CSE303 Q4 Practice Solutions Spring 2011

 \mathbf{YES}/\mathbf{NO} questions Circle the correct answer. Write SHORT justification.

1.	The set of terminals in a context free grammar G is a subset of alphabet of G Justify : $\Sigma \subseteq V$	У
2.	The set of terminals and non- terminals in a context free grammar G form the alphabet of G Justify: $V = \Sigma \cup (V - \Sigma)$	У
3.	The set of non-terminals is always non- empty Justify : $S \in V$	у
4.	The set of terminals is always non- empty Justify : Finite set can be empty v	n
5.	$L(G) = \{ w \in V : S \Rightarrow^*_G w \}$ Justify: $w \in \Sigma^*$	n
6.	$L \subseteq \Sigma^*$ is context-free if and only if $L = L(G)$ Justify : only when G is a context -free grammar	n
7.	A language is context-free if and only if it is accepted by a context-free grammar. Justify: Generated, not accepted	n
8.	Any regular language is context-free Justify: 1. Any Finite Automata is a PDF automata 2.Regular languages are generated by regular grammars, that are also CF.	У
9.	Language is regular if and only if is generated by a regular grammar (right- linear) Justify: proof in class	у
10.	$L = \{w \in \{a, b\}^* : w = w^R\} \text{ is context-free}$ Justify : G with the rules: $S \to aSa bSb a b e$	у
11.	The stack alphabet of a pushdown automaton is always non- empty Justify : finite set can be empty	n
12.	The input alphabet of a pushdown automaton is always non- empty Justify : finite set can be empty	n
13.	$\Delta \subseteq (K \times \Sigma^* \times \Gamma^*) \times (K \times \Gamma^* \text{ is a transition relation of a pushdown automaton (lecture definition)}$ Justify: Δ must be finite	n
14.	$\begin{split} \Delta &\subseteq (K \times (\Sigma \cup \{e\}) \times \Gamma^*) \times (K \times \Gamma^* \text{ is a transition relation of a pushdown automaton (book definition)} \\ \mathbf{Justify:} \ \Delta \ \text{must be finite} \end{split}$	n

15.	$L(M) = \{ w \in \Sigma^* : (s, w, e) \models^*_M (f, e, e) \}$ Justify: $f \in F$	n
16.	Any regular language is accepted by a pushdown automaton Justify : Any finite automata is a pushdown automata operating on an empty stock.	у
17.	The class of languages accepted by pushdown automata is exactly the class of context-free languages Justify : main theorem	У
18.	Context-free languages are not closed under union Justify : we construct a CF grammar that is union of CF grammars	n
19.	Context-free languages are closed under intersection Justify : Take $L_1 = a^n b^n c^m$, $L_2 = a^m b^n c^n$, both CF and we get that $L_1 \cap L_2 = a^n b^n c^n$ is not CF	n
20.	The intersection of a context-free language and regular language is a context-free language Justify : basic theorem	у
21.	The union of a context-free language and regular language is a context- free language Justify : regular language is also a context free language and context free languages are closed under union	у
22.	Every subset of a regular language is a language. Justify : a subset of a set is a set.	у
23.	Any regular language is accepted by some PD automata. Justify : Any regular language is accepted by a finite automata, and a finite automaton is a PD automaton (that never operates on the stock).	у
24.	A parse tree is always finite. Justify : Any derivation of w in a CF grammar is finite.	У
25.	Parse trees are equivalence classes. Justify : represent equivalence classes.	n
26.	For all languages, all grammars are ambiguous. Justify : programming languages are never inherently ambiguous.	n
27.	A CF grammar G is called ambiguous if there is $w \in L(G)$ with at least two distinct parse trees. Justify : definition	У
28.	A CF language L is inherently ambiguous iff all context-free grammars G , such that $L(G) = L$ are ambiguous. Justify: definition	v
29.	Programming languages are sometimes inherently ambiguous. Justify: never	n

30. The largest number of symbols on the right-hand side of any rule of a CF grammar G is called called a fanout and denoted by $\phi(G)$. Justify: definition

у

у

31. The Pumping Lemma for CF languages uses the notion of the fanout. **Justify**: condition on the length of $w \in L$

PROBLEMS

QUESTION 1 Consider a grammar $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S, A\}, \quad \Sigma = \{a, b\},$$
$$R = \{S \to AA, \quad A \to AAA \mid a \mid bA \mid Ab\}.$$

1. Which strings of L(G) can be produced by derivations of 4 or fewer steps?

Solution

- $S \Rightarrow AA \Rightarrow aA \Rightarrow aa$
- $S \Rightarrow AA \Rightarrow bAA \Rightarrow baA \Rightarrow baa$

