
INTRODUCTION TO THE THEORY OF
COMPUTATION

LECTURE NOTES

Professor Anita Wasilewska
Stony Brook University (SUNY at Stony Brook)

Course Text Book

ELEMENTS OF THE THEORY OF COMPUTATION

Harry R. Lewis, and Christos H. Papadimitriou

Prentice Hall, 2nd Edition

CHAPTER 1
SETS, RELATIONS, and LANGUAGES

LECTURE SLIDES

Chapter1
Sets, Relations, and Languages

Slides Set 1

PART 1: Sets

PART 2: Relations and Functions

PART 3: Special types of Binary Relations

Slides Set 2

PART 4: Finite and Infinite Sets

PART 5: Fundamental Proof Techniques

Chapter1
Sets, Relations, and Languages

Slides Set 3

PART 6: Closures and Algorithms

Slides Set 4

PART 7: Alphabets and languages

PART 8: Finite Representation of Languages

Chapter1
Sets, Relations, and Languages

Slides Set 1

PART 1: Sets

Sets

Set A set is a collection of objects

Elements The objects comprising a set are are
called its elements or members

a ∈ A denotes that a is an element of a set A

a < A denotes that a is not an element of A

Empty Set is a set without elements

Empty Set is denoted by ∅

Sets

Sets can be defined by listing their elements;

Example

The set

A = {a, ∅, {a, ∅}}

has 3 elements:

a ∈ A , ∅ ∈ A , {a, ∅} ∈ A

Sets

Sets can be defined by referring to other sets and

to properties P(x) that elements may or may not
have

We write it as

B = {x ∈ A : P(x)}

Example

Let N be a set of natural numbers

B = {n ∈ N : n < 0} = ∅

Operations on Sets

Set Inclusion

A ⊆ B if and only if ∀a(a ∈ A ⇒ a ∈ B)

is a true statement

Set Equality

A = B if and only if A ⊆ B and B ⊆ A

Proper Subset

A ⊂ B if and only if A ⊆ B and A , B

Operations on Sets

Subset Notations

A ⊆ B for a subset (might be improper)

A ⊂ B for a proper subset

Power Set Set of all subsets of a given set

P(A) = {B : B ⊆ A }

Other Notation

2A = {B : B ⊆ A }

Operations on Sets

Union

A ∪ B = {x : x ∈ A or x ∈ B}

We write:

x ∈ A ∪ B if and only if x ∈ A ∪ x ∈ B

Intersection

A ∩ B = {x : x ∈ A and x ∈ B}

We write:

x ∈ A ∩ B if and only if x ∈ A ∩ x ∈ B

Operations on Sets

Relative Complement

x ∈ (A − B) if and only if x ∈ A and x < B

We write:

A − B = {x : x ∈ A ∩ x < B}

Complement is defined only for A ⊆ U, where U
is called an universe

−A = U − A

We write for x ∈ U,

x ∈ −A if and only if x < A

Operations on Sets

Algebra of sets consists of properties of sets that
are true for all sets involved

We use tautologies of propositional logic

to prove basic properties of the algebra of sets

We then use the basic properties to prove more
elaborated properties of sets

Operations on Sets

It is possible to form intersections and unions of more then

two, or even a finite number o sets

Let F denote is any collection of sets

We write
⋃
F for the set whose elements are the

elements of all of the sets in F

Example Let
F = {{a}, {∅}, {a, ∅, b}}

We get ⋃
F = {a, ∅, b}

Operations on Sets

Observe that given

F = {{a}, {∅}, {a, ∅, b}} = {A1, A2, A3}

we have that

{a} ∪ {∅} ∪ {a, ∅, b} = A1 ∪ A2 ∪ A3 = {a, ∅, b} =
⋃
F

Hence we have that for any element x,

x ∈
⋃
F if and only if there exists i, such that x ∈ Ai

Operations on Sets

We define formally

Generalized Union of any family F of sets is⋃
F = {x : exists a set S ∈ F such that x ∈ S}

We write it also as

x ∈
⋃
F if and only if ∃S∈F x ∈ S

Operations on Sets

Generalized Intersection of any family F of sets is⋂
F = {x : ∀S∈F x ∈ S}

We write

x ∈
⋂
F if and only if ∀S∈F x ∈ S

Operations on Sets

Ordered Pair

Given two sets A ,B we denote by

(a, b)

an ordered pair, where a ∈ A and b ∈ B

We call a a first coordinate of (a, b)

and b its second coordinate

We define

(a, b) = (c, d) if and only if a = c and b = d

Operations on Sets

Cartesian Product

Given two sets A and B, the set

A × B = {(a, b) : a ∈ A and b ∈ B}

is called a Cartesian product (cross product) of sets A ,B

We write

(a, b) ∈ A × B if and only if a ∈ A and b ∈ B

Chapter1
Sets, Relations, and Languages

Slides Set 1

PART 2: Relations and Functions

Binary Relations

Binary Relation

Any set R such that R ⊆ A × A

is called a binary relation defined in a set A

Domain, Range of R

Given a binary relation R ⊆ A × A , the set

DR = {a ∈ A : (a, b) ∈ R}

is called a domain of the relation R

The set
VR = {b ∈ A : (a, b) ∈ R}

is called a range (set of values) of the relation R

n- ary Relations

Ordered tuple

Given sets A1, ...An, an element (a1, a2, ...an) such that
ai ∈ Ai for i = 1, 2, ...n is called an ordered tuple

Cartesian Product of sets A1, ,An is a set

A1 × A2 × ... × An = {(a1, a2, ...an) : ai ∈ Ai , i = 1, 2, ...n}

n-ary Relation on sets A1, . . . , An is any subset of
A1 × A2 × ... × An, i.e. the set

R ⊆ A1 × A2 × . . . × An

Function as Relation

Definition

A binary relation R ⊆ A × B is a function from A to B

if and only if the following condition holds

∀a∈A ∃! b∈B (a, b) ∈ R

where ∃! b∈B means there is exactly one b ∈ B

Because the condition says that for any a ∈ A we have

exactly one b ∈ B, we write

R(a) = b for (a, b) ∈ R

Function as Relation

Given a binary relation

R ⊆ A × B

that is a function

The set A is called a domain of the function R

and we write:

R : A −→ B

to denote that the relation R is a function and say that

R maps the set A into the set B

Functions

Function notation

We denote relations that are functions by letters f, g, h,...
and write

f : A −→ B

say that the function f maps the set A into the set B

Domain, Codomain

Let f : A −→ B,

the set A is called a domain of f ,

and the set B is called a codomain of f

Functions

Range

Given a function f : A −→ B

The set
Rf = {b ∈ B : b = f(a) and a ∈ A }

is called a range of the function f

By definition, the range of f is a subset of its codomain B

We write Rf = {b ∈ B : ∃a∈A b = f(a)}

The set
f = {(a, b) ∈ A × B : b = f(a)}

is called a graph of the function f

Functions

Function ”onto”

The function f : A −→ B is an onto function

if and only if the following condition holds

∀b∈B ∃a∈A f(a) = b

We denote it by

f : A
onto
−→ B

Functions

Function ” one- to -one”

The function f : A −→ B

is called a one- to -one function and denoted by

f : A
1−1
−→ B

if and only if the following condition holds

∀x,y∈A (x , y ⇒ f(x) , f(y))

Functions

A function f : A −→ B is not one- to -one function

if and only if the following condition holds

∃x,y∈A (x , y ∩ f(x) = f(y))

If a function f is 1-1 and onto

we denote it as

f : A
1−1,onto
−→ B

Functions

Composition of functions

Let f and g be two functions such that

f : A −→ B and g : B −→ C

We define a new function

h : A −→ C

called a composition of functions f and g as follows:

for any x ∈ A we put

h(x) = g(f(x))

Functions

Composition notation

Given function f and g such that

f : A −→ B and g : B −→ C

We denote the composition of f and g by (f ◦ g)

in order to stress that the function

f : A −→ B

”goes first” followed by the function

g : B −→ C

with a shared set B between them

Functions

We write now the definition of composition of functions f

and g using the composition notation (name for the

composition function) (f ◦ g) as follows

The composition (f ◦ g) is a new function

(f ◦ g) : A −→ C

such that for any x ∈ A we put

(f ◦ g)(x) = g(f(x))

Functions

There is also other notation (name) for the composition of f

and g that uses the symbol (g ◦ f), i.e. we put

(g ◦ f)(x) = g(f(x)) for all x ∈ A

This notation was invented to help calculus students to

remember the formula g(f(x)) defining the composition of

functions f and g

Functions

Inverse function

Let f : A −→ B and g : B −→ A

g is called an inverse function to f if and only if

the following condition holds

∀a∈A (f ◦ g)(a) = g(f(a)) = a

If g is an inverse function to f we denote by g = f−1

Functions

Identity function

A function I : A −→ A is called an identity on A

if and only if the following condition holds

∀a∈A I(a) = a

Inverse and Identity

Let f : A −→ B and let f−1 : B −→ A

be an inverse to f, then the following hold

(f ◦ f−1)(a) = f−1(f(a)) = I(a) = a, for all a ∈ A

(f−1 ◦ f(b)) = f(f−1(b) = I(b) = b , for all b ∈ B

Functions: Image and Inverse Image

Image

Given a function f : X −→ Y and a set A ⊆ X

The set

f [A] = {y ∈ Y : ∃x (x ∈ A ∩ y = f(x))}

is called an image of the set A ⊆ X under the function f

We write

y ∈ f [A] if and only if there is x ∈ A and y = f(x)

Other symbols used to denote the image are

f→(A) or f(A)

Functions: Image and Inverse Image

Inverse Image

Given a function f : X −→ Y and a set B ⊆ Y

The set
f−1[B] = {x ∈ X : f(x) ∈ B}

is called an inverse image of the set B ⊆ Y under the
function f

We write

x ∈ f−1[B] if and only if f(x) ∈ B

Other symbol used to denote the inverse image are

f−1(B) or f←(B)

Sequences

Definition

A sequence of elements of a set A is any function from
the set of natural numbers N into the set A, i.e. any function

f : N −→ A

Any f(n) = an is called n-th term of the sequence f

Notations
f = {an}n∈N , {an}n∈N , {an}

Sequences Example

Example

We define a sequence f of real numbers R as follows

f : N −→ R

such that
f(n) = n +

√
n

We also use a shorthand notation for the function f and

write it as
an = n +

√
n

Sequences Example

We often write the function f = {an} in an even shorter and

informal form as

a0 = 0, a1 = 1 + 1 = 2, a2 = 2 +
√

2.........

or even as

0, 2, 2 +
√

2, 3 +
√

3,n +
√

n.........

Observations

Observation 1

By definition, sequence of elements of any set is always

infinite (countably infinite) because the domain of the

sequence function f is a set N of natural numbers

Observation 2

We can enumerate elements of a sequence by any infinite

subset of N

We usually take a set N − {0} as a sequence domain
(enumeration)

Observations

Observation 3

We can choose as a set of indexes of a sequence any

countably infinite set T, i. e, not only the set N

of natural numbers

We often choose T = N − {0} = N+, i.e we consider

sequences that ”start” with n = 1

In this case we write sequences as

a1, a2, a3, an,

Finite Sequences

Finite Sequence

Given a finite set K = {1, 2, . . . , n}, for n ∈ N and any set
A

Any function
f : {1, 2, ...n} −→ A

is called a finite sequence of elements of the set A

of the length n

Case n=0

In this case the function f is an empty set and we call it an

empty sequence

We denote the empty sequence by e

Example

Example

Consider a sequence given by a formula

an =
n

(n − 2)(n − 5)

The domain of the function f(n) = an is the set N − {2, 5}

and the sequence f is a function

f : N − {2, 5} → R

The first elements of the sequence f are

a0 = f(0), a1 = f(1), a3 = f(3), a4 = f(4) a5 = f(5), a6 = f(6), . . .

