & \text{if } a_{nn} = 0 \end{array} \right.
$$

KORK EXTERNE PROVIDE

Given such defined sequence

 b_{00} , b_{11} , b_{22} , b_{33} , b_{44} ,

We now construct a real number **d** as

 $d = b_{00} b_{11} b_{22} b_{33} b_{44} \ldots$

KORKARKKER E VAN

Obviously $d \in [01]$ and by the Diagonatization Principle $d \neq d_n$ for all $n \in N$

Contradiction

This ends the **proof**

Here is **another proof** of the Cantor Theorem 3

It uses, after Cantor the **decimal representation** of real numbers

In this case we assume that all numbers in the interval $[01]$ form a one to one sequence

$$
d_0 = 0.a_{00} a_{01} a_{02} a_{03} a_{04} \dots
$$

\n
$$
d_1 = 0.a_{10} a_{11} a_{12} a_{13} a_{04} \dots
$$

\n
$$
d_2 = 0.a_{20} a_{21} a_{22} a_{23} a_{0} \dots
$$

\n
$$
d_3 = 0.a_{30} a_{31} a_{32} a_{33} a_{04} \dots
$$

\n
$$
\dots \dots \dots \dots \dots \dots
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

where all $a_{ii} \in \{0, 1, 2 \dots 9\}$

For each element a_{nn} of the "diagonal"

 a_{00} , a_{11} , a_{22} , ... a_{nn} , ... , ...

we define now an element (this is not the only possible definition) $b_{nn} \neq a_{nn}$ as

$$
b_{nn} = \left\{ \begin{array}{ll} 2 & \text{if } a_{nn} = 1 \\ 1 & \text{if } a_{nn} \neq 1 \end{array} \right.
$$

We construct a real number $d \in [01]$ as

$$
d = b_{00} b_{11} b_{22} b_{33} b_{44} \ldots
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Chapter1 Sets, Relations, and Languages

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 10 Q Q ·

Slides Set 3 PART 6: Closures and Algorithms

Closures - Intuitive

Idea

Natural numbers N are **closed** under $+$, i.e. for given two natural numbers n, m we always have that $n + m \in N$

Natural numbers N are **not closed** under subtraction −, i.e there are two natural numbers n, m such that $n - m \notin N$, for example $1, 2 \in \mathbb{N}$ and $1 - 2 \notin \mathbb{N}$

Integers Z are **closed** under−, moreover Z is the smallest set containing N and closed under subtraction –

KORK EXTERNE PROVIDE

The set Z is called a **closure** of N under subtraction −

Closures - Intuitive

Consider the two directed graphs R (a) and R^* (b) as shown below

Observe that $R^* = R \cup \{(a_i, a_i): i = 1, 2, 3, 4\} \cup \{(a_2, a_4)\}\,$,

 $R \subseteq R^*$ and is R^* is reflexive and transitive whereas R is neither, moreover R^{*} is also the smallest set containing R that is reflexive and transitive

We call such relation R^* the reflexive, transitive closure of R We define this concept formally in two ways and prove the equivalence of the two definitions

Definition 1 of R^*

 R^* is called a reflexive, transitive closure of R iff $R \subseteq R^*$ and is R^* is reflexive and transitive and is the smallest set with these properties

This definition is based on a notion of a **closure property** which is any property of the form " the set B is closed under relations R_1, R_2, \ldots, R_m "

We define it formally and prove that reflexivity and transitivity are closures properties

Hence we **justify** the name: reflexive, transitive closure of R for R^*

KORKA EXTER I DAR

Two Definitions of R^*

Definition 2 of R^{*}

Let \overline{R} be a binary relation on a set \overline{A}

The **reflexive, transitive closure of** R is the relation

 $R^* = \{ (a, b) \in A \times A : \text{ there is a path from a to b in R} \}$

This is a much simpler definition- and algorithmically more interesting as it uses a simple notion of a path

We hence start our investigations from it- and only later introduce all notions needed for the **Definition 1** in order to prove that the R^* defined above is really what its name says: the **reflexive, transitive closure of** R

KORKAPRA ER ET AQO

Definition 2 of R^*

We bring back the following

Path Definition

A **path** in the binary relation R is a finite sequence

 a_1, \ldots, a_n such that $(a_i, a_{i+1}) \in R$, for $i = 1, 2, \ldots n-1$ and $n \ge 1$

The path a_1, \ldots, a_n is said to be from a_1 to a_n

The path a_1 (case when $n = 1$) always exist and is called a trivial path from a_1 to a_1

Definition 2

Let \overline{R} be a binary relation on a set \overline{A}

The **reflexive, transitive closure of** R is the relation

 $R^* = \{(a, b) \in A \times A : \text{ there is a path from a to b in } R\}$

KID KA LI KENYEN E VOLO

Algorithms

Definition 2 immediately suggests an following algorithm for computing the reflexive transitive closure R^* of any given binary relation R over some finite set $A = \{a_1, a_2, \ldots, a_n\}$

KORKA EXTER I DAR

Algorithm 1

Initially $R^* := 0$ for $i = 1, 2, ..., n$ do for each i- tuple $(b_1, \ldots, b_i) \in A^i$ do if b_1, \ldots, b_i is a **path in** R then add (b_1, b_n) to R^*

Algorithms

The Book develops and prove correctness of afollowing much faster algorithm

KORKA EXTER I DAR

Algorithm 2

Initially $R^* := R ∪ \{(a_i, a_i) : a_i \in A\}$ for $j = 1, 2, ..., n$ do for $i = 1, 2, ..., n$ and $k = 1, 2, ..., n$ do if $(a_i, a_j), (a_j, a_k) \in R^*$ but $(a_i, a_k) \notin R^*$ then add (a_i, a_k) to R^*

Closure Property Formal

We introduce now formally a concept of a closure property of a given set

Definition

Let D be a set, let $n > 0$ and let $B \subseteq D^{n+1}$ be a $(n+1)$ -ary relation on D Then the subset B of D is said to be **closed under** R if $b_{n+1} \in B$ whenever $(b_1, \ldots, b_n, b_{n+1}) \in R$

Any property of the form " the set B is closed under relations R_1, R_2, \ldots, R_m " is called a **closure property** of **B**

