CSE303 Q4 SOLUTIONS

YES/NO questions 1. The set of terminals is always non- empty Justify: Finite set can be empty	n
2. $L(G) = \{w \in V : S \Rightarrow^*_G w\}$ Justify: $w \in \Sigma^*$	n
 Any regular language is context-free Justify: 1. Any Finite Automata is a PDF automata 2.Regular languages are generated by regular grammars, that are also CF. 	У
 4. Language is regular if and only if is generated by a regular grammar (right- linear) Justify: proof in class 	у
5. The stack alphabet of a pushdown automaton is always non- empty Justify : finite set can be empty	n
 6. Δ ⊆ (K × Σ* × Γ*) × (K × Γ* is a transition relation of a pushdown automaton (lecture definition) Justify: Δ must be finite 	n
7. $L(M) = \{w \in \Sigma^* : (s, w, e) \models^*_M (f, e, e)\}$ Justify: $f \in F$	n
8. Any regular language is accepted by a pushdown automaton Justify : Any finite automata is a pushdown automata operating on an empty stock.	у
9. Context-free languages are closed under intersection Justify : Take $L_1 = a^n b^n c^m$, $L_2 = a^m b^n c^n$, both CF and we get that $L_1 \cap L_2 = a^n b^n c^n$ is not CF	n
 10. The union of a context-free language and regular language is a context-free language Justify: regular language is also a context free language and context free languages are closed under union 	у

PROBLEMS

QUESTION 1 Consider a grammar $G = (V, \Sigma, R, S)$, where $V = \{a, b, S, A\}, \Sigma = \{a, b\},$

 $R = \{S \rightarrow aB, \ |bA, \ A \rightarrow a \ |aS \ |BAA \ B \rightarrow b \ |bS \ |ABB\}.$

1. Show that $ababba \in L(G)$.

Solution The following derivation proves that $ababba \in L(G)$.

$$S \Rightarrow aB \Rightarrow abS \Rightarrow abaB \Rightarrow ababS \Rightarrow ababbA \Rightarrow ababba$$

- **3.** Give a property defining the L(G). Justify shortly your answer.
- **Case 1** We start with $S \to aB$. The next steps are applications of rules: $R_1 : B \to b, R_2 : B \to bS$, or $R_3 : B \to ABB$. By R_1 we get $ab \in L$, by R_2 we get aABB and A can become a, or aS, or BAA, in all cases we get words with the same number of a's and b's.
- **Case 2** we start with $S \to aB$. The next step is application of B rules and the "way out". We can see that in this case we will also get words with the same number of a's and b's.

 $L(G) = \{w \in \{a, b\}^* : w \text{ has the same number of } a's \text{ and } b's \}$

QUESTION 2 Construct a context-free grammar G such that

$$L(G) = \{wcw^R : w \in \{a, b\}^*\}.$$

Justify your answer.

Solution $\Sigma = \{a, b, c\}, V = \Sigma \cup \{S\},\$

$$R = \{S \to aSa|bSb|c\}$$

Example of a derivation:

$$S \Rightarrow aSa \Rightarrow abSab \Rightarrow abcba$$

Remark that the set of rules

$$R = \{S \to aSa|aSb|e\}$$

defines a grammar with

$$L(G) = \{ww^R : w \in \{a, b\}^*\}.$$

QUESTION 3 Construct a context-free grammar G such that

 $L(G) = \{ w \in \{a, b\}^* : w \text{ has twice as many } b's \text{ as } a's \}.$

Justify your answer.

Solution: $G = (V, \Sigma, R, S)$, where $V = \{S, a, b\}, \Sigma = \{a, b\}$.

The set R of rules contains the following rules:

$$\begin{split} S &\longrightarrow e, \quad S &\longrightarrow Sabb|aSbb|abSb|abbbS, \quad S &\longrightarrow Sbab|bSab|baSb|babS, \\ S &\longrightarrow Sbba|bSba|bbSa|bbaS. \end{split}$$

DEFINITION A context-free grammar $G = (V, \Sigma, R, S)$ is called **regular** iff

$$R \subseteq (V - \Sigma) \times \Sigma^*((V - \Sigma) \cup \{e\})$$

QUESTION 4 Given a **Regular grammar** $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S, A, B\}, \ \ \Sigma = \{a, b\},$$

$$R = \{S \rightarrow abA \ |B \ | \ baB \ |e, \ \ A \rightarrow bS \ |b, \ B \rightarrow aS\}.$$