Example

Example

Let T = {−1,−2, 3, 4} be a finite set and

f : {−1,−2, 3, 4} → R

be a function given by a formula

f(n) = an =
n

(n − 2)(n − 5)

f is a finite sequence of length 4 with elements

a−1 = f(−1), a−2 = f(−2), a3 = f(3), a4 = f(4)

Families of Sets Revisited

Family of sets

Any collection of sets is called a family of sets

We denote the family of sets by

F

Sequence of sets

Any function
f : N −→ F

is a sequence of sets, i..e a sequence where all its

elements are sets

We use capital letters to denote sets and write the sequence

of sets as
{An}n∈N

Generalized Union

Generalized Union

Given a sequence {An}n∈N of sets

We define that Generalized Union of the sequence of sets as⋃
n∈N

An = {x : ∃n∈N x ∈ An}

We write

x ∈
⋃
n∈N

An if and only if ∃n∈N x ∈ An

Generalized Intersection

Generalized Intersection

Given a sequence {An}n∈N of sets

We define that Generalized Intersection of the sequence

of sets as ⋂
n∈N

An = {x : ∀n∈N x ∈ An}

We write

x ∈
⋂
n∈N

An if and only if ∀n∈N x ∈ An

Indexed Family of Sets

Indexed Family of Sets

Given F be a family of sets

Let T , ∅ be any non empty set

Any function
f : T −→ F

is called an indexed family of sets with the set of indexes T

We write it
{At }t∈T

Notice

Any sequence of sets is an indexed family of sets for T = N

Chapter 1

Some Simple Questions and Answers

Simple Short Questions

Here are some short Yes/ No questions

Answer them and write a short justification of your answer

Q1 2{1,2} ∩ {1, 2} , ∅

Q2 {{a, b}} ∈ 2{a,b ,{a,b}}

Q3 ∅ ∈ 2{a,b ,{a,b}}

Q4 Any function f from A , ∅ onto A , has property

f(a) , a for certain a ∈ A

Simple Short Questions

Q5 Let f : N −→ P(N) be given by a formula:

f(n) = {m ∈ N : m < n2}

then ∅ ∈ f [{0, 1, 2}]

Q6 Some relations
R ⊆ A × B

are functions that map the set A into the set B

Answers to Short Questions

Q1 2{1,2} ∩ {1, 2} , ∅

NO because

2{1,2} = {∅, {1}, {2}, {1, 2}} ∩ {1, 2} = ∅

Q2 {{a, b}} ∈ 2{a,b ,{a,b}}

YES because

have that {a, b} ⊆ {a, b , {a, b}} and hence

{{a, b}} ∈ 2{a,b ,{a,b}}

by definition of the set of all subsets of a given set

Answers to Short Questions

Q2 {{a, b}} ∈ 2{a,b ,{a,b}}

YES other solution

We list all subsets of the set {a, b , {a, b}},

i.e. all elements of the set

2{a,b ,{a,b}}

We start as follows

{∅, {a}, {b}, {{a, b}}, . . . , . . . }

and observe that we can stop listing because we reached

the set {{a, b}}

This proves that {{a, b}} ∈ 2{a,b ,{a,b}}

Answers to Short Questions

Q3 ∅ ∈ 2{a,b ,{a,b}}

YES because for any set A, we have that ∅ ⊆ A

Q4 Any function f from A , ∅ onto A has a property

f(a) , a for certain a ∈ A

NO

Take a function such that f(a) = a for all a ∈ A

Obviously f is ”onto” and and there is no a ∈ A

for which f(a) , a

Answers to Short Questions

Q5 Let f : N −→ P(N) be given by formula:

f(n) = {m ∈ N : m < n2}, then ∅ ∈ f [{0, 1, 2}]

YES We evaluate

f(0) = {m ∈ N : m < 0} = ∅

f(1) = {m ∈ N : m < 1} = {0}

f(2) = {m ∈ N : m < 22} = {0, 1, 2, 3}

and so by definition of f [A] get that

f [{0, 1, 2}] = {∅, {0}, {0, 1, 2, 3}} and hence ∅ ∈ f [{0, 1, 2}]

Q6 Some R ⊆ A × B are functions that map A into B

YES: Functions are special type of relations

Simple Short Questions

Q7 {(1, 2), (a, 1)} is a binary relation on {1, 2}

Q8 For any binary relation R ⊆ A × A , the

inverse relation R−1 exists

Q9 For any binary relation R ⊆ A × A that is a function,

the inverse function R−1 exists

Simple Short Questions

Q10 Let A = {a, {a}, ∅} and B = {∅, {∅}, ∅}

there is a function f : A−→1−1
onto B

Q11 Let f : A−→ B and g : B −→onto A ,

then the compositions (g ◦ f) and (f ◦ g) exist

Q12 The function f : N −→ P(R) given by the formula:

f(n) = {x ∈ R : x >
ln(n3 + 1)
√

n + 6
}

is a sequence

Answers to Short Questions

Q7 {(1, 2), (a, 1)} is a binary relation on {1, 2}

NO because (a, 1) < {1, 2} × {1, 2}

Q8 For any binary relation R ⊆ A × A , the inverse

relation R−1 exists

YES By definition, the inverse relation to R ⊆ A × A is
the set

R−1 = {(b , a) : (a, b) ∈ R}

and it is a well defined relation in the set A

Answers to Short Questions

Q9 For any binary relation R ⊆ A × A that is a function,

the inverse function R−1 exists

NO R must be also a 1 − 1 and onto function

Q10 Let A = {a, {a}, ∅} and B = {∅, {∅}, ∅}

there is a function f : A−→1−1
onto B

NO The set A has 3 elements and the set

B = {∅, {∅}, ∅} = {∅, {∅}}

has 2 elements and an onto function does not exists

Answers to Short Questions

Q11 Let f : A−→ B and g : B −→onto A ,

then the compositions (g ◦ f) and (f ◦ g) exist

YES The composition (f ◦ g) exists because the functions

f : A−→ B and g : B −→onto A share the same set B

The composition (g ◦ f) exists because the functions

g : B −→onto A and f : A−→ B share the same set A

The information ”onto” is irrelevant

Answers to Short Questions

Q12 The function f : N −→ P(R) given by the formula:

f(n) = {x ∈ R : x >
ln(n3 + 1)
√

n + 6
}

is a sequence

YES It is a sequence as the domain of the function f is

the set N of natural numbers and the formula for f(n) assigns

to each natural number n a certain subset of R, i.e.

an element of P(R)

Chapter1
Sets, Relations, and Languages

Slides Set 1

PART 3: Special types of Binary Relations

SPECIAL RELATION: Equivalence Relation

Equivalence Relation

Equivalence relation

A binary relation R ⊆ A × A is an equivalence relation

defined in the set A if and only if it is reflexive, symmetric

and transitive

Symbols

We denote equivalence relation by symbols

∼, ≈ or ≡

We will use the symbol ≈ to denote the equivalence relation

Equivalence Relation

Equivalence class

Let ≈ ⊆ A × A be an equivalence relation on A

The set
E(a) = {b ∈ A : a ≈ b}

is called an equivalence class

Symbol

The equivalence classes are usually denoted by

[a] = {b ∈ A : a ≈ b}

The element a is called a representative of the equivalence
class [a] defined in A

Partitions

Partition

A family of sets P ⊆ P(A) is called a partition of the set A
if and only if the following conditions hold

1. ∀X∈P (X , ∅)
i.e. all sets in the partition are non-empty

2. ∀X ,Y∈P (X ∩ Y = ∅)
i.e. all sets in the partition are disjoint

3.
⋃

P = A
i.e union of all sets from P is the set A

Equivalence and Partitions

Notation

A/ ≈ denotes the set of all equivalence classes of the
equivalence relation ≈ , i.e.

A/ ≈ = {[a] : a ∈ A }

We prove the following theorem 1.3.1

Theorem 1

Let A , ∅

If ≈ is an equivalence relation on A,

then the set A/ ≈ is a partition of A

Equivalence and Partitions

Theorem 1 (full statement)

Let A , ∅

If ≈ is an equivalence relation on A,

then the set A/ ≈ is a partition of A , i.e.

1. ∀[a]∈A/≈ ([a] , ∅)
i.e. all equivalence classes are non-empty

2. ∀[a],[b]∈A/≈ ([a] ∩ [b] = ∅)
i.e. all different equivalence classes are disjoint

3.
⋃

A/ ≈= A
i.e the union of all equivalence classes is equal to the set A

Partition and Equivalence

We also prove a following

Theorem 2

For any partition

P ⊆ P(A) of the set A

one can construct a binary relation R on A such that

R is an equivalence on A and its equivalence classes are

exactly the sets of the partition P

Partition and Equivalence

Observe that we can consider, for any binary relation R on

s set A the sets that ”look” like equivalence classes i.e. that

are defined as follows:

R(a) = {b ∈ A ; aRb} = {b ∈ A ; (a, b) ∈ R}

Fact 1

If the relation R is an equivalence on A,

then the family {R(a)}a∈A is a partition of A

Fact 2

If the family {R(a)}a∈A is not a partition of A

, then R is not an equivalence on A

Proof of Theorem 1

Theorem 1

Let A , ∅

If ≈ is an equivalence relation on A,

then the set A/ ≈ is a partition of A

Proof

Let A/ ≈ = {[a] : a ∈ A } = P

We must show that all sets in P are nonempty, disjoint, and

together exhaust the set A

Proof of Theorem 1

1. All equivalence classes are nonempty,

This holds as a ∈ [a] for all a ∈ A , reflexivity of equivalence
relation

2. All different equivalence classes are disjoint

Consider two different equivalence classes [a] , [b]

Assume that [a] ∩ [b] , ∅.

We have that [a] , [b], thus there is an element c

such that c ∈ [a] and c ∈ [b]

Hence (a, c) ∈ ≈ and (c, b) ∈ ≈

Since ≈ is transitive, we get (a, b) ∈ ≈

Proof of Theorem 1

Since ≈ is symmetric, we have that also (a, b) ∈ ≈

Now take any element d ∈ [a];

then (d, a) ∈ ≈, and by transitivity, (d, b) ∈ ≈

Hence d ∈ [b], so that [a] ⊆ [b]

Likewise [b] ⊆ [a] and [a] = [b] what contradicts the
assumption that [a] , [b]

Proof of Theorem 1

3. To prove that ⋃
A/ ≈ =

⋃
P = A

we simply notice that each element a ∈ A is

in some set in P

Namely we have by reflexivity that always

a ∈ [a]

This ends the proof of Theorem 1

Proof of the Theorem 2

Now we are going to prove that the Theorem 1 can be
reversed, namely that the following is also true

Theorem 2

For any partition
P ⊆ P(A)

of A , one can construct a binary relation R on A

such that R is an equivalence and its equivalence classes

are exactly the sets of the partition P

Proof

We define a binary relation R as follows

R = {(a, b) : a, b ∈ X for some X ∈ P}

Chapter1
Sets, Relations, and Languages

Slides Set 1

PART 3: Equivalence Relations - Short and Long Questions

Short Questions

Q1 Let R ⊆ A × A for A , ∅, then the set

[a] = {b ∈ A : (a, b) ∈ R}

is an equivalence class with a representative a

Q2 The set
{(∅, ∅), ({a}, {a}), (3, 3)}

represents a transitive relation

Short Questions

Q3 There is an equivalence relation on the set

A = {{0}, {0, 1}, 1, 2}

with 3 equivalence classes

Q4 Let A , ∅ be such that there are exactly

25 partitions of A

It is possible to define 20 equivalence relations on A

Short Questions Answers

Q1 Let R ⊆ A × A then the set

[a] = {b ∈ A : (a, b) ∈ R}

is an equivalence class with a representative a

NO The set [a] = {b ∈ A : (a, b) ∈ R} is an equivalence
class only when the relation R is an equivalence relation