KORKAPRASHASH SHOAC

Closure Property Examples

Observe that any function $f: D^n \longrightarrow D$ is a special relation $f \subseteq D^{n+1}$ so we have also defined what does it mean that a set A ⊆ D is **closed under** the function f

E1: $+$ is a closure property of N

Adition is a function $+: N \times N \longrightarrow N$ defined by a formula $+(n, m) = n + m$, i.e. it is a **relation** $+ \subseteq N \times N \times N$ such that

 $+ = \{(n, m, n + m) : n, m \in \mathbb{N}\}\$

KORKAPRA ER ET AQO

Obviously the set $N \subseteq N$ is (formally) closed under + because

for any $n, m \in N$ we have that $(n, m, n + m) \in +$

Closures Property Examples

E2: \cap is a closure property of 2^{*N*} $\cap \subseteq 2^N \times 2^N \times 2^N$ is defined as

 $(A, B, C) \in \cap$ iff $A \cap B = C$

and the following is true for all $A, B, C \in 2^N$

if $A, B \in 2^N$ and $(A, B, C) \in \cap$ then $C \in 2^N$

KORKA EXTER I DAR
Closure Property Fact1

Since relations are sets, we can speak of one relation as being closed under one or more others

We show now the following

CP Fact 1

Transitivity is a closure property

Proof

Let D be a set, let Q be a ternary relation on $D \times D$, i.e. $Q \subseteq (D \times D)^3$ be such that

 $Q = \{((a, b), (b, c), (a, c)) : a, b, c \in D\}$

Observe that for any binary relation $R \subseteq D \times D$,

R is closed under Q if and only if R is **transitive**

CP Fact1 Proof

The definition of closure of R under Q says: for any $x, y, z \in D \times D$

if $x, y \in R$ and $(x, y, z) \in Q$ then $z \in R$ But $(x, y, z) \in Q$ iff $x = (a, b), y = (b, c), z = (a, c)$ and $(a, b), (b, c) \in R$ implies $(a, c) \in R$

KORKA EXTER LONG

is a true statement for all $a, b, c \in D$ iff R is **transitive**

Closure Property Fact2

We show now the following

CP Fact 2

Reflexivity is a closure property

Proof

Let $D \neq \emptyset$, we define an **unary** relation Q' on $D \times D$, i.e. $Q' \subseteq D \times D$ as follows

 $Q' = \{(a, a): a \in D\}$

Observe that for any R binary relation on D, i.e. $R \subseteq D \times D$ we have that

 R is closed under Q' if and only if R is reflexive

KORK EXTERNE PROVIDE

Closure Property Theorem

CP Theorem

Let P be a closure property defined by relations on a set D , and let $A \subset D$

Then there is a **unique minimal** set **B** such that $B \subseteq A$ and B has property P

Two Definition of R^* Revisited

Definition 1

 R^* is called a reflexive, transitive closure of R iff $R \subseteq R^*$ and is R^* is reflexive and transitive and is the smallest set with these properties

Definition 2

Let R be a binary relation on a set A

The **reflexive, transitive closure of** R is the relation

 $R^* = \{ (a, b) \in A \times A : \text{ there is a path from a to b in } R \}$

EquivalencyTheorem

R [∗] of the **Definition 2** is the same as R [∗] of the **Definition 1** and hence richly deserves its name reflexive, transitive closure of R

KORKA EXTER LONG

Proof Let

 $R^* = \{ (a, b) \in A \times A : \text{ there is a path from a to b in R} \}$

 R^* is reflexive for there is a trivial path (case $n=1$) from a to a, for any $a \in A$

 R^* is transitive as for any $a, b, c \in A$

if there is a path from a to b and a path from b to c , then there is a path from a to c

Clearly $R \subseteq R^*$ because there is a path from a to b whenever $(a, b) \in R$

KO KA (DIKKE) KE KO BI YOKO

Consider a set S of all binary relations on A that contain R and are reflexive and transitive, i.e.

 $S = \{Q \subseteq A \times A : R \subseteq Q \text{ and } Q \text{ is reflexive and transitive }\}$

We have just proved that $R^* \in \mathcal{S}$ We prove now that R^* is the smallest set in the poset (S, \subseteq) ,
i.e. that for any $Q \in S$ we have that $R^* \subset Q$ i.e. that for any $Q \in S$ we have that $R^* \subseteq Q$

KORKA EXTER LONG

Assume that $(a, b) \in R^*$. By Definition 2 there is a path $a - a$, $a + b$ from a to b, and let $Q \in S$ $a = a_1, \ldots, a_k = b$ from a to b and let $Q \in S$

We prove by Mathematical Induction over the length k of the path from a to b

Base case: k=1

We have that the path is $a = a_1 = b$, i.e. $(a, a) \in R^*$ and $(a, a) \in \Omega$ from reflexivity of Ω $(a, a) \in Q$ from reflexivity of Q

Inductive Assumption:

Assume that for any $(a, b) \in R^*$ such that there is a path of langth k from a to by we have that $(a, b) \in Q$ length k from a to b we have that $(a, b) \in Q$

KORK EXTERNE PROVIDE

Inductive Step:

Let $(a, b) \in R^*$ be now such that there is a path of length k+1
from a to b i e there is a a path $a - a$, and $a - a$ from a to b, i.e there is a a path $a = a_1, \ldots, a_k, a_{k+1} = b$

By inductive assumption $(a = a_1, a_k) \in Q$ and by definition of the path $(a_k, a_{k+1} = b) \in R$

But $R \subseteq Q$ hence $(a_k, a_{k+1} = b) \in Q$ and $(a, b) \in Q$ by transitivity

This **ends the proof** that Definition 2 of R[∗] implies the Definition1

The inverse implication follows from the previously proven fact that reflexivity and transitivity are closure properties

KORKAPRA ER ET AQO

Chapter1 Sets, Relations, and Languages

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Slides Set 4

PART 7: Alphabets and languages PART 8: Finite Representation of Languages

Chapter1 Sets, Relations, and Languages

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 10 Q Q ·

Slides Set 4 PART 7: Alphabets and languages

Alphabets and languages Introduction

Data are **encoded** in the computers' memory as strings of bits or other symbols appropriate for **manipulation**

The mathematical study of the **Theory of Computation** begins with understanding of mathematics of **manipulation** of strings of symbols