 $S \Rightarrow AA \Rightarrow aA \Rightarrow abA \Rightarrow aba$

2. Give 2 derivations of a string babbab.

Solution

$$S \Rightarrow AA \Rightarrow bAA \Rightarrow bAAb \Rightarrow bAbAb \Rightarrow bAbbAb \Rightarrow babbAb \Rightarrow babbab$$

 $S \Rightarrow AA \Rightarrow bAA \Rightarrow bAAb \Rightarrow bAbAb \Rightarrow bAbbAb \Rightarrow bAbbab \Rightarrow babbab$

3. For any m, n, p > 0, describe a derivation in G of the string $b^m a b^n a b^p$.

Solution

 $S \Rightarrow AA \Rightarrow^m b^m AA \Rightarrow^n b^m Ab^n A \Rightarrow^p b^m Ab^n Ab^p \Rightarrow b^m Ab^n ab^p \Rightarrow b^m ab^n ab^p$

QUESTION 2 Construct a context-free grammar G such that

$$L(G) = \{ w \in \{a, b\}^* : w = w^R \}.$$

Justify your answer.

Solution $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S\}, \quad \Sigma = \{a, b\},$$
$$R = \{S \to aSa \mid bSb \mid a \mid b \mid e\}.$$

Derivation example: $S \Rightarrow aSa \Rightarrow abSba \Rightarrow ababa$ $ababa^{R} = ((ab)a(ba))^{R} = (ba)^{R}a^{R}(ab)^{R} = ababa.$ **Observation 1** We proved in class that for any $x, y \in \Sigma^*$, $(xy)^R = y^R x^R$. From this we have that

$$(xyz)^R=((xy)z)^R=z^R(xy)^R=z^Ry^Rx^R$$

Grammar correctness justification: observe that the rules $S \to aSa | bSb | e$ generate the language $L_1 = \{ww^R : w \in \Sigma^*\}$. With additional rules $S \to a | b$ we get hence the language $L = L_1 \cup \{waw^R : w \in \Sigma^*\} \cup \{wbw^R : w \in \Sigma^*\}$. Now we are ready to prove that

$$L = L(G) = \{ w \in \{a, b\}^* : w = w^R \}.$$

Proof Let $w \in L$, i.e. $w = xx^R$ or $w = xax^R$ or $w = xbx^R$. We show that in each case $w = w^R$ as follows.

c1:
$$w^R = (xx^R)^R = (x^R)^R x^R = xx^R = w$$
 (used property: $(x^R)^R = x$).

- **c2:** $w^R = (xax^R)^R = (x^R)^R a^R x^R = xax^R = w$ (used Observation 1 and properties: $(x^R)^R = x$ and $a^R = a$).
- **c3:** $w^R = (xbx^R)^R = (x^R)^R b^R x^R = xbx^R = w$ (used Observation 1 and properties: $(x^R)^R = x$ and $b^R = b$).
- **DEFINITION** A context-free grammar $G = (V, \Sigma, R, S)$ is called **regular**, or **right-linear** iff

$$R \subseteq (V - \Sigma) \times \Sigma^*((V - \Sigma) \cup \{e\}).$$

QUESTION 3 Given a **Regular grammar** $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S, A\}, \quad \Sigma = \{a, b\},$$

$$R = \{S \rightarrow aS \mid A \mid e, A \rightarrow abA \mid a \mid b\}$$

1. Construct a finite automaton M, such that L(G) = L(M).

Solution We construct a non-deterministic finite automata

$$M = (K, \Sigma, \Delta, s, F)$$

as follows:

$$K = (V - \Sigma) \cup \{f\}, \ \Sigma = \Sigma, s = S, \ F = \{f\},$$
$$\Delta = \{(S, a, S), (S, e, A), (S, e, f), (A, ab, A), (A, a, f), (A, b, f)\}$$

2. Trace a transitions of M that lead to the acceptance of the string *aaaababa*, and compare with a derivation of the same string in G.