Q2 The set
{(∅, ∅), ({a}, {a}), (3, 3)}

represents a transitive relation

YES Transitivity condition is vacuously true

Short Questions Answers

Q3 There is an equivalence relation on

A = {{0}, {0, 1}, 1, 2}

with 3 equivalence classes

YES For example, a relation R defined by the partition

P = {{{0}}, {{0, 1}}, {1, 2}}

and so By proof of Theorem 2

R = {(a, b) : a, b ∈ X for some X ∈ P}

i.e. a = b = {0} or a = b = {0, 1} or (a = 1 and b= 2)

Short Questions Answers

Q4

Let A , ∅ be such that there are exactly 25 partitions of A

It is possible to define 2 equivalence relations on A

YES By Theorem 2 one can define up to 25 (as many as
partitions) of equivalence classes

Equivalence Relations

Some Long Questions

Some Long Questions

Q1 Consider a function f : A −→ B

Show that R = {(a, b) ∈ A × A : f(a) = f(b)}

is an equivalence relation on A

Q2 Let f : N −→ N be such that

f(n) =

{
1 if n ≤ 6
2 if n > 6

Find equivalence classes of R from Q1 for this particular
function f

Long Questions Solutions

Q1 Consider a function f : A −→ B

Show that

R = {(a, b) ∈ A × A : f(a) = f(b)}

is an equivalence relation on A

Solution

1. R is reflexive

(a, a) ∈ R for all a ∈ A because f(a) = f(a)

Long Questions Solutions

2. R is symmetric

Let (a, b) ∈ R, by definition f(a) = f(b) and f(b) = f(a)

Consequently (b , a) ∈ R

3. R is transitive

For any a, b , c ∈ A we get that f(a) = f(b) and f(b) = f(c)

implies that f(a) = f(c)

Long Questions Solutions

Q2 Let f : N −→ N be such that

f(n) =

{
1 if n ≤ 6
2 if n > 6

Find equivalence classes of

R = {(a, b) ∈ A × A : f(a) = f(b)}

for this particular f

Long Questions Solutions

Solution

We evaluate

[0] = {n ∈ N : f(0) = f(n)} = {n ∈ N : f(n) = 1}

= {n ∈ N : n ≤ 6}

[7] = {n ∈ N : f(7) = f(n)} = {n ∈ N : f(n) = 2}

= {n ∈ N : n > 6}

There are two equivalence classes:

A1 = {n ∈ N : n ≤ 6}, A2 = {n ∈ N : n > 6}

Chapter1
Sets, Relations, and Languages

Slides Set 1

PART 3: Special types of Binary Relations

SPECIAL RELATIONS: Order Relations

Order Relations

We introduce now of another type of important binary
relations: the order relations

Definition

R ⊆ A × A is an order relation on A iff R is 1.Reflexive, 2.
Antisymmetric, and 3. Transitive, i.e. the following conditions
are satisfied

1. ∀a∈A (a, a) ∈ R

2. ∀a,b∈A ((a, b) ∈ R ∩ (b , a) ∈ R ⇒ a = b)

3. ∀a,b ,c∈A ((a, b) ∈ R ∩ (b , c) ∈ R ⇒ (a, c) ∈ R)

Order Relations

Definition

R ⊆ (A × A) is a total order on A iff R is an order and
any two elements of A are comparable, i.e. additionally the
following condition is satisfied

4. ∀a,b ∈ A ((a, b) ∈ R ∪ (b , a) ∈ R)

Names: order relation is also called historically a partial
order

total order is also called historically a linear order

Order Relations

Notations

order relations are usually denoted by ≤, or when we want to
make a clear distinction from the natural order in sets of
numbers we denote it by �

Remember, that even if we use ≤ as the order relation
symbol, it is a SYMBOL for ANY order relation and not only a
symbol for a natural order ≤ in sets of numbers

Posets

A set A , ∅ ordered by an order relation R is called a poset
We write it as a tuple (depending of sumbols used)
(A ,R), (A ,≤), (A ,�)

Name poset stands historically for ”partially ordered set”.
Diagram of order relation is a graphical representation of a
poset
It is a simplified graph constructed as follows.
1. As the order relation is reflexive, i.e. (a, a) ∈ R for all
a ∈ A , we draw a point with symbol a instead of a point with
symbol a and the loop
2. As the order relation is antisymmetric we draw a point b
above point a (connected, but without the arrow) to indicate
that (a, b) ∈ R.
3. As the order relation in transitive, we connect points a, b , c
without arrows

Posets Special Elements

Special elements in a poset (A ,≤) are: maximal, minimal,
greatest (largest) and smallest (least) and are defined below.

Smallest (least) a0 ∈ A is a smallest (least) element in the
poset (A ,≤) iff ∀a∈A (a0 ≤ a)

Greatest (largest) a0 ∈ A is a greatest (largest) element in
the poset (A ,≤) iff ∀a∈A (a ≤ a0)

Posets Special Elements

Maximal (formal) a0 ∈ A is a maximal element in the poset
(A ,≤) iff ¬ ∃a∈A (a0 ≤ a ∩ a0 , a)

Maximal (informal) a0 ∈ A is a maximal element in the
poset (A ,≤) iff on a diagram of (A ,≤) there is no element
placed above a0

Minimal (formal) a0 ∈ A is a minimal element in the poset
(A ,≤) iff ¬ ∃a∈A (a ≤ a0 ∩ a0 , a)

Minimal (informal) a0 ∈ A is a minimal element in the poset
(A ,≤) iff on the diagram of (A ,≤) there is no element
placed below a0

Some Properties of Posets

Use Mathematical Induction to prove the following property
of finite posets

Property 1 Every non-empty finite poset has at least one
maximal element

Proof

Let (A ,≤) be a finite, not empty poset (partially ordered set
by ≤ , such that A has n-elements, i.e. |A | = n

We carry the Mathematical Induction over n ∈ N − {0}

Reminder: an element ao ∈ A ia a maximal element in a
poset (A ,≤) iff the following is true.

¬∃a∈A (a0 , a ∩ a0 ≤ a)

Inductive Proof

Base case: n = 1, so A = {a} and a is maximal (and
minimal, and smallest, and largest) in the poset ({a},≤)

Inductive step: Assume that any set A such that |A | = n has
a maximal element;

Denote by a0 the maximal element in (A ,≤)

Let B be a set with n + 1 elements; i.e. we can write B as

B = A ∪ {b0} for b0 < A , for some A with n elements

Inductive Proof

By Inductive Assumption the poset (A ,≤) has a maximal
element a0

To show that (B ,≤) has a maximal element we need to
consider 3 cases.

1. b0 ≤ a0; in this case a0 is also a maximal element in
(B ,≤)

2. a0 ≤ b0; in this case b0 is a new maximal in (B ,≤)

3. a0, b0 are not compatible; in this case a0 remains
maximal in (B ,≤)

By Mathematical Induction we have proved that

∀n∈∈N−{0}(|A | = n ⇒ A has a maximal element)

Some Properties of Posets

We just proved

Property 1 Every non-empty finite poset has at least one
maximal element

Show that the Property 1 is not true for an infinite set

Solution: Consider a poset (Z ,≤), where Z is the set on
integers and ≤ is a natural order on Z . Obviously no maximal
element!

Exercise: Prove

Property 2 Every non-empty finite poset has at least one
minimal element

Show that the Property 2 is not true for an infinite set

Chapter1
Sets, Relations, and Languages

Slides Set 2

PART 4: Finite and Infinite Sets

PART 5: Fundamental Proof Techniques

Chapter1
Sets, Relations, and Languages

Slides Set 2

PART 4: Finite and Infinite Sets

Equinumerous Sets

Equinumerous sets

We call two sets A and B are equinumerous

if and only if there is a bijection function f : A −→ B,

i.e. there is f is such that

f : A
1−1,onto
−→ B

Notation

We write A ∼ B to denote that the sets A and B are
equinumerous and write symbolically

A ∼ B if and only if f : A
1−1,onto
−→ B

Equinumerous Relation

Observe that for any set X, the relation ∼

is an equivalence on the set 2X , i.e.

∼ ⊆ 2X × 2X

is reflexive, symmetric and transitive and for any set A

the equivalence class

[A] = {B ∈ 2X : A ∼ B }

describes for finite sets all sets that have the same

number of elements as the set A

Equinumerous Relation

Observe also that the relation ∼ when considered for

any sets A ,B is not an equivalence relation as its domain

would have to be the set of all sets that does not exist

We extend the notion of ”the same number of elements”

to any sets by introducing the notion of cardinality of sets

Cardinality of Sets

Cardinality definition

We say that A and B have the same cardinality if and only
if they are equipotent, i.e.

A ∼ B

Cardinality notations

If sets A and B have the same cardinality we denote it as:

|A | = |B | or cardA = cardB

Cardinality of Sets

Cardinality

We put the above together in one definition

|A | = |B | if and only if

there is a function f is such that

f : A
1−1,onto
−→ B

Finite and Infinite Sets

Definition

A set A is finite if and only if

there is n ∈ N and there is a function

f : {0, 1, 2, ..., n − 1}
1−1,onto
−→ A

In this case we have that

|A | = n

and say that the set A has n elements

Finite and Infinite Sets

Definition

A set A is infinite if and only if A is not finite

Here is a theorem that characterizes infinite sets

Dedekind Theorem

A set A is infinite if and only if

there is a proper subset B of the set A such that

|A | = |B |

Infinite Sets Examples

E1 Set N of natural numbers is infinite

Consider a function f given by a formula

f(n) = 2n for all n ∈ N

Obviously

f : N
1−1,onto
−→ 2N

By Dedekind Theorem the set N is infinite as the set 2N of

even numbers are a proper subset of natural numbers N

Infinite Sets Examples

E2 Set R of real numbers is infinite

Consider a function f given by a formula

f(x) = 2x for all x ∈ R

Obviously

f : R
1−1,onto
−→ R+

By Dedekind Theorem the set R is infinite as the set

R+ of positive real numbers are a proper subset of

real numbers R

Countably Infinite Sets
Cardinal Number ℵ0

Definition

A set A is called countably infinite if and only if it has the
same cardinality as the set N natural numbers, i.e. when

|A | = |N|

The cardinality of natural numbers N is called

ℵ0 (Aleph zero) and we write

|N| = ℵ0

Countably Infinite Sets

Definition

For any set A,

|A | = ℵ0 if and only if |A | = |N|

Directly from definitions we get the following

Fact 1

A set A is countably infinite if and only if |A | = ℵ0

Countably Infinite Sets

Fact 2

A set A is countably infinite if and only if

all elements of A can be put in a 1-1 sequence

Other name for countably infinite set is

infinitely countable set and we will use both names

Countably Infinite Sets

In a case of an infinite set A and not 1-1 sequence

we can ”prune” all repetitive elements to get a 1-1 sequence,

i.e. we prove the following

Fact 2a

An infinite set A is countably infinite if and only if

all elements of A can be put in a sequence

Countable and Uncountable Sets

Definition

A set A is countable if and only if A is finite

or countably infinite

Fact 3

A set A is countable if and only if A is finite

or |A | = ℵ0, i.e. |A | = |N|

Countable and Uncountable Sets

Definition

A set A is uncountable if and only if A is not countable

Fact 4

A set A is uncountable if and only if A is infinite and

|A | , ℵ0, i.e. |A | , |N|

Fact 5

A set A is uncountable if and only if its elements

can not be put into a sequence

Proof proof follows directly from definition and Facts 2, 4

Countably Infinite Sets

We have proved the following

Fact 2a

An infinite set A is countably infinite if and only if

all elements of A can be put in a sequence

We use it now to prove two theorems about countably infinite
sets

Countably Infinite Sets

Union Theorem

Union of two countably infinite sets is a countably infinite set

Proof

Let A, B be two disjoint infinitely countable sets

By Fact 2 we can list their elements as 1-1 sequences

A : a0, a1, a2, . . . and B : b0, b1, b2, . . .

and their union can be listed as 1-1 sequence

A ∪ B : a0, b0, a1, b1, a2, b2, . . . , . . .