KORK EXTERNE PROVIDE

We first introduce two basic notions: Alphabet and Language

Alphabet

Definition

Any finite set is called an **alphabet**

Elements of the **alphabet** are called symbols of the alphabet

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

This is why we also say:

Alphabet is any finite set of **symbols**

Alphabet

Alphabet Notation

We use a symbol Σ to denote the **alphabet**

Remember

Σ can be ∅ as empty set is a **finite set**

When we want to study non-empty **alphabets** we have to say so, i.e to write:

 $\Sigma \neq \emptyset$

Alphabet Examples

K ロ K K 레 K K ミ K X E K Y B K Y Q Q Q

E1 $\Sigma = \{\ddagger, \emptyset, \partial, \oint, \bigotimes, \vec{a}, \nabla\}$

$$
E2 \quad \Sigma = \{a, b, c\}
$$

E3
$$
\Sigma = \{n \in \mathbb{N} : n \leq 10^5\}
$$

E4 $\Sigma = \{0, 1\}$ is called a **binary alphabet**

Alphabet Examples

For simplicity and consistence we will use only as **symbols** of the alphabet letters (with indices if necessary) or other common characters when needed and specified

We also write $\sigma \in \Sigma$ for a **general** form of an element in Σ

 Σ is a finite set and we will write

 $\Sigma = \{a_1, a_2, ..., a_n\}$ for $n \ge 0$

Finite Sequences Revisited

Definition

A **finite sequence** of elements of a set A is any function $f: \{1, 2, \ldots, n\} \longrightarrow A$ for $n \in N$

We call $f(n) = a_n$ the n-th element of the sequence f We call \overline{n} the length of the sequence

 a_1, a_2, \ldots, a_n

Case n=0

In this case the function f is empty and we call it an **empty sequence** and denote by **e**

Words over Σ

Let Σ be an **alphabet**

We call finite sequences of the alphabet Σ **words** or **strings** over Σ

We denote by e the **empty word** over Σ

Some books use symbol λ for the **empty word**

Words over Σ

E5 Let $\Sigma = \{a, b\}$

We will write some words (strings) over Σ in a **shorthand** notaiton as for example

aaa, ab, bbb

instead using the formal definition:

f : $\{1, 2, 3\} \longrightarrow \Sigma$

KORKAPRA ERKER DAGA

such that $f(1) = a, f(2) = a, f(3) = a$ for the word aaa or $g: \{1, 2\} \longrightarrow \Sigma$ such that $g(1) = b, g(2) = b$ for the word bb ... etc...

Words in Σ^*

Let Σ be an **alphabet**. We denote by

Σ ∗

the set of **all finite** sequences over Σ Elements of Σ [∗] are called **words** over Σ We write $w \in \sum^*$ to express that w is a **word** over Σ

Symbols for words are

w, z, v, x, y, z, α , β , $\gamma \in \Sigma^*$ $x_1, x_2, \ldots \in \Sigma^*$ $y_1, y_2, \ldots \in \Sigma^*$

KORKA EXTER LONG

Words in Σ^*

Observe that the set of all finite sequences include the empty sequence i.e. $e \in \Sigma^*$ and we hence have the following

Fact

For any **alphabet** Σ ,

 $\Sigma^* \neq \emptyset$

Chapter 1

Some Short Questions and Answers

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 10 Q Q ·

Short Questions

Q1 Let $\Sigma = \{a, b\}$

How many are there all possible **words** of length 5 over Σ ?

A1 By definition, words over Σ are finite sequences; Hence words of a **length 5** are functions

f : $\{1, 2, ..., 5\} \rightarrow \{a, b\}$

So we have by the **Counting Functions Theorem** that there are 2^5 words of a length **5** over $\Sigma = \{a, b\}$

Counting Functions Theorem

Counting Functions Theorem

For any finite, non empty sets A, B , there are

 $|B|^{|\mathcal{A}|}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

functions that map \bf{A} into \bf{B}

The **proof** is in Part 5

Short Questions

Q2

Let $\Sigma = \{a_1, \ldots, a_k\}$ where $k \geq 1$

How many are there possible **words** of length $\leq n$ for $n \geq 0$ in Σ ∗?

A2

By the **Counting Functions Theorem** there are

 $k^0 + k^1 + \cdots + k^n$

words of length $\leq n$ over Σ because for each m there are k^m words of length m over $\Sigma = \{a_1, \ldots, a_k\}$ and $m = 0, 1, \ldots n$

KORKAR KERKER DRA

Short Questions

```
Q3 Given an alphabet \Sigma \neq \emptyset
```

```
How many are there words in the set Σ
∗?
```
A3

There are **infinitely countably** many **words** in Σ [∗] by the Theorem 5 (Lecture 2) that says: " for any non empty, finite set $A, |A^*| = \aleph_0$ "

We hence proved the following

Theorem

For any alphabet $\Sigma \neq \emptyset$, the set Σ^* of all words over Σ is **countably infinite**

KORKA EXTER LONG

Language Definition

Given an alphabet Σ , any set L such that

$L \subseteq \Sigma^*$

is called a **language over** Σ

Fact 1

For any alphabet Σ, any language over Σ is **countable**

Fact 2

For any alphabet $\Sigma \neq \emptyset$, there are uncountably many languages over Σ

More precisely, there are exactly $C = |R|$ of **languages** over any non - empty alphabet Σ

Fact 1

For any alphabet Σ, any language over Σ is **countable Proof**

By definition, a set is **countable** if and only if is finite or countably infinite

1. Let $\Sigma = \emptyset$, hence $\Sigma^* = \{e\}$ and we have two languages

[∅], {e} over ^Σ, both finite, so **countable**

2. Let $\Sigma \neq \emptyset$, then Σ^* is countably infinite, so obviously any L ⊆ Σ ∗ is finite or countably infinite, hence **countable**

KORK EXTERNE PROVIDE

Fact 2

For any alphabet $\Sigma \neq \emptyset$, there are exactly $C = |R|$ of **languages**

```
over any non - empty alphabet \Sigma
```
Proof

We proved that $|\Sigma^*| = \aleph_0$

By definition $L \subseteq \sum^*$, so there is as many languages over Σ as all subsets of a set of cardinality \aleph_0 that is as many as $2^{\aleph_0} = C$