1. Construct a finite automaton M, such that L(G) = L(M). You can draw a diagram.

Solution $M = (K, \Sigma, s, F, \Delta)$ for $K = \{S, A, B, f\}, \Sigma = \{a, b\}, s = S, F = \{f\},$

$$\Delta = \{ (S, ab, A), (S, e, B), (A, ba, B), (S, e, f), (A, b, S), (A, b, f), (B, a, S) \}$$

2. Trace a transitions of M that lead to the acceptance of the string abba, and compare with a derivation of the same string in G.

$$(S,abba) \stackrel{M}{\vdash} (A,ba) \stackrel{M}{\vdash} (S,a) \stackrel{M}{\vdash} (B,a) \stackrel{M}{\vdash} (B,a) \stackrel{M}{\vdash} (S,e) \stackrel{M}{\vdash} (f,e)$$

This means that

$$(Sabba) \stackrel{*,M}{\vdash} (f,e)$$

and $abba \in L(M)$.

The corresponding Derivation in G is:

$$S \Rightarrow abA \Rightarrow abbS \Rightarrow abbB \Rightarrow abbaS \Rightarrow abba$$

QUESTION 5

1. Construct a **pushdown** automaton M such that

$$L(M) = \{ w \in \{a, b\}^* : w = w^R \}$$

Solution $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where

$$\begin{split} K &= \{s, f\}, \ \ \Sigma &= \{a, b\}, \ \ \Gamma &= \{a, b\}, \ \ F &= \{f\}, s = s, \\ \Delta &= \{((s, a, e), (s, a)), \ ((s, b, e), (s, b)), \ ((s, e, e), (f, e)), \\ ((s, a, e), (f, e)), \ ((s, b, e), (f, e)), \ ((f, a, a), (f, e)), \ ((f, b, b), (f, e))\} \end{split}$$

2. Trace a transitions of *M* that lead to the acceptance of the string *ababa*. Solution

QUESTION 6 Show that $L = \{ww : w \in \{a, b\}^*\}$ is not CONTEXT-Free.

Solution We know that the language

$$L_1 = \{a^i b^j a^i b^j : i, j, \ge 0\}$$

is NOT Context Free. We have a THEOREM :

$$CF \cap REG = CF$$

i.e that intersection of a CF language with a REGULAL language is a CF language.

proof: Assume that L is a CF language. By the Theorem, $L \cap a^*b^*a^*b^*$ must be a CF language, but

$$L \cap a^* b^* a^* b^* = \{a^i b^j a^i b^j : i, j, \ge 0\} = L_1$$

and we have a contradiction.

QUESTION 7 Construct a context-free grammar G such that

$$L(G) = \{ w \in \{a, b\}^* : w = w^R \}.$$

Justify your answer.

Solution $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S\}, \quad \Sigma = \{a, b\},$$
$$R = \{S \to aSa \mid bSb \mid a \mid b \mid e\}.$$

Derivation example: $S \Rightarrow aSa \Rightarrow abSba \Rightarrow ababa$ $ababa^{R} = ((ab)a(ba))^{R} = (ba)^{R}a^{R}(ab)^{R} = ababa.$ **Observation 1** We proved in class that for any $x, y \in \Sigma^*$, $(xy)^R = y^R x^R$. From this we have that

$$(xyz)^R = ((xy)z)^R = z^R (xy)^R = z^R y^R x^R$$

Grammar correctness justification: observe that the rules $S \to aSa | bSb | e$ generate the language $L_1 = \{ww^R : w \in \Sigma^*\}$. With additional rules $S \to a | b$ we get hence the language $L = L_1 \cup \{waw^R : w \in \Sigma^*\} \cup \{wbw^R : w \in \Sigma^*\}$. Now we are ready to prove that

$$L = L(G) = \{ w \in \{a, b\}^* : w = w^R \}.$$

Proof Let $w \in L$, i.e. $w = xx^R$ or $w = xax^R$ or $w = xbx^R$. We show that in each case $w = w^R$ as follows.

c1:
$$w^R = (xx^R)^R = (x^R)^R x^R = xx^R = w$$
 (used property: $(x^R)^R = x$).

- **c2:** $w^R = (xax^R)^R = (x^R)^R a^R x^R = xax^R = w$ (used Observation 1 and properties: $(x^R)^R = x$ and $a^R = a$).
- **c3:** $w^R = (xbx^R)^R = (x^R)^R b^R x^R = xbx^R = w$ (used Observation 1 and properties: $(x^R)^R = x$ and $b^R = b$).