In a case not disjoint sets we proceed the same and then

”prune” all repetitive elements to get a 1-1 sequence

Countably Infinite Sets

Product Theorem
Cartesian Product of two countably infinite sets is a
countably infinite set
Proof
Let A, B be two infinitely countable sets
By Fact 2 we can list their elements as 1-1 sequences

A : a0, a1, a2, . . . and B : b0, b1, b2, . . .

We list their Cartesian Product A × B as an infinite table
(a0, b0), (a0, b1), (a0, b2), (a0, b3), . . .

(a1, b0), (a1, b1), (a1, b2), (a1, b3), . . .

(a2, b0), (a2, b1), (a2, b2), (a2, b3), . . .

(a3, b0), (a3, b1), (a3, b2), (a3, b3), . . .

. . . , . . . , . . . , . . . , . . . , . . . ,

Cartesian Product Theorem Proof

Observe that even if the table is infinite each of its

diagonals is finite

(a0, b0), (a0, b1), (a0, b2), (a0, b3), (a0, b4), . . ., . . .

(a1, b0), (a1, b1), (a1, b2), (a1, b3), . . .

(a2, b0), (a2, b1), (a2, b2), (a2, b3), . . .

(a3, b0), (a3, b1), (a3, b2), (a3, b3), . . .

. . . , . . . , . . . , . . . ,

We list now elements of A × B one diagonal after the other

Each diagonal is finite, so now we know when one finishes

and other starts

Cartesian Product Theorem Proof

A × B becomes now the following sequence

(a0, b0),

(a1, b0), (a0, b1),

(a2, b0), (a1, b1), (a0, b2),

(a3, b0), (a2, b1), (a1, b2), (a0, b3),

(a3, b1), (a2, b2), (a1, b3), (a0, b4), . . .,

. . . , . . . , . . . , . . . ,

We prove by Mathematical induction that the sequence is well

defined for all n ∈ N and hence that |A × B | = |N|

It ends the proof of the Product Theorem

Union and Cartesian Product Theorems

Observe that the both Union and Product Theorems

can be generalized by Mathematical Induction to the case of

Union or Cartesian Products of any finite number of sets

Uncountable Sets

Theorem 1

The set R of real numbers is uncountable

Proof

We first prove (homework problem 1.5.11) the following

Lemma 1

The set of all real numbers in the interval [0,1] is
uncountable

Then we use the Lemma 2 below (to be proved it as an

exercise) and the fact that [0, 1] ⊆ R and this ends the proof

Lemma 2 For any sets A,B such that B ⊆ A and B is
uncountable we have that also the set A is uncountable

Special Uncountable Sets

Cardinal Number C - Continuum

We denote by C the cardinality of the set R of real numbers

C is a new cardinal number called continuum and we write

|R | = C

Definition

We say that a set A has cardinality C (continuum)

if and only if |A | = |R |

We write it
|A | = C

Sets of Cardinality C

Example

The set of positive real numbers R+ has cardinality C

because a function f given by the formula

f(x) = 2x for all x ∈ R

is 1-1 function and maps R onto the set R+

Sets of Cardinality C

Theorem 2

The set 2N of all subsets of natural numbers is uncountable

Proof

We will prove it in the PART 5.

Theorem 3

The set 2N has cardinality C, i.e.

|2N | = C

Proof

The proof of this theorem is not trivial and is not in the scope
of this course

Cantor Theorem

Cantor Theorem (1891)

For any set A ,
|A | < |2A |

where we define

|A | ≤ |B | if and only if A ∼ C and C ⊆ B

|A | < |B | if and only if |A | ≤ |B | and |A | , |B |

Cantor Theorem

Directly from the definition we have the following

Fact 6

If A ⊆ B then |A | ≤ |B |

We know that |N| = ℵ0, C = |R |, and N ⊆ R hence from

Fact 6, ℵ0 ≤ C , but ℵ0 , C, as the set N is countable and

the set R is uncountable

Hence we proved

Fact 7
ℵ0 < C

Uncountable Sets of Cardinality Greater then C

By Cantor Theorem we have that

|N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < . . .

All sets
P(P(N)), P(P(P(N))) . . .

are uncountable with cardinality greater then C, as by

Theorem 3, Fact 7, and Cantor Theorem we have that

ℵ0 < C < |P(P(N))| < |P(P(P(N)))| < . . .

Countable and Uncountable Sets

Here are some basic Theorem and Facts

Union 1

Union of two infinitely countable (of cardinality ℵ0) sets is

an infinitely countable set

This means that
ℵ0 + ℵ0 = ℵ0

Union 2

Union of a finite (of cardinality n) set and infinitely countable
(of cardinality ℵ0) set is an infinitely countable set

This means that
ℵ0 + n = ℵ0

Countable and Uncountable Sets

Union 3

Union of an infinitely countable (of cardinality ℵ0) set

and a set of the same cardinality as real numbers i.e. of the
cardinality C has the same cardinality as the set of real
numbers

This means that
ℵ0 + C = C

Union 4 Union of two sets of cardinality the same as real
numbers (of cardinality C) has the same cardinality as the

set of real numbers

This means that
C+ C = C

Countable and Uncountable Sets

Product 1

Cartesian Product of two infinitely countable sets is an

infinitely countable set

ℵ0 · ℵ0 = ℵ0

Product 2

Cartesian Product of a non-empty finite set and an

infinitely countable set is an infinitely countable set

n · ℵ0 = ℵ0 for n > 0

Countable and Uncountable Sets

Product 3

Cartesian Product of an infinitely countable set and an
uncountable set of cardinality C has the cardinality C

ℵ0 · C = C

Product 4

Cartesian Product of two uncountable sets of cardinality C
has the cardinality C

C · C = C

Countable and Uncountable Sets

Power 1

The set 2N of all subsets of natural numbers (or of any
countably infinite set) is uncountable set of cardinality C , i.e.
has the same cardinality as the set of real numbers

2ℵ0 = C

Power 2

There are C of all functions that map N into N

Power 3

There are C possible sequences that can be form out of an
infinitely countable set

ℵ
ℵ0
0 = C

Countable and Uncountable Sets

Power 4

The set of all functions that map R into R has the cardinality
CC

Power 5

The set of all real functions of one variable has the same
cardinality as the set of all subsets of real numbers

CC = 2C

Countable and Uncountable Sets

Theorem 4
n < ℵ0 < C

Theorem 5

For any non empty, finite set A , the set A∗ of all finite
sequences formed out of A is countably infinite, i.e

|A∗| = ℵ0

We write it as

If |A | = n, n ≥ 1, then |A∗| = ℵ0

Simple Short Questions

Simple Short Questions

Q1 Set A is uncountable iff A ⊆ R (R is the set of real
numbers)

Q2 Set A is countable iff N ⊆ A where N is the set of
natural numbers

Q3 The set 2N is infinitely countable

Q4 The set A = {{n} ∈ 2N : n2 + 1 ≤ 15} is infinite

Q5 The set A = {({n}, n) ∈ 2N × N : 1 ≤ n ≤ n2} is infinitely
countable

Q6 Union of an infinite set and a finite set is an infinitely
countable set

Answers to Simple Short Questions

Q1 Set A is uncountable if and only if A ⊆ R (R is the
set of real numbers)

NO

The set 2R is uncountable, as |R | < |2R | by Cantor
Theorem, but 2R is not a subset of R

Also for example. N ⊆ R and N is not uncountable

Answers to Simple Short Questions

Q2 Set A is countable if and only if N ⊆ A , where N
is the set of natural numbers

NO

For example, the set A = {∅} is c
¯
ountable as it is finite, but

N * {∅}

In fact, A can be any finite set

or any A can be any infinite set that does not include N,
for example,

A = {{n} : n ∈ N}

Answers to Simple Short Questions

Q3 The set 2N is infinitely countable

NO

|2N | = |R | = C and hence 2N is uncountable

Q4

The set A = {{n} ∈ 2N : n2 + 1 ≤ 15} is infinite

NO

The set {n ∈ N : n2 + 1 ≤ 15} = {0, 1, 2, 3},

Hence the set A = {{0}, {1}, {2}, {3}} is finite

Answers to Simple Short Questions

Q5 The set A = {({n}, n) ∈ 2N × N : 1 ≤ n ≤ n2} is infinitely
countable (countably infinite)

YES

Observe that the condition n ≤ n2 holds for all n ∈ N,

so the set B = {n : n ≤ n2} is nfinitely countable

The set C = {({n} ∈ 2N : 1 ≤ n ≤ n2} is also

infinitely countable as the function given by a formula

f(n) = {n} is 1 − 1 and maps B onto C, i.e |B | = |C |

The set A = C × B is hence infinitely countable as the
Cartesian Product of two infinitely countable sets

Chapter1
Sets, Relations, and Languages

Slides Set 2

PART 5: Fundamental Proof Techniques

1. Mathematical Induction

2. The Pigeonhole Principle

3. The Diagonalization Principle

Mathematical Induction Applications
Examples

Counting Functions Theorem

For any finite, non empty sets A, B, there are

|B ||A |

functions that map A into B

Proof

We conduct the proof by Mathematical Induction over the

number of elements of the set A, i.e. over n ∈ N − {0},

where n = |A |

Counting Functions Theorem Proof

Base case n = 1

We have hence that |A | = 1 and let |B | = m, m ≥ 1, i.e.

A = {a} and B = {b1, ...bm}, m ≥ 1

We have to prove that there are

|B ||A | = m1

functions that map A into B

The base case holds as there are exactly m1 = m

functions f : {a} −→ {b1, ...bm} defined as follows

f1(a) = b1, f2(a) = b2,, fm(a) = bm

Counting Functions Theorem Proof

Inductive Step
Let A = A1 ∪ {a} for a < A1 and |A1| = n

By inductive assumption, there are mn functions

f : A −→ B = {b1, ...bm}

We group all functions that map A1 as follows

Group 1 contains all functions f1 such that

f1 : A −→ B

and they have the following property

f1(a) = b1, f1(x) = f(x) for all f : A −→ B and x ∈ A1

By inductive assumption there are mn functions in

the Group 1

Counting Functions Theorem Proof

Inductive Step
We define now a Group i, for 1 ≤ i ≤ m, m = |B | as follows
Each Group i contains all functions fi such that

fi : A −→ B

and they have the following property

fi(a) = b1, fi(x) = f(x) for all f : A −→ B and x ∈ A1

By inductive assumption there are mn functions in each of
the Group i
There are m = |B | groups and each of them has mn

elements, so all together there are

m(mn) = mn+1

functions, what ends the proof

Mathematical Induction Applications
Pigeonhole Principle

Pigeonhole Principle Theorem

If A and B are non-empy finite sets and |A | > |B |,

then there is no one-to one function from A to B

Proof

We conduct the proof by by Mathematical Induction over

n ∈ N − {0}, where n = |B | and B , ∅

Base case n = 1

Suppose |B | = 1, that is, B = {b}, and |A | > 1.