KORK EXTERNE PROVIDE

Q4 Let $\Sigma = \{a\}$

There is **N₀ languages over** Σ

NO

We just proved that that there is uncountably many, more precisely, exactly C languages over $\Sigma \neq \emptyset$ and we know that

 $\aleph_0 < C$

Definition

Given an alphabet Σ and a word $w \in \Sigma^*$ We say that **w** has a **length** $n = |w|$ when

 $w : \{1, 2, ...n\} \longrightarrow \Sigma$

We re-write w as

 $w : \{1, 2, |w|\} \longrightarrow \Sigma$

Definition

Given $\sigma \in \Sigma$ and $w \in \Sigma^*$, we say $\sigma \in \Sigma$ occurs in the **j-th position** in $w \in \Sigma^*$ if and only if $w(j) = \sigma$ for $1 \leq i \leq |w|$

KORKA EXTER LONG

Some Examples

E6 Consider a word w written in a shorthand as

 $w = \text{anita}$

By formal definition we have

 $w(1) = a$, $w(2) = n$, $w(3) = i$, $w(4) = t$, $w(5) = a$ and a occurs in the 1st and 5th position **E7** Let $\Sigma = \{0, 1\}$ and $w = 01101101$ (shorthand) Formally $w : \{1, 2, 8\} \longrightarrow \{0, 1\}$ is such that $w(1) = 0$, $w(2) = 1$, $w(3) = 1$, $w(4) = 0$, $w(5) = 1$, $w(6) = 1, w(7) = 0, w(8) = 1$ 1 occurs in the positions 2, 3, 5, 6 and 8 0 occurs in the positions 1, 4, 7

KORKAPRA ER EL POLO

Informal Concatenation

Informal Definition

Given an alphabet Σ and any words $x, y \in \Sigma^*$
We define informally a concenteration of the

We define informally a **concatenation** ∘ of words x, y as a word w obtained from x , y by writing the word x followed by the word y

We write the concatenation of words x, y as

 $w = x \circ y$

We use the symbol \circ of concatenation when it is needed formally, otherwise we will write simply

$$
w = xy
$$

Formal Concatenation

Definition

Given an alphabet Σ and any words $x, y \in \Sigma^*$ We define:

 $W = X \circ V$

if and only if

- **1.** $|w| = |x| + |y|$
- **2**. $w(j) = x(j)$ for $j = 1, 2, ..., |x|$
- **2**. $w(|x| + j) = j(j)$ for $j = 1, 2, ..., |y|$

Formal Concatenation

Properties

Directly from definition we have that

 $w \circ e = e \circ w = w$

$$
(x \circ y) \circ z = x \circ (y \circ z) = x \circ y \circ z
$$

Remark: we need to define a concatenation of two words and then we define

$$
x_1 \circ x_2 \circ \cdots \circ x_n = (x_1 \circ x_2 \circ \cdots \circ x_{n-1}) \circ x_n
$$

and prove by Mathematical Induction that

 $w = x_1 \circ x_2 \circ \cdots \circ x_n$ is well defined for all $n \ge 2$
Substring

Definition

A word $v \in \sum^*$ is a **substring** (sub-word) of w iff there are $x, y \in \Sigma^*$ such that

 $w = x v v$

KORK EXTERNE PROVIDE

Remark: the words $x, y \in \Sigma^*$, i.e. they can also be empty

P1 w is a substring of w

P2 e is a substring of any string (any word w)

as we have that $ew = we = w$

Definition Let $w = xy$

 x is called a prefix and y is called a suffix of w

Power w[']

Definition

We define a **power** wⁱ of w by Mathematical Induction as follows

$$
w^0 = e
$$

$$
w^{i+1} = w^i \circ w
$$

E8

 $w^0 = e, w^1 = w^0 \circ w = e \circ w = w, w^2 = w^1 \circ w = w \circ w$ **E9** anita² = anita¹ ∘ anita = e ∘ anita ∘ anita = anita ∘ anita

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Reversal w^R

Definition

Reversal w^R of w is defined by induction over length $|w|$ of w as follows

1. If $|w| = 0$, then $w^R = w = e$

2. If $|w| = n + 1 > 0$, then $w = ua$ for some $a \in \Sigma$, and $u \in \Sigma^*$ and we define

$$
w^R = au^R \ \ \text{for} \ \ |u| < n+1
$$

KORKAPRA ERKER DAGA

Short Definition of w R

- **1.** $e^R = e$
- **2.** $(ua)^R = au^R$

Reversal Proof

We prove now as an example of Inductive proof the following simple fact

Fact

For any $w, x \in \Sigma^*$

$$
(wx)^R = x^R w^R
$$

Proof by Mathematical Induction over the length |x| of x with $|w|$ = constant

Base case n=0

 $|x| = 0$, i.e. x=e and by definition

$$
(we)^R = ew^R = e^R w^R
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Reversal Proof

Inductive Assumption

$$
(wx)^R = x^R w^R \quad \text{for all} \quad |x| \leq n
$$

Let now $|x| = n + 1$, so $x = ua$ for certain $a \in \Sigma$ and $|u| = n$ We evaluate

$$
(wx)^R = (w(ua))^R = ((wu)a)^R
$$

$$
= {^{def}} a(wu)^R = {^{ind}} au^R w^R = {^{def}} (ua)^R = x^R w^R
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 10 Q Q ·

Languages over Σ

Definition

Given an alphabet Σ , any set L such that $L \subseteq \Sigma^*$ is called a **language** over Σ

Observe that **0**, Σ, Σ^{*} are all languages over Σ We have proved

Theorem

Any language L over Σ , is finite or infinitely countable

KORK EXTERNE PROVIDE

Languages over Σ

Languages are **sets** so we can define them in ways we did for sets, by listing elements (for small finite sets) or by giving a **property** P(w) **defining** L , i.e. by setting

 $L = \{w \in \Sigma^* : P(w)\}$

E1

 $L_1 = \{w \in \{0, 1\}^* : w \text{ has an even number of } 0\text{'s }\}$

E2

 $L_2 = \{w \in \{a, b\}^* : w \text{ has } ab \text{ as a sub-string }\}$

KORKAPRA ERKER DAGA

Languages Examples

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 10 Q Q ·

Languages Examples

Languages are **sets** so we can define set operations of union, intersection, generalized union, generalized intersection, complement, Cartesian product, ... etc ... of languages as we did for any sets

