
CSE303 Q4 Practice Solutions Spring 2011

YES/NO questions Circle the correct answer. Write SHORT justification.

1. The set of terminals in a context free grammar G is a subset of
alphabet of G
Justify: Σ ⊆ V y

2. The set of terminals and non- terminals in a context free grammar
G form the alphabet of G
Justify: V = Σ ∪ (V − Σ) y

3. The set of non-terminals is always non- empty
Justify: S ∈ V y

4. The set of terminals is always non- empty
Justify: Finite set can be empty v n

5. L(G) = {w ∈ V : S⇒∗
Gw}

Justify: w ∈ Σ∗ n

6. L ⊆ Σ∗ is context-free if and only if L = L(G)
Justify: only when G is a context -free grammar n

7. A language is context-free if and only if it is accepted by a context-
free grammar.
Justify: Generated, not accepted n

8. Any regular language is context-free
Justify: 1. Any Finite Automata is a PDF automata
2.Regular languages are generated by regular grammars, that are also
CF. y

9. Language is regular if and only if is generated by a regular grammar
(right- linear)
Justify: proof in class y

10. L = {w ∈ {a, b}∗ : w = wR} is context-free
Justify: G with the rules: S → aSa|bSb|a|b||e y

11. The stack alphabet of a pushdown automaton is always non- empty
Justify: finite set can be empty n

12. The input alphabet of a pushdown automaton is always non- empty
Justify: finite set can be empty n

13. ∆ ⊆ (K ×Σ∗ × Γ∗)× (K × Γ∗ is a transition relation of a pushdown
automaton (lecture definition)
Justify: ∆ must be finite n

14. ∆ ⊆ (K × (Σ ∪ {e}) × Γ∗) × (K × Γ∗ is a transition relation of a
pushdown automaton (book definition)
Justify: ∆ must be finite n

1



15. L(M) = {w ∈ Σ∗ : (s, w, e) |=∗M (f, e, e)}
Justify: f ∈ F n

16. Any regular language is accepted by a pushdown automaton
Justify: Any finite automata is a pushdown automata operating on
an empty stock. y

17. The class of languages accepted by pushdown automata is exactly
the class of context-free languages
Justify: main theorem y

18. Context-free languages are not closed under union
Justify: we construct a CF grammar that is union of CF grammars

n

19. Context-free languages are closed under intersection
Justify: Take L1 = anbncm, L2 = ambncn, both CF and we get that
L1 ∩ L2 = anbncn is not CF n

20. The intersection of a context-free language and regular language is a
context-free language
Justify: basic theorem y

21. The union of a context-free language and regular language is a context-
free language
Justify: regular language is also a context free language and context
free languages are closed under union y

22. Every subset of a regular language is a language.
Justify: a subset of a set is a set. y

23. Any regular language is accepted by some PD automata.
Justify: Any regular language is accepted by a finite automata, and
a finite automaton is a PD automaton (that never operates on the
stock). y

24. A parse tree is always finite.
Justify: Any derivation of w in a CF grammar is finite. y

25. Parse trees are equivalence classes.
Justify: represent equivalence classes. n

26. For all languages, all grammars are ambiguous.
Justify: programming languages are never inherently ambiguous. n

27. A CF grammar G is called ambiguous if there is w ∈ L(G) with at
least two distinct parse trees.
Justify: definition y

28. A CF language L is inherently ambiguous iff all context-free gram-
mars G, such that L(G) = L are ambiguous.
Justify: definition y

29. Programming languages are sometimes inherently ambiguous.
Justify: never n
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30. The largest number of symbols on the right-hand side of any rule of
a CF grammar G is called called a fanout and denoted by φ(G).
Justify: definition y

31. The Pumping Lemma for CF languages uses the notion of the fanout.
Justify: condition on the length of w ∈ L y

PROBLEMS

QUESTION 1 Consider a grammar G = (V, Σ, R, S), where

V = {a, b, S,A}, Σ = {a, b},

R = {S → AA, A → AAA |a |bA |Ab}.

1. Which strings of L(G) can be produced by derivations of 4 or fewer steps?

Solution

S ⇒ AA ⇒ aA ⇒ aa

S ⇒ AA ⇒ bAA ⇒ baA ⇒ baa

S ⇒ AA ⇒ aA ⇒ abA ⇒ aba

2. Give 2 derivations of a string babbab.

Solution

S ⇒ AA ⇒ bAA ⇒ bAAb ⇒ bAbAb ⇒ bAbbAb ⇒ babbAb ⇒ babbab

S ⇒ AA ⇒ bAA ⇒ bAAb ⇒ bAbAb ⇒ bAbbAb ⇒ bAbbab ⇒ babbab

3. For any m,n, p > 0, describe a derivation in G of the string bmabnabp.

Solution

S ⇒ AA ⇒m bmAA ⇒n bmAbnA ⇒p bmAbnAbp ⇒ bmAbnabp ⇒ bmabnabp

QUESTION 2 Construct a context-free grammar G such that

L(G) = {w ∈ {a, b}∗ : w = wR}.

Justify your answer.

Solution G = (V, Σ, R, S), where

V = {a, b, S}, Σ = {a, b},

R = {S → aSa |bSb | a | b | e}.

Derivation example: S ⇒ aSa ⇒ abSba ⇒ ababa
ababaR = ((ab)a(ba))R = (ba)RaR(ab)R = ababa.
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Observation 1 We proved in class that for any x, y ∈ Σ∗, (xy)R = yRxR.
From this we have that

(xyz)R = ((xy)z)R = zR(xy)R = zRyRxR

Grammar correctness justification: observe that the rules S → aSa |bSb | e
generate the language L1 = {wwR : w ∈ Σ∗}. With additional rules
S → a | b we get hence the language L = L1∪{wawR : w ∈ Σ∗}∪{wbwR :
w ∈ Σ∗}. Now we are ready to prove that

L = L(G) = {w ∈ {a, b}∗ : w = wR}.