If f : A −→ {b},

then there are at least two distinct elements a1, a2 ∈ A , such
that f(a1) = f(a2) = {b}

Hence the function f is not one-to one

Pigeonhole Principle Proof

Inductive Assumption

We assume that any f : A −→ B is not one-to one provided

|A | > |B | and |B | ≤ n, where n ≥ 1

Inductive Step

Suppose that f : A −→ B is such that

|A | > |B | and |B | = n + 1

Choose some b ∈ B

Since |B | ≥ 2 we have that B − {b} , ∅

Pigeonhole Principle Proof

Consider the set f−1({b}) ⊆ A . We have two cases

1. |f−1({b})| ≥ 2

Then by definition there are a1, a2 ∈ A ,

such that a1 , a2 and f(a1) = f(a2) = b what proves that

the function f is not one-to one

2. |f−1({b})| ≤ 1

Then we consider a function

g : A − f−1({b}) −→ B − {b}

such that

g(x) = f(x) for all x ∈ A − f−1({b})

Pigeonhole Principle Proof

Observe that the inductive assumption applies to the

function g because |B − {b}| = n for |B | = n + 1 and

|A − f−1({b})| ≥ |A | − 1 for |f−1({b})| ≤ 1

We know that |A | > |B |, so

|A | − 1 > |B | − 1 = n = |B − {b}| and |A − f−1({b})| > |B − {b}|

By the inductive assumption applied to g we get that

g is not one -to one

Hence g(a1) = g(a2) for some distinct a1, a2 ∈ A − f−1({b}),

but then f(a1) = f(a2) and f is not one -to one either

Pigeonhole Principle Revisited

We now formulate a bit stronger version of the the pigeonhole

principle and present its slightly different proof

Pigeonhole Principle Theorem

If A and B are finite sets and |A | > |B |,

then there is no one-to one function from A to B

Proof

We conduct the proof by by Mathematical Induction over

n ∈ N, where n = |B |

Base case n = 0

Assume |B | = 0, that is, B = ∅. Then there is no function
f : A −→ B whatsoever; let alone a one-to one function

Pigeonhole Principle Revisited Proof

Inductive Assumption

Any function f : A −→ B is not one-to one provided

|A | > |B | and |B | ≤ n, n ≥ 0

Inductive Step

Suppose that f : A −→ B is such that

|A | > |B | and |B | = n + 1

We have to show that f is not one-to one under the
Inductive Assumption

Pigeonhole Principle Revisited Proof

We proceed as follows

We choose some element a ∈ A

Since |A | > |B |, and |B | = n + 1 ≥ 1 such choice is possible

Observe now that if there is another element a′ ∈ A such

that a′ , a and f(a) = f(a′), then obviously the function

f is not one-to one and we are done

So, suppose now that the chosen a ∈ A is the only

element mapped by f to f(a)

Pigeonhole Principle Revisited Proof

Consider then the sets A − {a} and B − {f(a)}

and a function

g : A − {a} −→ B − {f(a)}

such that
g(x) = f(x) for all x ∈ A − {a}

Observe that the inductive assumption applies to g because

|B − {f(a)}| = n and

|A − {a}| = |A | − 1 > |B | − 1 = |B − {f(a)}|

Pigeonhole Principle Revisited Proof

Hence by the inductive assumption the function

g is not one-to one

Therefore, there are two distinct elements elements of

A − {a} that are mapped by g to the same element of

B − {f(a)}

The function g is, by definition, such that

g(x) = f(x) for all x ∈ A − {a}

so the function f is not one-to one either

This ends the proof

Pigeonhole Principle Theorem Application

The Pigeonhole Principle Theorem is a quite simple fact but is
used in a large variety of proofs including many in this course
We present here just one simple application which we will use
in later Chapters

Path Definition

Let A , ∅ and R ⊆ A × A be a binary relation in the set A

A path in the binary relation R is a finite sequence

a1, . . . , an such that (ai , ai+1) ∈ R , for i = 1, 2, . . . n − 1and n ≥ 1

The path a1, . . . , an is said to be from a1 to an

The length of the path a1, . . . , an is n

The path a1, . . . , an is a cycle if ai are all distinct and also
(an, a1) ∈ R

Pigeonhole Principle Theorem Application

Path Theorem

Let R be a binary relation on a finite set A and let a, b ∈ A

If there is a path from a to b in R,

then there is a path of length at most |A |

Proof

Suppose that a1, . . . , an is the shortest path from a = a1

to b = an, that is, the path with the smallest length, and
suppose that n > |A |. By Pigeonhole Principle there is an
element in A that repeats on the path, say ai = aj for some
1 ≤ i < j ≤ n

But then a1, . . . , ai , aj+1, . . . , an is a shorter path from a to b,
contradicting a1, . . . , an being the shortest path

The Diagonalization Principle

Here is yet another Principle which justifies a new important

proof technique

Diagonalization Principle (Georg Cantor 1845-1918)

Let R be a binary relation on a set A , i.e.

R ⊆ A × A and let D, the diagonal set for R be as follows

D = {a ∈ A : (a, a) < R}

For each a ∈ A , let

Ra = {b ∈ A : (a, b) ∈ R}

Then D is distinct from each Ra

The Diagonalization Principle Applications

Here are two theorems whose proofs are the ”classic”
applications of the Diagonalization Principle

Cantor Theorem 2

Let N be the set on natural numbers

The set 2N is uncountable

Cantor Theorem 3

The set of real numbers in the interval [0, 1] is uncountable

Cantor Theorem 2 Proof

Cantor Theorem 2
Let N be the set on natural numbers

The set 2N is uncountable

Proof
We apply proof by contradiction method and the
Diagonalization Principle
Suppose that 2N is countably infinite. That is, we assume
that we can put sets of 2N in a one-to one sequence
{Rn}n∈N such that

2N = {R0, R1, R2, . . . }

We define a binary relation R ⊆ N × N as follows

R = {(i, j) : j ∈ Ri}

This means that for any i, j ∈ N we have that

(i, j) ∈ R if and only if j ∈ Ri

Cantor Theorem 2 Proof

In particular, for any i, j ∈ N we have that

(i, j) < R if and only if j < Ri

and the diagonal set D for R is

D = {n ∈ N : n < Rn}

By definition D ⊆ N, i.e.

D ∈ 2N = {R0, R1, R2, . . . }

and hence
D = Rk for some k ≥ 0

Cantor Theorem 2 Proof

We obtain contradiction by asking whether k ∈ Rk for

D = Rk

We have two cases to consider: k ∈ Rk or k < Rk

c1 Suppose that k ∈ Rk

Since D = {n ∈ N : n < Rn} we have that k < D

But D = Rk and we get k < Rk

Contradiction

c2 Suppose that k < Rk

Since D = {n ∈ N : n < Rn} we have that k ∈ D

But D = Rk and we get k ∈ Rk

Contradiction

This ends the proof

Cantor Theorem 3 Proof

Cantor Theorem 3
The set of real numbers in the interval [0, 1] is uncountable
Proof
We carry the proof by the contradiction method
We assume hat the set of real numbers in the interval
[0, 1] is infinitely countable
This means, by definition , that there is a function f such that

f : N
1−1,onto
−→ [01]

Let f be any such function. We write f(n) = dn and denote by

d0, d1, . . . , dn, . . . ,

a sequence of of all elements of [01] defined by f
We will get a contradiction by showing that one can always
find an element d ∈ [01] such that d , dn for all n ∈ N

Cantor Theorem 3 Proof

We use binary representation of real numbers

Hence we assume that all numbers in the interval [01] form a
one to one sequence

d0 = 0.a00 a01 a02 a03 a04

d1 = 0.a10 a11 a12 a13 a04

d2 = 0.a20 a21 a22 a23a0

d3 = 0.a30 a31 a32 a33 a04

. .

where all aij ∈ {0, 1}

Cantor Theorem 3 Proof

We use Cantor Diagonatization idea to define an element
d ∈ [01], such that d , dn for all n ∈ N as follows

For each element ann of the ”diagonal”

a00, a11, a22, . . . ann, . . . , . . .

of the sequence d0, d1, . . . , dn, . . . , of binary
representation of all elements of the interval [01] we define

an element bnn , ann as

bnn =

{
0 if ann = 1
1 if ann = 0

Cantor Theorem 3 Proof

Given such defined sequence

b00, b11, b22, b33, b44,

We now construct a real number d as

d = b00 b11 b22 b33 b44

Obviously d ∈ [01] and by the Diagonatization Principle

d , dn for all n ∈ N

Contradiction

This ends the proof

Cantor Theorem 3 Proof

Here is another proof of the Cantor Theorem 3

It uses, after Cantor the decimal representation of real
numbers

In this case we assume that all numbers in the interval [01]
form a one to one sequence

d0 = 0.a00 a01 a02 a03 a04

d1 = 0.a10 a11 a12 a13 a04

d2 = 0.a20 a21 a22 a23a0

d3 = 0.a30 a31 a32 a33 a04

. .

where all aij ∈ {0, 1, 2 . . . 9}

Cantor Theorem 3 Proof

For each element ann of the ”diagonal”

a00, a11, a22, . . . ann, . . . , . . .

we define now an element (this is not the only possible
definition) bnn , ann as

bnn =

{
2 if ann = 1
1 if ann , 1

We construct a real number d ∈ [01] as

d = b00 b11 b22 b33 b44

Chapter1
Sets, Relations, and Languages

Slides Set 3

PART 6: Closures and Algorithms

Closures - Intuitive

Idea

Natural numbers N are closed under +, i.e. for given two
natural numbers n, m we always have that n + m ∈ N

Natural numbers N are not closed under subtraction −, i.e
there are two natural numbers n, m such that n −m < N, for
example 1, 2 ∈ N and 1 − 2 < N

Integers Z are closed under−, moreover Z is the smallest set
containing N and closed under subtraction −

The set Z is called a closure of N under subtraction −

Closures - Intuitive

Consider the two directed graphs R (a) and R∗ (b) as
shown below

Observe that R∗ = R ∪ {(ai , ai) : i = 1, 2, 3, 4} ∪ {(a2, a4)} ,

R ⊆ R∗ and is R∗ is reflexive and transitive whereas R is
neither, moreover R∗ is also the smallest set containing R
that is reflexive and transitive

We call such relation R∗ the reflexive, transitive closure of R

We define this concept formally in two ways and prove the
equivalence of the two definitions

Two Definitions of R∗

Definition 1 of R∗

R∗ is called a reflexive, transitive closure of R iff R ⊆ R∗

and is R∗ is reflexive and transitive and is the smallest set with
these properties

This definition is based on a notion of a closure property
which is any property of the form ” the set B is closed under
relations R1,R2, . . . ,Rm”

We define it formally and prove that reflexivity and transitivity
are closures properties

Hence we justify the name: reflexive, transitive closure of R
for R∗

Two Definitions of R∗

Definition 2 of R∗

Let R be a binary relation on a set A

The reflexive, transitive closure of R is the relation

R∗ = {(a, b) ∈ A × A : there is a path from a to b in R}

This is a much simpler definition- and algorithmically more
interesting as it uses a simple notion of a path

We hence start our investigations from it- and only later
introduce all notions needed for the Definition 1 in order to
prove that the R∗ defined above is really what its name says:
the reflexive, transitive closure of R

Definition 2 of R∗

We bring back the following

Path Definition

A path in the binary relation R is a finite sequence

a1, . . . , an such that (ai , ai+1) ∈ R , for i = 1, 2, . . . n − 1 and n ≥ 1

The path a1, . . . , an is said to be from a1 to an

The path a1 (case when n = 1) always exist and is called a
trivial path from a1 to a1

Definition 2

Let R be a binary relation on a set A

The reflexive, transitive closure of R is the relation

R∗ = {(a, b) ∈ A × A : there is a path from a to b in R }

Algorithms

Definition 2 immediately suggests an following algorithm for
computing the reflexive transitive closure R∗ of any given
binary relation R over some finite set A = {a1, a2, . . . , an}

Algorithm 1

Initially R∗ := 0

for i = 1, 2, . . . , n do

for each i- tuple (b1, . . . , bi) ∈ A i do

if b1, . . . , bi is a path in R then add (b1, bn) to R∗

Algorithms

The Book develops and prove correctness of afollowing much
faster algorithm

Algorithm 2

Initially R∗ := R ∪ {(ai , ai) : ai ∈ A }

for j = 1, 2, . . . , n do

for i = 1, 2, . . . , n and k = 1, 2, . . . , n do

if (ai , aj), (aj , ak) ∈ R∗ but (ai , ak) < R∗

then add (ai , ak) to R∗

Closure Property Formal

We introduce now formally a concept of a closure property of
a given set

Definition

Let D be a set, let n ≥ 0 and

let R ⊆ Dn+1 be a (n + 1)-ary relation on D

Then the subset B of D is said to be closed under R

if bn+1 ∈ B whenever (b1, . . . , bn, bn+1) ∈ R

Any property of the form ” the set B is closed under relations
R1,R2, . . . ,Rm” is called a closure property of B

Closure Property Examples

Observe that any function f : Dn −→ D is a special relation
f ⊆ Dn+1 so we have also defined what does it mean that a
set A ⊆ D is closed under the function f

E1: + is a closure property of N

Adition is a function + : N × N −→ N defined by a formula
+(n,m) = n + m , i.e. it is a relation + ⊆ N × N × N such
that

+ = {(n,m, n + m) : n,m ∈ N}

Obviously the set N ⊆ N is (formally) closed under +
because

for any n,m ∈ N we have that (n,m, n + m) ∈ +

Closures Property Examples

E2: ∩ is a closure property of 2N

∩ ⊆ 2N × 2N × 2N is defined as

(A ,B ,C) ∈ ∩ iff A ∩ B = C

and the following is true for all A ,B ,C ∈ 2N

if A ,B ∈ 2N and (A ,B ,C) ∈ ∩ then C ∈ 2N

Closure Property Fact1

Since relations are sets, we can speak of one relation as
being closed under one or more others

We show now the following

CP Fact 1

Transitivity is a closure property

Proof

Let D be a set, let Q be a ternary relation on D × D, i.e.