For example, given $L, L_1, L_2 \subseteq \Sigma^*$, we consider

L₁ ∪ L₂, L₁ ∩ L₂, L₁ – L₂,

 $-L = \Sigma^* - L$, $L_1 \times L_2, \ldots$ etc

and we have that all properties of **algebra of sets** hold for any languages over a given alphabet Σ

KORKA ERKER EL POLO

Special Operations on Languages

We define now a special operation on languages, different from any of the **set** operation

Concatenation Definition

Given $L_1, L_2 \subseteq \Sigma^*$, a language

 $L_1 \circ L_2 = \{ w \in \Sigma^* : w = xy \text{ for some } x \in L_1, y \in L_2 \}$

KORKA EXTER I DAR

is called a **concatenation** of the languages L_1 and L_2

Concatenation of Languages

The concatenation $L_1 \circ L_2$ domain issue

We can have that the languages L_1 , L_2 are defined over **different domains**, i.e they have two alphabets $\Sigma_1 \neq \Sigma_2$ for

$$
L_1\subseteq {\Sigma_1}^*\quad \text{ and }\quad L_2\subseteq {\Sigma_2}^*
$$

In this case we always take

 $\Sigma = \Sigma_1 \cup \Sigma_2$ and get $L_1, L_2 \subseteq \Sigma^*$

KORKARKKER E VAN

E5

Let L_1 , L_2 be languages defined below

$$
L_1 = \{w \in \{a, b\}^* : |w| \le 1\}
$$

 $L_2 = \{w \in \{0, 1\}^* : |w| \leq 2\}$

Describe the concatenation $L_1 \circ L_2$ of L_1 and L_2

Domain Σ of $L_1 \circ L_2$ We have that $\Sigma_1 = \{a, b\}$ and $\Sigma_2 = \{0, 1\}$ so we take $\Sigma = \Sigma_1 \cup \Sigma_2 = \{a, b, 0, 1\}$ and

 $L_1 \circ L_2 \subset \Sigma$

KORKA EXTER I DAR

Let L_1 , L_2 be languages defined below

 $L_1 = \{w \in \{a, b\}^* : |w| \le 1\}$

 $L_2 = \{w \in \{0, 1\}^* : |w| \leq 2\}$

We write now a **general formula** for $L_1 \circ L_2$ as follows

 $L_1 \circ L_2 = \{ w \in \Sigma^* : w = xy \}$

where

 $x \in \{a, b\}^*, y \in \{0, 1\}^*$ and $|x| \le 1, |y| \le 2$

KORKAPRA ERKER DAGA

E5 revisited

Describe the concatenation of $L_1 = \{w \in \{a, b\}^* : |w| \le 1\}$ and $L_2 = \{w \in \{0, 1\}^* : |w| \le 2\}$

As both languages are finite, we **list** their elements and get

 $L_1 = \{e, a, b\}, L_2 = \{e, 0, 1, 01, 00, 11, 10\}$

We **describe** their concatenation as

 $L_1 \circ L_2 = \{ey : y \in L_2\} \cup \{ay : y \in L_2\} \cup \{by : y \in L_2\}$

Here is another **general formula** for $L_1 \circ L_2$

$$
L_1\circ L_2=e\circ L_2\cup(\{a\}\circ L_2)\cup(\{b\}\circ L_2)
$$

KORKA EXTER I DAR

E6

Describe concatenations $L_1 \circ L_2$ and $L_2 \circ L_1$ of

 $L_1 = \{w \in \{0, 1\}^* : \text{ w has an even number of 0's}\}\$

and

$$
L_2 = \{w \in \{0, 1\}^* : \quad w = 0xx, \ x \in \Sigma^*\}
$$

Here the are

 $L_1 \circ L_2 = \{ w \in \Sigma^* : w \text{ has an odd number of } 0's \}$

 $L_2 \circ L_1 = \{w \in \Sigma^* : w \text{ starts with } 0\}$

KORKARKKER E VAN

We have that

 $L_1 \circ L_2 = \{w \in \Sigma^* : \text{ w has an odd number of 0's}\}\$ $L_2 \circ L_1 = \{w \in \Sigma^* : w \text{ starts with } 0\}$ **Observe** that

 $1000 \in L_1 \circ L_2$ and $1000 \notin L_2 \circ L_1$

This proves that

 $L_1 \circ L_2 \neq L_2 \circ L_1$

KORKA EXTER I DAR

We hence **proved** the following

Fact

Concatenation of languages **is not** commutative

E8

Let L_1 , L_2 be languages defined below for $\Sigma = \{0, 1\}$ L₁ = { $w \in \Sigma^*$: $w = x1, x \in \Sigma^*$ } $L_2 = \{w \in \Sigma^* : w = 0x, x \in \Sigma^*\}$ **Describe** the language $L_2 \circ L_1$

Here it is

$$
L_2 \circ L_1 = \{w \in \Sigma^* : \quad w = 0xy1, \quad x, y \in \Sigma^*\}
$$

Observe that $L_2 \circ L_1$ can be also defined by a property as follows

 $L_2 \circ L_1 = \{ w \in \Sigma^* : w \text{ starts with } 0 \text{ and ends with } 1 \}$

KORK EXTERNE PROVIDE

Distributivity of Concatenation

Theorem

Concatenation is **distributive** over union of languages

More precisely, given languages L, L_1, L_2, \ldots, L_n , the following holds for any $n \geq 2$

> $(L_1 \cup L_2 \cup \cdots \cup L_n) \circ L = (L_1 \circ L) \cup \cdots \cup (L_n \circ L)$ $L \circ (L_1 \cup L_2 \cup \cdots \cup L_n) = (L \circ L_1) \cup \cdots \cup (L \circ L_n)$

> > **KORKA EXTER I DAR**

Proof by Mathematical Induction over $n \in N$, $n \ge 2$

We prove the **base case** for the first equation and leave the Inductive argument and a similar proof of the second equation as an exercise