Solution

The accepting computation is:

$$(S, aaaababa) \vdash_{M} (S, aaababa) \vdash_{M} (S, aababa) \vdash_{M} (S, ababa) \vdash_{M} (A, ababa) \vdash_{M} (A, ababa) \vdash_{M} (A, aba) \vdash_{M} (A, a) \vdash_{M} (f, e)$$

G derivation is:

 $S \Rightarrow aS \Rightarrow aaaS \Rightarrow aaaA \Rightarrow aaaabAA \Rightarrow aaaababA \Rightarrow aaaababa$

QUESTION 4 Construct a **pushdown** automaton M such that

$$L(M) = \{a^m b^n : m \le n \le 2m\}$$

Solution $M = \{K, \Sigma, \Gamma, \Delta, s, F\}$ for

$$K = \{s, f\}, \Sigma = \{a, b\}, \Gamma = \{a\}, s = s, F = \{f\},$$

$$\Delta = \{((s, a, e), (s, aa)), ((s, a, e), (s, a)), ((s, e, e), (f, e)), ((f, b, a), (f, e))\}$$

Trace a transitions of M that lead to the acceptance of the string *aaabbbb*.

Solution The accepting computation is:

 $(s, aaabbbb, e) \vdash_M (s, aabbbb, a) \vdash_M (s, abbbb, aa) \vdash_M (s, bbbb, aaaa)$

- $\vdash_M (f, bbbb, aaaa) \vdash_M (f, bbb, aaa) \vdash_M (f, bb, aa) \vdash_M (f, b, a) \vdash_M (f, e, e)$
- **QUESTION 5** Use closure under union to show that $L = \{a^n b^n : n \neq m\}$ is CONTEXT-Free.
- **Solution 1** We know that $L_1 = \{a^m b^n : m > n\}$ and $L_2 = \{a^m b^n : m < n\}$ are context-free languages (we constructed proper grammars for both of them). $L = L_1 \cup L_2$, hence L is context free as the class of context free languages is closed under union.
- **Solution 2** Observe that $L_1 = \{a^m b^n : m > n\} = \{a\}^+ \{a^n b^n : n \in N\}$ We proved (Pumping Lemma)that $\{a^n b^n : n \in N\}$ is context free and the class of context free languages is closed under concatenation, hence L_1 is also context free.

Similarly, $L_2 = \{a^m b^n : m < n\} = \{a^n b^n : n \in N\}\{b\}^+$, so L_2 is context free. $L = L_1 \cup L_2$, hence L is context free as the class of context free languages is closed under union.

QUESTION 6 Prove that a language is regular iff there is a regular grammar that generates it.

Solution

Implication \Rightarrow : Assume that *L* is a regular language. Let $M = \{K, \Sigma, \delta, s, F\}$ be a deterministic finite state automaton such that L = L(M). We construct a context free grammar *G* as follows.

$$G = (K \cup \Sigma, \Sigma, R, S = s)$$

for R defined below.

$$R = \{p \to \sigma q : \delta(p, \sigma) = q\} \cup \{q \to e : q \in F\}$$

We prove that L(G) = L(M) = L by a straightforward induction on the length of derivation/computation.

Implication \Leftarrow : Assume the a grammar $G = (V, \Sigma, R, S)$ is regular, or rightlinear. I.e. that

$$R \subseteq (V - \Sigma) \times \Sigma^*((V - \Sigma) \cup \{e\}).$$

Observe that the rules of R are, by definition, of the form:

 $A \to wB, \ A \to w, \ A \to e$

for $A, B \in V - \Sigma$, $w \in \Sigma^*$. We define a non-deterministic finite automaton M as follows:

$$M = \{ K = (V - \Sigma) \cup \{ f \}, \Sigma, \Delta, s = S, F = \{ f \} \}$$

for $\Delta = \{(A, w, B) : A \to wB \in R\} \cup \{(A, w, f) : A \to w \in R\}.$

QUESTION 7 Use Pumping Lemma to prove that

$$L = \{a^n b^n c^n : n \in N\}$$

is NOT CF language.

Solution Assume that L is CF. Let $G = (V, \Sigma, R, S)$ be a CF grammar such that L = L(G). Take $n > \frac{(\phi G)^{|V-\Sigma|}}{3}$ and $w = a^n b^n c^n$. Of course $|w| = 3n > (\phi G)^{|V-\Sigma|}$ and the Pumping Lemma holds. It means that we can split w in such a way that w = uvxyz for xynot = e and $uv^n xy^n z \in L$, for all $n \in N$.

Let's now look at the form of vy, i.e analyze which occurrences of a, b, c it contains. We have to consider two cases. Both of them lead to contradiction.

1. vy contains all occurrences of a, b, c. Then at least one of v, y must contain at least two of them; but in this case uv^2xy^2z contains two occurrences out of order as $(ab)^2 = abab$ and $uv^2xy^2z \notin L$. Contradiction.

2. If vy contains occurrences of some, but not all of a, b, c, then uv^2xy^2z has unequal number of a's, b's and c's and $uv^2xy^2z \notin L$. Contradiction.