Q ⊆ (D × D)3 be such that

Q = {((a, b), (b , c), (a, c)) : a, b , c ∈ D}

Observe that for any binary relation R ⊆ D × D ,

R is closed under Q if and only if R is transitive

CP Fact1 Proof

The definition of closure of R under Q says: for any
x, y, z ∈ D × D,

if x, y ∈ R and (x, y, z) ∈ Q then z ∈ R

But (x, y, z) ∈ Q iff x = (a, b), y = (b , c), z = (a, c) and

(a, b), (b , c) ∈ R implies (a, c) ∈ R

is a true statement for all a, b , c ∈ D iff R is transitive

Closure Property Fact2

We show now the following

CP Fact 2

Reflexivity is a closure property

Proof

Let D , ∅, we define an unary relation Q ′ on D × D, i.e.
Q ′ ⊆ D × D as follows

Q ′ = {(a, a) : a ∈ D}

Observe that for any R binary relation on D, i.e. R ⊆ D × D
we have that

R is closed under Q ′ if and only if R is reflexive

Closure Property Theorem

CP Theorem

Let P be a closure property defined by relations on a set D,
and let A ⊆ D

Then there is a unique minimal set B such that B ⊆ A and
B has property P

Two Definition of R∗ Revisited

Definition 1

R∗ is called a reflexive, transitive closure of R iff R ⊆ R∗

and is R∗ is reflexive and transitive and is the smallest set with
these properties

Definition 2

Let R be a binary relation on a set A

The reflexive, transitive closure of R is the relation

R∗ = {(a, b) ∈ A × A : there is a path from a to b in R}

EquivalencyTheorem

R∗ of the Definition 2 is the same as R∗ of the Definition 1
and hence richly deserves its name reflexive, transitive
closure of R

Equivalency of Two Definition of R∗

Proof Let

R∗ = {(a, b) ∈ A × A : there is a path from a to b in R}

R∗ is reflexive for there is a trivial path (case n=1) from a to
a, for any a ∈ A

R∗ is transitive as for any a, b , c ∈ A

if there is a path from a to b and a path from b to c, then there
is a path from a to c

Clearly R ⊆ R∗ because there is a path from a to b whenever
(a, b) ∈ R

Equivalency of Two Definition of R∗

Consider a set S of all binary relations on A that contain R
and are reflexive and transitive, i.e.

S = {Q ⊆ A × A : R ⊆ Q and Q is reflexive and transitive }

We have just proved that R∗ ∈ S

We prove now that R∗ is the smallest set in the poset (S,⊆),
i.e. that for any Q ∈ S we have that R∗ ⊆ Q

Equivalency of Two Definition of R∗

Assume that (a, b) ∈ R∗. By Definition 2 there is a path
a = a1, , ak = b from a to b and let Q ∈ S

We prove by Mathematical Induction over the length k of the
path from a to b

Base case: k=1

We have that the path is a = a1 = b, i.e. (a, a) ∈ R∗ and
(a, a) ∈ Q from reflexivity of Q

Inductive Assumption:

Assume that for any (a, b) ∈ R∗ such that there is a path of
length k from a to b we have that (a, b) ∈ Q

Equivalency of Two Definition of R∗

Inductive Step:

Let (a, b) ∈ R∗ be now such that there is a path of length k+1
from a to b , i.e there is a a path a = a1, . . . , ak , ak+1 = b

By inductive assumption (a = a1, ak) ∈ Q and by definition of
the path (ak , ak+1 = b) ∈ R

But R ⊆ Q hence (ak , ak+1 = b) ∈ Q and (a, b) ∈ Q by
transitivity

This ends the proof that Definition 2 of R∗ implies the
Definition1

The inverse implication follows from the previously proven fact
that reflexivity and transitivity are closure properties

Chapter1
Sets, Relations, and Languages

Slides Set 4

PART 7: Alphabets and languages

PART 8: Finite Representation of Languages

Chapter1
Sets, Relations, and Languages

Slides Set 4

PART 7: Alphabets and languages

Alphabets and languages
Introduction

Data are encoded in the computers’ memory as

strings of bits or other symbols appropriate for manipulation

The mathematical study of the Theory of Computation

begins with understanding of mathematics of manipulation

of strings of symbols

We first introduce two basic notions: Alphabet and

Language

Alphabet

Definition

Any finite set is called an alphabet

Elements of the alphabet are called symbols of the alphabet

This is why we also say:

Alphabet is any finite set of symbols

Alphabet

Alphabet Notation

We use a symbol Σ to denote the alphabet

Remember

Σ can be ∅ as empty set is a finite set

When we want to study non-empty alphabets we have to

say so, i.e to write:
Σ , ∅

Alphabet Examples

E1 Σ = {‡, ∅, ∂,
∮
,
⊗

, ~a, ∇}

E2 Σ = {a, b , c}

E3 Σ = {n ∈ N : n ≤ 105}

E4 Σ = {0, 1} is called a binary alphabet

Alphabet Examples

For simplicity and consistence we will use only as

symbols of the alphabet letters (with indices if necessary) or

other common characters when needed and specified

We also write σ ∈ Σ for a general form of an element in Σ

Σ is a finite set and we will write

Σ = {a1, a2, . . . , an} for n ≥ 0

Finite Sequences Revisited

Definition

A finite sequence of elements of a set A is any function

f : {1, 2, . . . , n} −→ A for n ∈ N

We call f(n) = an the n-th element of the sequence f

We call n the length of the sequence

a1, a2, . . . , an

Case n=0

In this case the function f is empty and we call it an empty
sequence and denote by e

Words over Σ

Let Σ be an alphabet

We call finite sequences of the alphabet Σ words

or strings over Σ

We denote by e the empty word over Σ

Some books use symbol λ for the empty word

Words over Σ

E5 Let Σ = {a, b}

We will write some words (strings) over Σ in a shorthand

notaiton as for example

aaa, ab , bbb

instead using the formal definition:

f : {1, 2, 3} −→ Σ

such that f(1) = a, f(2) = a, f(3) = a for the word aaa

or g : {1, 2} −→ Σ such that g(1) = b , g(2) = b

for the word bb .. etc..

Words in Σ∗

Let Σ be an alphabet. We denote by

Σ∗

the set of all finite sequences over Σ

Elements of Σ∗ are called words over Σ

We write w ∈ Σ∗ to express that w is a word over Σ

Symbols for words are

w, z, v , x, y, z, α, β, γ ∈ Σ∗

x1, x2, . . . ∈ Σ∗ y1, y2, . . . ∈ Σ∗

Words in Σ∗

Observe that the set of all finite sequences include

the empty sequence i.e. e ∈ Σ∗ and we hence

have the following

Fact

For any alphabet Σ ,
Σ∗ , ∅

Chapter 1

Some Short Questions and Answers

Short Questions

Q1 Let Σ = {a, b}

How many are there all possible words of length 5 over Σ ?

A1 By definition, words over Σ are finite sequences;

Hence words of a length 5 are functions

f : {1, 2, . . . , 5} −→ {a, b}

So we have by the Counting Functions Theorem that

there are 25 words of a length 5 over Σ = {a, b}

Counting Functions Theorem

Counting Functions Theorem

For any finite, non empty sets A , B, there are

|B ||A |

functions that map A into B

The proof is in Part 5

Short Questions

Q2

Let Σ = {a1, . . . , ak } where k ≥ 1

How many are there possible words of length ≤ n for n ≥ 0
in Σ∗?

A2

By the Counting Functions Theorem there are

k 0 + k 1 + · · ·+ k n

words of length ≤ n over Σ because for each m

there are k m words of length m over Σ = {a1, . . . , ak }

and m = 0, 1 . . . n

Short Questions

Q3 Given an alphabet Σ , ∅

How many are there words in the set Σ∗?

A3

There are infinitely countably many words in Σ∗ by the

Theorem 5 (Lecture 2) that says: ” for any non empty, finite

set A , |A∗| = ℵ0 ”

We hence proved the following

Theorem

For any alphabet Σ , ∅, the set Σ∗ of all words over Σ

is countably infinite

Languages over Σ

Language Definition

Given an alphabet Σ, any set L such that

L ⊆ Σ∗

is called a language over Σ

Fact 1

For any alphabet Σ, any language over Σ is countable

Languages over Σ

Fact 2

For any alphabet Σ , ∅, there are uncountably many

languages over Σ

More precisely, there are exactly C = |R | of languages

over any non - empty alphabet Σ

Languages over Σ

Fact 1

For any alphabet Σ, any language over Σ is countable

Proof

By definition, a set is countable if and only if is finite or

countably infinite

1. Let Σ = ∅, hence Σ∗ = {e} and we have two languages

∅, {e} over Σ, both finite, so countable

2. Let Σ , ∅, then Σ∗ is countably infinite, so obviously any
L ⊆ Σ∗ is finite or countably infinite, hence countable

Languages over Σ

Fact 2

For any alphabet Σ , ∅, there are exactly C = |R | of
languages

over any non - empty alphabet Σ

Proof

We proved that |Σ∗| = ℵ0

By definition L ⊆ Σ∗, so there is as many languages over Σ

as all subsets of a set of cardinality ℵ0 that is as many as

2ℵ0 = C

Languages over Σ

Q4 Let Σ = {a}

There is ℵ0 languages over Σ

NO

We just proved that that there is uncountably many,

more precisely, exactly C languages over Σ , ∅ and

we know that
ℵ0 < C

Languages over Σ

Definition

Given an alphabet Σ and a word w ∈ Σ∗

We say that w has a length n = |w | when

w : {1, 2, ...n} −→ Σ

We re-write w as

w : {1, 2, |w |} −→ Σ

Definition

Given σ ∈ Σ and w ∈ Σ∗, we say σ ∈ Σ occurs in the

j-th position in w ∈ Σ∗ if and only if w(j) = σ for

1 ≤ j ≤ |w |

Some Examples

E6 Consider a word w written in a shorthand as

w = anita

By formal definition we have

w(1) = a, w(2) = n, w(3) = i, w(4) = t , w(5) = a

and a occurs in the 1st and 5th position

E7 Let Σ = {0, 1} and w = 01101101 (shorthand)