Base Case $n = 2$

We have to prove that

 $(L_1 \cup L_2) \circ L = (L_1 \circ L) \cup (L_2 \circ L)$

 $w \in (L_1 \cup L_2) \circ L$ iff (by definition of \circ) $(w \in L_1 \text{ or } w \in L_2)$ and $w \in L$ iff (by distributivity of and over or) $(w \in L_1$ and $w \in L)$ or $(w \in L_2$ and $w \in L)$ iff (by definition of \circ) $(w \in L_1 \circ L)$ or $(w \in L_2 \circ L)$ iff (by definition of ∪) $w \in (L_1 \circ L) \cup (L_2 \circ L)$ Kleene Star - L^{*}

Kleene Star L^{*} of a language L is yet another operation **specific** to languages

It is named after Stephen Cole Kleene (1909 -1994), an American mathematician and world famous logician who also helped lay the foundations for theoretical computer science

We define L^{*} as the set of all strings obtained by concatenating zero or more strings from L

Remember that concatenation of zero strings is e, and concatenation of one string is the string itself

KORK EXTERNE PROVIDE

Kleene Star - L^{*}

We define L^* formally as

 $L^* = \{w_1 w_2 ... w_k : \text{for some } k \ge 0 \text{ and } w_1, ..., w_k \in L\}$

We also write as

 $L^* = \{w_1w_2...w_k: k \ge 0, w_i \in L, i = 1, 2, ..., k\}$

or in a form of Generalized Union

$$
L^* = \bigcup_{k\geq 0} \{w_1w_2\ldots w_k: w_1,\ldots,w_k\in L\}
$$

Remark we write xyz for x ∘ y ∘ z. We use the concatenation symbol ∘ when we want to stress that we talk about some properties of the concatenation

Kleene Star Properties

Here are some Kleene Star basic **properties**

P1 $e \in L^*$, for all L

Follows directly from the definition as we have case $k = 0$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

P2 $L^* \neq \emptyset$, for all L Follows directly from **P1**, as $e \in L^*$

P3 $\emptyset^* \neq \emptyset$

Because $L^* = \emptyset^* = \{e\} \neq \emptyset$

Kleene Star Properties

K ロ > K 個 > K 로 > K 로 > - 로 - K Q Q Q

Some more Kleene Star basic **properties**

P4 $L^* = \Sigma^*$ for some L

Take $L = \Sigma$

P6 $L^* \neq \Sigma^*$ for some L Take $L = \{00, 11\}$ over $\Sigma = \{0, 1\}$ We have that 01 $\notin L^*$ and 01 $\in \Sigma^*$

Example

Observation

The property **P4** provides a quite trivial example of a language L over an alphabet Σ such that $L^* = \Sigma^*$, namely just $L = \Sigma$

A natural question arises: is there any language $L \neq \Sigma$ such that nevertheless $L^* = \Sigma^*$?

KORK EXTERNE PROVIDE

Example

Example

Take $\Sigma = \{0, 1\}$ and take

 $L = \{w \in \Sigma^* : w \text{ has an unequal number of 0 and 1}\}\$

Some words in and out of L are

100 ∈ L, 00111 ∈ L 100011 ∉ L

We now **prove** that

 $L^* = \{0, 1\}^* = \Sigma^*$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Example Proof

Given

 $L = \{w \in \{0, 1\}^* : w \text{ has an unequal number of 0 and 1}\}$ We now **prove** that

 $L^* = \{0, 1\}^* = \Sigma^*$

Proof

By definition we have that $L \subseteq \{0, 1\}^*$ and $\{0, 1\}^{**} = \{0, 1\}^*$ By the the following property of languages:

$$
\mathbf{P}: \quad \text{If} \ \ L_1 \subseteq L_2, \quad \text{then} \quad L_1^{\star} \subseteq L_2^{\star}
$$

and get that

 $L^* \subseteq \{0, 1\}^{**} = \{0, 1\}^*$ i.e. $L^* \subseteq \Sigma^*$

KORK EXTERNE PROVIDE

Example Proof

Now we have to show that $\Sigma^* \subseteq L^*$, i.e.

 ${0, 1}^* \subseteq {w \in 0, 1^* : w \text{ has an unequal number of 0 and 1}}$

Observe that

 $0 \in L$ because 0 regarded as a string over Σ has an unequal number appearances of 0 and 1

The number of appearances of 1 is zero and the number of appearances of 0 is one

 $1 \in L$ for the same reason a $0 \in L$

So we proved that ${0, 1} \subseteq L$

```
We now use the property P and get
```
 ${0, 1}^* \subseteq L^*$ i.e $\Sigma^* \subseteq L^*$

K ロ K K 레 K K 리 X X 리 X 리 코 X Y Q Q O

what **ends the proof** that $\Sigma^* = L^*$

 L^* and L^+

We define

 $L^+ = \{w_1 w_2 ... w_k : \text{for some } k \ge 1 \text{ and some } w_1, ..., w_k \in L\}$

We write it also as follows

 $L^+ = \{w_1 w_2 \dots w_k : k \ge 1 \mid w_i \in L, i = 1, 2, \dots, k\}$

Properties

P1 : $L^+ = L \circ L^*$ **P2** : $e \in L^+$ iff $e \in L$

KORKARKKER E VAN

 L^* and L^+

We know that

 $e \in L^*$ for all L

Show that

For some language L we have that $e \in L^+$ and

for some language L we can have that $e \notin L^+$

E1

Obviously, for any L such that $e \in L$ we have that $e \in L^+$

E2

If L is such that $e \notin L$ we have that $e \notin L^+$ as L^+ does not have a case $k=0$

KORK EXTERNE PROVIDE

Chapter1 Sets, Relations, and Languages

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 10 Q Q ·

Slides Set 4 PART 8: Finite Representation of Languages

Finite Representation of Languages **Introduction**

We can represent a finite language by **finite means** for example listing all its elements

Languages are often infinite and so a natural question arises if a **finite representation** is possible and when it is possible when a language is infinite

The representation of languages by **finite specifications** is a central issue of the theory of computation

Of course we have to define first formally what do we mean by representation by finite specifications , or more precisely by a **finite representation**

Idea of Finite Representation

We start with an **example**: let

L = {a}^{*} \cup ({b} \circ {a}^{*}) = {a}^{*} \cup ({b}{a}^{*})