Formally w : {1, 2, 8} −→ {0, 1} is such that

w(1) = 0, w(2) = 1, w(3) = 1, w(4) = 0, w(5) = 1,

w(6) = 1, w(7) = 0, w(8) = 1

1 occurs in the positions 2, 3, 5, 6 and 8

0 occurs in the positions 1, 4, 7

Informal Concatenation

Informal Definition

Given an alphabet Σ and any words x, y ∈ Σ∗

We define informally a concatenation ◦ of words x, y as a
word w obtained from x, y by writing the word x followed by
the word y

We write the concatenation of words x, y as

w = x ◦ y

We use the symbol ◦ of concatenation when it is needed
formally, otherwise we will write simply

w = xy

Formal Concatenation

Definition

Given an alphabet Σ and any words x, y ∈ Σ∗

We define:
w = x ◦ y

if and only if

1. |w | = |x |+ |y |

2 . w(j) = x(j) for j = 1, 2, . . . , |x |

2 . w(|x |+ j) = j(j) for j = 1, 2, . . . , |y |

Formal Concatenation

Properties

Directly from definition we have that

w ◦ e = e ◦ w = w

(x ◦ y) ◦ z = x ◦ (y ◦ z) = x ◦ y ◦ z

Remark: we need to define a concatenation of two words
and then we define

x1 ◦ x2 ◦ · · · ◦ xn = (x1 ◦ x2 ◦ · · · ◦ xn−1) ◦ xn

and prove by Mathematical Induction that

w = x1 ◦ x2 ◦ · · · ◦ xn is well defined for all n ≥ 2

Substring

Definition

A word v ∈ Σ∗ is a substring (sub-word) of w iff there are
x, y ∈ Σ∗ such that

w = xvy

Remark: the words x, y ∈ Σ∗, i.e. they can also be empty

P1 w is a substring of w

P2 e is a substring of any string (any word w)

as we have that ew = we = w

Definition Let w = xy

x is called a prefix and y is called a suffix of w

Power w i

Definition

We define a power w i of w by Mathematical Induction as
follows

w0 = e

w i+1 = w i ◦ w

E8

w0 = e, w1 = w0 ◦ w = e ◦ w = w, w2 = w1 ◦ w = w ◦ w

E9

anita2 = anita1 ◦ anita = e ◦ anita ◦ anita = anita ◦ anita

Reversal wR

Definition

Reversal wR of w is defined by induction over length |w | of
w as follows

1. If |w | = 0, then wR = w = e

2. If |w | = n + 1 > 0, then w = ua for some a ∈ Σ, and
u ∈ Σ∗ and we define

wR = auR for |u| < n + 1

Short Definition of wR

1. eR = e

2. (ua)R = auR

Reversal Proof

We prove now as an example of Inductive proof the following
simple fact

Fact

For any w, x ∈ Σ∗

(wx)R = xRwR

Proof by Mathematical Induction over the length |x | of x with
|w | = constant

Base case n=0

|x | = 0, i.e. x=e and by definition

(we)R = ewR = eRwR

Reversal Proof

Inductive Assumption

(wx)R = xRwR for all |x | ≤ n

Let now |x | = n + 1, so x = ua for certain a ∈ Σ and |u| = n

We evaluate

(wx)R =(w(ua))R = ((wu)a)R

=def a(wu)R =ind auRwR =def (ua)R =xRwR

Languages over Σ

Definition

Given an alphabet Σ, any set L such that L ⊆ Σ∗

is called a language over Σ

Observe that ∅, Σ, Σ∗ are all languages over Σ

We have proved

Theorem

Any language L over Σ, is finite or infinitely countable

Languages over Σ

Languages are sets so we can define them in

ways we did for sets, by listing elements (for small finite sets)

or by giving a property P(w) defining L , i.e. by setting

L = {w ∈ Σ∗ : P(w)}

E1

L1 = {w ∈ {0, 1}∗ : w has an even number of 0’s }

E2

L2 = {w ∈ {a, b}∗ : w has ab as a sub-string }

Languages Examples

E3
L3 = {w ∈ {0, 1}∗ : |w | ≤ 2}

E4
L4 = {e, 0, 1, 00, 01, 11, 10}

Observe that L3 = L4

Languages Examples

Languages are sets so we can define set operations of

union, intersection, generalized union, generalized

intersection, complement, Cartesian product, ... etc ... of

languages as we did for any sets

For example, given L , L1, L2 ⊆ Σ∗, we consider

L1 ∪ L2, L1 ∩ L2, L1 − L2,

−L = Σ∗ − L , L1 × L2, , . . . etc

and we have that all properties of algebra of sets hold for any

languages over a given alphabet Σ

Special Operations on Languages

We define now a special operation on languages, different
from any of the set operation

Concatenation Definition

Given L1, L2 ⊆ Σ∗, a language

L1 ◦ L2 = {w ∈ Σ∗ : w = xy for some x ∈ L1, y ∈ L2}

is called a concatenation of the languages L1 and L2

Concatenation of Languages

The concatenation L1 ◦ L2 domain issue

We can have that the languages L1, L2 are defined over

different domains, i.e they have two alphabets Σ1 , Σ2 for

L1 ⊆ Σ1
∗ and L2 ⊆ Σ2

∗

In this case we always take

Σ = Σ1 ∪ Σ2 and get L1, L2 ⊆ Σ∗

Concatenation Examples

E5

Let L1, L2 be languages defined below

L1 = {w ∈ {a, b}∗ : |w | ≤ 1}

L2 = {w ∈ {0, 1}∗ : |w | ≤ 2}

Describe the concatenation L1 ◦ L2 of L1 and L2

Domain Σ of L1 ◦ L2

We have that Σ1 = {a, b} and Σ2 = {0, 1}

so we take Σ = Σ1 ∪ Σ2 = {a, b , 0, 1} and

L1 ◦ L2 ⊆ Σ

Concatenation Examples

Let L1, L2 be languages defined below

L1 = {w ∈ {a, b}∗ : |w | ≤ 1}

L2 = {w ∈ {0, 1}∗ : |w | ≤ 2}

We write now a general formula for L1 ◦ L2 as follows

L1 ◦ L2 = {w ∈ Σ∗ : w = xy }

where

x ∈ {a, b}∗, y ∈ {0, 1}∗ and |x | ≤ 1, |y | ≤ 2

Concatenation Examples

E5 revisited

Describe the concatenation of L1 = {w ∈ {a, b}∗ : |w | ≤ 1}

and L2 = {w ∈ {0, 1}∗ : |w | ≤ 2}

As both languages are finite, we list their elements and get

L1 = {e, a, b}, L2 = {e, 0, 1, 01, 00, 11, 10}

We describe their concatenation as

L1 ◦ L2 = {ey : y ∈ L2} ∪ {ay : y ∈ L2} ∪ {by : y ∈ L2}

Here is another general formula for L1 ◦ L2

L1 ◦ L2 = e ◦ L2 ∪ ({a} ◦ L2) ∪ ({b} ◦ L2)

Concatenation Examples

E6

Describe concatenations L1 ◦ L2 and L2 ◦ L1 of

L1 = {w ∈ {0, 1}∗ : w has an even number of 0’s}

and
L2 = {w ∈ {0, 1}∗ : w = 0xx, x ∈ Σ∗}

Here the are

L1 ◦ L2 = {w ∈ Σ∗ : w has an odd number of 0’s}

L2 ◦ L1 = {w ∈ Σ∗ : w starts with 0}

Concatenation Examples

We have that

L1 ◦ L2 = {w ∈ Σ∗ : w has an odd number of 0’s}

L2 ◦ L1 = {w ∈ Σ∗ : w starts with 0}

Observe that

1000 ∈ L1 ◦ L2 and 1000 < L2 ◦ L1

This proves that
L1 ◦ L2 , L2 ◦ L1

We hence proved the following

Fact

Concatenation of languages is not commutative

Concatenation Examples

E8

Let L1, L2 be languages defined below for Σ = {0, 1}

L1 = {w ∈ Σ∗ : w = x1, x ∈ Σ∗}

L2 = {w ∈ Σ∗ : w = 0x, x ∈ Σ∗}

Describe the language L2 ◦ L1

Here it is

L2 ◦ L1 = {w ∈ Σ∗ : w = 0xy1, x, y ∈ Σ∗}

Observe that L2 ◦ L1 can be also defined by a property as
follows

L2 ◦ L1 = {w ∈ Σ∗ : w starts with 0 and ends with1}

Distributivity of Concatenation

Theorem

Concatenation is distributive over union of languages

More precisely, given languages L , L1, L2, . . . , Ln, the
following holds for
any n ≥ 2

(L1 ∪ L2 ∪ · · · ∪ Ln)◦L = (L1◦L) ∪ · · · ∪ (Ln◦L)

L◦(L1 ∪ L2 ∪ · · · ∪ Ln) = (L◦L1) ∪ · · · ∪ (L◦Ln)

Proof by Mathematical Induction over n ∈ N, n ≥ 2

Distributivity of Concatenation Proof

We prove the base case for the first equation and leave the
Inductive argument and a similar proof of the second equation
as an exercise

Base Case n = 2

We have to prove that

(L1 ∪ L2)◦L = (L1◦L) ∪ (L2◦L)

w ∈ (L1 ∪ L2)◦L iff (by definition of ◦)

(w ∈ L1 or w ∈ L2) and w ∈ L iff (by distributivity of and
over or)

(w ∈ L1and w ∈ L) or (w ∈ L2 and w ∈ L) iff (by definition
of ◦)

(w ∈ L1◦L)or (w ∈ L2◦L) iff (by definition of ∪)

w ∈ (L1◦L) ∪ (L2◦L)

Kleene Star - L∗

Kleene Star L∗ of a language L is yet another operation
specific to languages

It is named after Stephen Cole Kleene (1909 -1994), an
American mathematician and world famous logician who also
helped lay the foundations for theoretical computer science

We define L∗ as the set of all strings obtained by
concatenating zero or more strings from L

Remember that concatenation of zero strings is e , and
concatenation of one string is the string itself

Kleene Star - L∗

We define L∗ formally as

L∗ = {w1w2 . . .wk : for some k ≥ 0 and w1, . . . ,wk ∈ L}

We also write as

L∗ = {w1w2 . . .wk : k ≥ 0, wi ∈ L , i = 1, 2, . . . , k }

or in a form of Generalized Union

L∗ =
⋃

k≥0
{w1w2 . . .wk : w1, . . . ,wk ∈ L}

Remark we write xyz for x ◦ y ◦ z. We use the concatenation

symbol ◦ when we want to stress that we talk about some

properties of the concatenation

Kleene Star Properties

Here are some Kleene Star basic properties

P1 e ∈ L∗, for all L

Follows directly from the definition as we have case k = 0

P2 L∗ , ∅, for all L

Follows directly from P1, as e ∈ L∗

P3 ∅∗ , ∅

Because L∗ = ∅∗ = {e} , ∅

Kleene Star Properties

Some more Kleene Star basic properties

P4 L∗ = Σ∗ for some L

Take L = Σ

P6 L∗ , Σ∗ for some L

Take L = {00, 11} over Σ = {0, 1}

We have that
01 < L∗ and 01 ∈ Σ∗

Example

Observation

The property P4 provides a quite trivial example of a
language L over an alphabet Σ such that L∗ = Σ∗, namely
just L = Σ

A natural question arises: is there any language L , Σ such
that nevertheless L∗ = Σ∗?

Example

Example

Take Σ = {0, 1} and take

L = {w ∈ Σ∗ : w has an unequal number of 0 and 1}

Some words in and out of L are

100 ∈ L , 00111 ∈ L 100011 < L

We now prove that

L∗ = {0, 1}∗ = Σ∗

Example Proof

Given

L = {w ∈ {0, 1}∗ : w has an unequal number of 0 and 1}

We now prove that

L∗ = {0, 1}∗ = Σ∗

Proof

By definition we have that L ⊆ {0, 1}∗ and {0, 1}∗∗ = {0, 1}∗

By the the following property of languages:

P: If L1 ⊆ L2, then L1
? ⊆ L2

?

and get that

L∗ ⊆ {0, 1}∗∗ = {0, 1}∗ i.e. L∗ ⊆ Σ∗

Example Proof

Now we have to show that Σ∗ ⊆ L∗, i.e.

{0, 1}∗ ⊆ {w ∈ 0, 1∗ : w has an unequal number of 0 and 1}

Observe that

0 ∈ L because 0 regarded as a string over Σ has an
unequal number appearances of 0 and 1

The number of appearances of 1 is zero and the number of
appearances of 0 is one

1 ∈ L for the same reason a 0 ∈ L

So we proved that {0, 1} ⊆ L

We now use the property P and get

{0, 1}∗ ⊆ L∗ i.e Σ∗ ⊆ L∗

what ends the proof that Σ∗ = L∗

L∗ and L+

We define

L+ = {w1w2 . . .wk : for some k ≥ 1 and some w1, . . . ,wk ∈ L}

We write it also as follows

L+ = {w1w2 . . .wk : k ≥ 1 wi ∈ L , i = 1, 2, . . . , k }

Properties

P1 : L+ = L ◦ L∗ P2 : e ∈ L+ iff e ∈ L

L∗ and L+

We know that
e ∈ L∗ for all L

Show that

For some language L we have that e ∈ L+ and

for some language L we can have that e < L+

E1

Obviously, for any L such that e ∈ L we have that e ∈ L+

E2

If L is such that e < L we have that e < L+ as L+ does not
have a case k=0

Chapter1
Sets, Relations, and Languages

Slides Set 4

PART 8: Finite Representation of Languages

Finite Representation of Languages
Introduction

We can represent a finite language by finite means for
example listing all its elements

Languages are often infinite and so a natural question arises
if a finite representation is possible and when it is possible
when a language is infinite

The representation of languages by finite specifications is a
central issue of the theory of computation

Of course we have to define first formally what do we mean by
representation by finite specifications , or more precisely by a
finite representation

Idea of Finite Representation

We start with an example: let

L = {a}∗ ∪ ({b} ◦ {a}∗) = {a}∗ ∪ ({b}{a}∗)

Observe that by definition of Kleene’s star

{a}∗ = {e, a, aa, aaa . . . }

and L is an infinite set

L = {e, a, aa, aaa . . . } ∪ {b}{e, a, aa, aaa . . . }

L = {e, a, aa, aaa . . . } ∪ {b , ba, baa, baaa . . . }

L = {e, a, b , aa, ba, aaa baa, . . . }

Idea of Finite Representation

The expression {a}∗ ∪ ({b}{a}∗) is built out of a

finite number of symbols:

{, }, (,), ∗, ∪

and describe an infinite set

L = {e, a, b , aa, ba, aaa baa, . . . }

We write it in a simplified form - we skip the set symbols

{, } as we know that languages are sets

and we have
a∗ ∪ (ba∗)

Idea of Finite Representation

We will call such expressions as

a∗ ∪ (ba∗)

a finite representation of a language L

The idea of the finite representation is to use symbols

(,), ∗ , ∪, ∅, and symbols σ ∈ Σ

to write expressions that describe the language L

Example of a Finite Representation

Let L be a language defined as follows

L = {w ∈ {0, 1}∗ : w has two or three occurrences of 1

the first and the second of which are not consecutive }

The language L can be expressed as

L = {0}∗{1}{0}∗{0} ◦ {1}{0}∗({1}{0}∗ ∪ ∅∗)

We will define and write the finite representation of L as

L = 0∗10∗010∗(10∗ ∪ ∅∗)

We call expression above (and others alike) a regular
expression

Problem with Finite Representation

Question

Can we finitely represent all languages over an alphabet
Σ , ∅?

Observation

O1. Different languages must have different representations

O2. Finite representations are finite strings over a finite
set, so we have that

there are ℵ0 possible finite representations

Problem with Finite Representation

O3. There are uncountably many, precisely exactly

C = |R |) of possible languages over any alphabet Σ , ∅

Proof

For any Σ , ∅ we have proved that

|Σ∗| = ℵ0

By definition of language

L ⊆ Σ∗

so there are as many languages as subsets of Σ∗ that is as
many as

|2Σ∗ | = 2ℵ0 = C

Problem with Finite Representation

Question

Can we finitely represent all languages over an alphabet
Σ , ∅?

Answer

No, we can’t

By O2 and O3 there are countably many (exactly ℵ0)
possible finite representations and there are uncountably
many (exactly C) possible languages over any Σ , ∅

This proves that

NOT ALL LANGUAGES CAN BE FINITELY REPRESENTED

Problem with Finite Representation

Moreover

There are uncountably many and exactly as many as Real
numbers, i.e. C languages that can not be finitely
represented

We can finitely represent only a small, countable portion of
languages

We define and study here only two classes of languages:

REGULAR and CONTEXT FREE languages

Regular Expressions Definition

Definition

We define a R of regular expressions over an alphabet Σ
as follows

R ⊆ (Σ∪ {(,), ∅, ∪, ∗})∗ and R is the smallest set such that

1. ∅ ∈ R and Σ ⊆ R, i.e. we have that

∅ ∈ R and ∀σ∈Σ (σ ∈ R)

2. If α, β ∈ R, then

(αβ) ∈ R concatenation

(α ∪ β) ∈ R union

α∗ ∈ R Kleene’s Star

Regular Expressions Theorem

Theorem
The set R of regular expressions over an alphabet Σ is
countably infinite
Proof
Observe that the set Σ ∪ {(,), ∅, ∪, ∗} is non-empty and
finite, so the set (Σ ∪ {(,), ∅, ∪, ∗})∗ is countably infinite,
and by definition

R ⊆ (Σ ∪ {(,), ∅, ∪, ∗})∗

hence we |R| ≤ ℵ0

The set R obviously includes an infinitely countable set

∅, ∅∅, ∅∅∅, . . . , . . . ,

what proves that |R| = ℵ0

Regular Expressions

Example

Given Σ = {0, 1}, we have that

1. ∅ ∈ R, 1 ∈ R, 0 ∈ R

2. (01) ∈ R 1∗ ∈ R, 0∗ ∈ R, ∅∗ ∈ R, (∅ ∪ 1) ∈ R, . . . ,

. . . , (((0∗ ∪ 1∗) ∪ ∅)1)∗ ∈ R

Shorthand Notation when writing regular expressions we
will keep only essential parenthesis

For example, we will write

((0∗ ∪ 1∗ ∪ ∅)1)∗ instead of (((0∗ ∪ 1∗) ∪ ∅)1)∗

1∗01∗ ∪ (01)∗ instead of (((1∗0)1∗) ∪ (01)∗)

Regular Expressions and Regular Languages

We use the regular expressions from the set R as a
representation of languages

Languages represented by regular expressions are called

regular languages

Regular Expressions and Regular Languages

The idea of the representation is explained in the following

Example

The regular expression (written in a shorthand notion)

1∗01∗ ∪ (01)∗

represents a language

L = {1}∗{0}{1}∗ ∪ {01}∗

Definition of Representation

Definition

The representation relation between regular expressions

and languages they represent is establish by a

function L such that

if α ∈ R is any regular expression, then L(α) is the

language represented by α

Definition of Representation

Formal Definition

The function L : R −→ 2Σ∗ is defined recursively as
follows

1. L(∅) = ∅, L(σ) = {σ} for all σ ∈ Σ

2. If α, β ∈ R, then

L(αβ) = L(α) ◦ L(β) concatenation

L(α ∪ β) = L(α) ∪ L(β) union

L(α∗) = L(α)∗ Kleene’s Star

Regular Language Definition

Definition

A language L ⊆ Σ∗ is regular

if and only if

L is represented by a regular expression, i.e.

when there is α ∈ R such that L = L(α)

where L : R −→ 2Σ∗ is the representation function

We use a shorthand notation

L = α for L = L(α)

Examples

E1

Given α ∈ R, for α = ((a ∪ b)∗a)

Evaluate L over an alphabet Σ = {a, b}, such that L = L(α)

We write
α = ((a ∪ b)∗a)

in the shorthand notation as

α = (a ∪ b)∗a

Examples

We evaluate L = (a ∪ b)∗a as follows

L((a ∪ b)∗a) = L((a ∪ b)∗) ◦ L(a) = L((a ∪ b)∗) ◦ {a} =

(L(a ∪ b))∗{a} = (L(a) ∪ L(b))∗{a} = ({a} ∪ {b})∗{a}

Observe that

({a} ∪ {b})∗{a} = {a, b}∗{a} = Σ∗{a}

so we get
L = L((a ∪ b)∗a) = Σ∗{a}

L = {w ∈ {a, b}∗ : w ends with a}

Examples

E2 Given α ∈ R, for α = ((c∗a) ∪ (bc∗)∗)

Evaluate L = L(α), i.e describe L = α

We write α in the shorthand notation as

α = c∗a ∪ (bc∗)∗

and evaluate L = c∗a ∪ (bc∗)∗ as follows

L((c∗a ∪ (bc∗)∗) = L(c∗a) ∪ (L(bc∗))∗ = {c}∗{a} ∪ ({b}{c}∗)∗

and we get that

L = {c}∗{a} ∪ ({b}{c}∗)∗

Examples

E3 Given α ∈ R, for

α = (0∗ ∪ (((0∗(1 ∪ (11)))((00∗)(1 ∪ (11)))∗)0∗))

Evaluate L = L(α), i.e describe the language L = α

We write α in the shorthand notation as

α = 0∗ ∪ 0∗(1 ∪ 11)((00∗(1 ∪ 11))∗)0∗

and evaluate

L = L(α) = 0∗ ∪ 0∗{1, 11}(00∗{1, 11})∗0∗

Observe that 00∗ contains at least one 0 that separates
0∗{1, 11} on the left with (00∗({1, 11})∗ that follows it, so we
get that

L = {w ∈ {0, 1}∗ : w does not contain a substring 111}

Class RL of Regular Languages

Definition

Class RL of regular languages over an alphabet Σ contains
all L such that L = L(α) for certain α ∈ R, i.e.

RL = {L ⊆ Σ∗ : L = L(α) for certain α ∈ R }

Theorem

There ℵ0 regular languages over Σ , ∅ i.e.

|RL| = ℵ0

Proof

By definition that each regular language is L = L(α) for
certain α ∈ R and the interpretation function L : R −→ 2Σ∗

has an infinitely countable domain, hence |RL| = ℵ0

Class RL of Regular Languages

We can also think about languages in terms of closure and
get immediately from definitions the following

Theorem

Class RL of regular languages is the closure of the set of
languages

{{σ} : σ ∈ Σ} ∪ {∅}

with respect to union, concatenation and Kleene Star

Languages that are NOT Regular

Given an alphabet Σ , ∅

We have just proved that there are ℵ0 regular languages,

and we have also there are C of all languages over Σ , ∅,

so we have the following

Fact

There is C languages that are not regular

Natural Questions

Q1 How to prove that a given language is regular?

A1 Find a regular expression α, such that L = α, i.e.
L = L(α)

Languages that are NOT Regular

Q2 How to prove that a given language is not regular?

A2 Not easy!

We will have a Theorem, called Pumping Lemma which
provides a criterium for proving that a given language

is not regular

E1 A language
L = 0∗1∗

is is regular as it is given by a regular expression α = 0∗1∗

E2 We will prove, using the Pumping Lemma that the
language

L = {0n1n : n ≥ 1, n ∈ N}

is not regular

General Problem

General Problem

Given a language L over Σ and a word w ∈ Σ∗,

HOW to RECOGNIZE whether

w ∈ L or w < L

OUR Next SUBJECT

Automata - LANGUAGE RECOGNITION devices