Observe that by definition of Kleene's star

 ${a}^* = {e, a, aa, aaa ...}$

and L is an infinite set

 $L = \{e, a, aa, aaa \dots\} \cup \{b\} \{e, a, aa, aaa \dots\}$

 $L = \{e, a, aa, aaa \dots\} \cup \{b, ba, baa, baaa \dots\}$

 $L = \{e, a, b, aa, ba, aaa baa, ...\}$

Idea of Finite Representation

The expression ${a}^* \cup ({b}{{a}^*})$ is built out of a finite number of **symbols**:

 $\{ , \}$, $\{ , \}$, $\}$, \cup

and describe an infinite set

 $L = \{e, a, b, aa, ba, aaa baa, ... \}$

We write it in a **simplified form** - we skip the set symbols {, } as we know that languages are **sets** and we have

 $a^* \cup (ba^*)$

Idea of Finite Representation

We will call such expressions as

 $a^* \cup (ba^*)$

a **finite representation** of a language L

The idea of the finite representation is to use symbols

(,), $*$, \cup , \emptyset , and symbols $\sigma \in \Sigma$

KO KA (DIKKE) KE KO BI YOKO

to write expressions that **describe** the language L

Example of a Finite Representation

Let L be a language defined as follows

 $L = \{w \in \{0, 1\}^* : w \text{ has two or three occurrences of 1}\}$ the **first** and the **second** of which **are not** consecutive }

The language L can be expressed as

L = ${0}^*{1}{0}^*{0} \circ {1}{0}^*({1}{0}^* \cup 0^*)$

We will define and write the **finite representation** of L as

 $L = 0^* 10^* 0 10^* (10^* \cup \emptyset^*)$

We call expression above (and others alike) a **regular expression**

Problem with Finite Representation

Question

Can we **finitely represent** all languages over an alphabet $\Sigma \neq \emptyset$?

Observation

O1. Different languages must have different representations

O2. Finite representations are finite strings over a finite set, so we have that

there are ℵ⁰ possible **finite representations**

KORK EXTERNE PROVIDE
Problem with Finite Representation

O3. There are **uncountably** many, precisely exactly $C = |R|$) of possible languages over any alphabet $\Sigma \neq \emptyset$ **Proof**

For any $\Sigma \neq \emptyset$ we have proved that

 $|\Sigma^*|$ = \aleph_0

By definition of language

$L \subseteq \Sigma^*$

so there are as many languages as **subsets** of Σ^{*} that is as many as

$$
|2^{\Sigma^*}|=2^{\aleph_0}=C
$$

Problem with Finite Representation

Question

Can we **finitely represent** all languages over an alphabet $\Sigma \neq \emptyset$?

Answer

No, we can't

By **O2** and **O3** there are countably many (exactly \aleph_0) possible **finite representations** and there are uncountably many (exactly C) possible languages over any $\Sigma \neq \emptyset$

This **proves** that

NOT ALL LANGUAGES CAN BE FINITELY REPRESENTED

Problem with Finite Representation

Moreover

There are **uncountably** many and exactly as many as Real numbers, i.e. C languages that **can not** be finitely represented

We can **finitely represent** only a small, countable portion of languages

We **define** and **study** here only **two** classes of languages:

REGULAR and CONTEXT FREE languages

Regular Expressions Definition

Definition

We define a R of **regular expressions** over an alphabet Σ as follows

 $R \subseteq (\Sigma \cup \{(),), 0, \cup, *\}^*$ and R is the smallest set such that **1.** $\emptyset \in \mathcal{R}$ and $\Sigma \subseteq \mathcal{R}$, i.e. we have that

 $\emptyset \in \mathcal{R}$ and $\forall_{\sigma \in \Sigma}$ ($\sigma \in \mathcal{R}$)

2. If $\alpha, \beta \in \mathcal{R}$, then

(αβ) ∈ R **concatenation** $(\alpha \cup \beta) \in \mathcal{R}$ **union**

∗ ∈ R **Kleene's Star**

Regular Expressions Theorem

Theorem

The set $\mathcal R$ of **regular expressions** over an alphabet Σ is countably infinite

Proof

Observe that the set $\Sigma \cup \{(), \emptyset, \cup, *\}$ is non-empty and **finite**, so the set $(\Sigma \cup \{(),), 0, \cup, * \}^*$ is **countably infinite**, and by definition

$$
\mathcal{R} \subseteq \big(\Sigma \cup \{(\,,\,),\, \emptyset,\, \cup,\, *\}\big)^*
$$

hence we $|\mathcal{R}| \leq \aleph_0$

The set $\mathcal R$ obviously includes an infinitely countable set

 \emptyset , $\emptyset\emptyset$, $\emptyset\emptyset$,

what proves that $|R| = \aleph_0$

Regular Expressions

Example

Given $\Sigma = \{0, 1\}$, we have that

- **1.** ∅ ∈ R, ¹ ∈ R, ⁰ ∈ R
- **2.** $(01) \in \mathbb{R}$ 1^{*} $\in \mathbb{R}$, $0^* \in \mathbb{R}$, $0^* \in \mathbb{R}$, $(0 \cup 1) \in \mathbb{R}$, ..., $\ldots, ((0^* \cup 1^*) \cup \emptyset)1)^* \in \mathcal{R}$

Shorthand Notation when writing regular expressions we will **keep only** essential parenthesis

For example, we will write

 $((0^* \cup 1^* \cup \emptyset)1)^*$ instead of $(((0^* \cup 1^*) \cup \emptyset)1)^*$ 1*01* ∪ (01)* instead of $(((1^*0)1^*) \cup (01)^*)$

Regular Expressions and Regular Languages

We use the regular expressions from the set $\mathcal R$ as a **representation** of languages

Languages **represented** by regular expressions are called **regular languages**

Regular Expressions and Regular Languages

The idea of the representation is explained in the following

Example

The regular expression (written in a shorthand notion)

1^{*}01^{*} ∪ (01)^{*}

represents a language

 $L = \{1\}^* \{0\} \{1\}^* \cup \{01\}^*$

Definition of Representation

Definition

The **representation relation** between regular expressions and languages they **represent** is establish by a **function** \mathcal{L} such that if $\alpha \in \mathcal{R}$ is any regular expression, then $\mathcal{L}(\alpha)$ is the **language represented** by α

Definition of Representation

Formal Definition

The function $\mathcal{L}: \mathcal{R} \longrightarrow 2^{\sum^*}$ is defined recursively as follows

- **1.** $\mathcal{L}(\emptyset) = \emptyset$, $\mathcal{L}(\sigma) = \{\sigma\}$ for all $\sigma \in \Sigma$
- **2.** If $\alpha, \beta \in \mathcal{R}$, then

 $\mathcal{L}(\alpha\beta) = \mathcal{L}(\alpha) \circ \mathcal{L}(\beta)$ concatenation $\mathcal{L}(\alpha \cup \beta) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$ union $\mathcal{L}(\alpha^*) = \mathcal{L}(\alpha)^*$ **Kleene's Star**

KORKARKKER E VAN

Regular Language Definition

Definition

A language L ⊆ Σ ∗ is **regular**

if and only if

L is represented by a **regular expression**, i.e.

when there is $\alpha \in \mathcal{R}$ such that $L = \mathcal{L}(\alpha)$

where $\mathcal{L}: \mathcal{R} \longrightarrow 2^{\sum^*}$ is the **representation function**

We use a **shorthand notation**

$$
L = \alpha \quad \text{for} \quad L = \mathcal{L}(\alpha)
$$

KORKA EXTER I DAR

E1

Given $\alpha \in \mathcal{R}$, for $\alpha = ((a \cup b)^* a)$

Evaluate L over an alphabet $\Sigma = \{a, b\}$, such that $L = \mathcal{L}(\alpha)$ We write

 $\alpha = ((a \cup b)^* a)$

in the **shorthand** notation as

 $\alpha = (a \cup b)^* a$

We evaluate $L = (a \cup b)^* a$ as follows

 $\mathcal{L}((a \cup b)^*a) = \mathcal{L}((a \cup b)^*) \circ \mathcal{L}(a) = \mathcal{L}((a \cup b)^*) \circ \{a\} =$

$$
(\mathcal{L}(a \cup b))^*(a) = (\mathcal{L}(a) \cup \mathcal{L}(b))^*(a) = (\{a\} \cup \{b\})^*(a)
$$

Observe that

$$
((a) \cup \{b\})^*(a) = \{a, b\}^*(a) = \sum^*(a)
$$

so we get

$$
L=\mathcal{L}((a\cup b)^*a)=\Sigma^*(a)
$$

 $L = \{w \in \{a, b\}^* : w \text{ ends with } a\}$

KORKARKKER E VAN

E2 Given $\alpha \in \mathcal{R}$, for $\alpha = ((c^*a) \cup (bc^*)^*)$ **Evaluate** $L = \mathcal{L}(\alpha)$, i.e **describe** $L = \alpha$

We write α in the shorthand notation as

 $\alpha = c^*a \cup (bc^*)^*$

and evaluate $L = c^* a \cup (bc^*)^*$ as follows

 $\mathcal{L}((c^*a \cup (bc^*)^*) = \mathcal{L}(c^*a) \cup (\mathcal{L}(bc^*))^* = {c^*}^*a \cup ({b}^*c)^*)^*$

and we get that

 $L = {c}^*{a} \cup ({b} {c}^*)^*$

KORKAPRA ERKER DAGA

E3 Given $\alpha \in \mathcal{R}$ for

 $\alpha = (0^* \cup (((0^*(1 \cup (11)))((00^*)(1 \cup (11)))^*)0^*))$ **Evaluate** $L = \mathcal{L}(\alpha)$, i.e **describe** the language $L = \alpha$ We write α in the **shorthand** notation as

 $\alpha = 0^* \cup 0^*(1 \cup 11)((00^*(1 \cup 11))^*)0^*$

and evaluate

 $L = \mathcal{L}(\alpha) = 0^* \cup 0^* \{1, 11\} (00^* \{1, 11\})^* 0^*$

Observe that 00^{*} contains at least one 0 that separates $0^*[1, 11]$ on the left with $(00^*({1, 11})^*)$ that follows it, so we get that

 $L = \{w \in \{0, 1\}^* : w \text{ does not contain a substring } 111\}$ **KORK EXTERNE PROVIDE**

Class **RL** of Regular Languages

Definition

Class **RL** of regular languages over an alphabet Σ contains all L such that $L = \mathcal{L}(\alpha)$ for certain $\alpha \in \mathcal{R}$, i.e.

RL = { $L \subseteq \Sigma^*$: $L = \mathcal{L}(\alpha)$ for certain $\alpha \in \mathcal{R}$ }

Theorem

There \aleph_0 regular languages over $\Sigma \neq \emptyset$ i.e.

 $|RL| = N_0$

Proof

By definition that each regular language is $L = \mathcal{L}(\alpha)$ for certain $\alpha \in \mathcal{R}$ and the interpretation function $\mathcal{L}: \mathcal{R} \longrightarrow 2^{\sum^{*}}$ has an infinitely countable domain, hence $|\mathbf{RL}| = \aleph_0$

KORKAPRASHASH SHOAC

Class **RL** of Regular Languages

We can also think about languages in terms of **closure** and get immediately from definitions the following

Theorem

Class **RL** of regular languages is the **closure** of the set of languages

 $\{ \{\sigma\} : \sigma \in \Sigma \} \cup \{\emptyset\}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

with respect to union, concatenation and Kleene Star

Languages that are NOT Regular

Given an alphabet $\Sigma \neq \emptyset$

We have just proved that there are \aleph_0 **regular** languages, and we have also there are C of all languages over $\Sigma \neq \emptyset$. so we have the following

Fact

There is C languages that are **not regular**

Natural Questions

Q1 How to prove that a given language **is regular**?

A1 Find a regular expression α , such that $L = \alpha$, i.e. $L = \mathcal{L}(\alpha)$

Languages that are NOT Regular

Q2 How to prove that a given language **is not** regular?

A2 Not easy!

We will have a Theorem, called Pumping Lemma which provides a criterium for proving that a given language

is **not regular**

E1 A language

$$
L=0^*1^*
$$

is **is regular** as it is given by a regular expression $\alpha = 0^*1^*$ **E2** We will prove, using the Pumping Lemma that the language

```
L = \{0^n1^n : n \ge 1, n \in N\}
```
KORK EXTERNE PROVIDE

is **not regular**

General Problem

General Problem

Given a language L over Σ and a word $w \in \Sigma^*$, HOW to RECOGNIZE whether

 $w \in L$ or $w \notin L$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

OUR Next SUBJECT

Automata - LANGUAGE RECOGNITION devices