Proof Let w ∈ L, i.e. w = xxR or w = xaxR or w = xbxR. We show that in
each case w = wR as follows.

c1: wR = (xxR)R = (xR)RxR = xxR = w (used property: (xR)R = x).

c2: wR = (xaxR)R = (xR)RaRxR = xaxR = w (used Observation 1 and
properties: (xR)R = x and aR = a).

c3: wR = (xbxR)R = (xR)RbRxR = xbxR = w (used Observation 1 and
properties: (xR)R = x and bR = b).

DEFINITION A context-free grammar G = (V, Σ, R, S) is called regular,
or right-linear iff

R ⊆ (V − Σ)× Σ∗((V − Σ) ∪ {e}).

QUESTION 3 Given a Regular grammar G = (V, Σ, R, S), where

V = {a, b, S,A}, Σ = {a, b},

R = {S → aS |A |e, A → abA |a |b}.

1. Construct a finite automaton M , such that L(G) = L(M).

Solution We construct a non-deterministic finite automata

M = (K, Σ, ∆, s, F )

as follows:

K = (V − Σ) ∪ {f}, Σ = Σ, s = S, F = {f},

∆ = {(S, a, S), (S, e, A), (S, e, f), (A, ab, A), (A, a, f), (A, b, f)}

2. Trace a transitions of M that lead to the acceptance of the string aaaababa,
and compare with a derivation of the same string in G.

Solution
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The accepting computation is:

(S, aaaababa) `M (S, aaababa) `M (S, aababa) `M (S, ababa) `M (A, ababa)

`M (A, aba) `M (A, a) `M (f, e)

G derivation is:

S ⇒ aS ⇒ aaS ⇒ aaaS ⇒ aaaA ⇒ aaaabA ⇒ aaaababA ⇒ aaaababa

QUESTION 4 Construct a pushdown automaton M such that

L(M) = {ambn : m ≤ n ≤ 2m}

Solution M = {K, Σ,Γ, ∆, s, F} for

K = {s, f}, Σ = {a, b}, Γ = {a}, s = s, F = {f},

∆ = {((s, a, e), (s, aa)), ((s, a, e), (s, a)), ((s, e, e), (f, e)), ((f, b, a), (f, e))}

Trace a transitions of M that lead to the acceptance of the string aaabbbb.

Solution The accepting computation is:

(s, aaabbbb, e) `M (s, aabbbb, a) `M (s, abbbb, aa) `M (s, bbbb, aaaa)

`M (f, bbbb, aaaa) `M (f, bbb, aaa) `M (f, bb, aa) `M (f, b, a) `M (f, e, e)

QUESTION 5 Use closure under union to show that L = {anbn : n 6= m} is
CONTEXT-Free.

Solution 1 We know that L1 = {ambn : m > n} and L2 = {ambn : m < n}
are context-free languages (we constructed proper grammars for both of
them). L = L1 ∪ L2, hence L is context free as the class of context free
languages is closed under union.

Solution 2 Observe that L1 = {ambn : m > n} = {a}+{anbn : n ∈ N} We
proved (Pumping Lemma)that {anbn : n ∈ N} is context free and the
class of context free languages is closed under concatenation, hence L1 is
also context free.

Similarly, L2 = {ambn : m < n} = {anbn : n ∈ N}{b}+, so L2 is context
free. L = L1 ∪ L2, hence L is context free as the class of context free
languages is closed under union.

QUESTION 6 Prove that a language is regular iff there is a regular grammar
that generates it.

Solution
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Implication ⇒: Assume that L is a regular language. Let M = {K, Σ, δ, s, F}
be a deterministic finite state automaton such that L = L(M). We con-
struct a context free grammar G as follows.

G = (K ∪ Σ, Σ, R, S = s)

for R defined below.

R = {p → σq : δ(p, σ) = q} ∪ {q → e : q ∈ F}
We prove that L(G) = L(M) = L by a straightforward induction on the
length of derivation/computation.

Implication ⇐: Assume the a grammar G = (V, Σ, R, S) is regular, or right-
linear. I.e. that

R ⊆ (V − Σ)× Σ∗((V − Σ) ∪ {e}).
Observe that the rules of R are, by definition, of the form:

A → wB, A → w, A → e

for A, B ∈ V −Σ, w ∈ Σ∗. We define a non-deterministic finite automaton
M as follows:

M = {K = (V − Σ) ∪ {f},Σ,∆, s = S, F = {f}}
for ∆ = {(A,w, B) : A → wB ∈ R} ∪ {(A, w, f) : A → w ∈ R}.

QUESTION 7 Use Pumping Lemma to prove that

L = {anbncn : n ∈ N}
is NOT CF language.

Solution Assume that L is CF. Let G = (V,Σ, R, S) be a CF grammar such
that L = L(G). Take n > (φG)|V−Σ|

3 and w = anbncn. Of course |w| =
3n > (φG)|V−Σ| and the Pumping Lemma holds. It means that we can
split w in such a way that w = uvxyz for xynot = e and uvnxynz ∈ L,
for all n ∈ N .

Let’s now look at the form of vy, i.e analyze which occurrences of a, b, c it
contains. We have to consider two cases. Both of them lead to contradic-
tion.

1. vy contains all occurrences of a, b, c. Then at least one of v, y must
contain at least two of them; but in this case uv2xy2z contains two occur-
rences out of order as (ab)2 = abab and uv2xy2z 6∈ L. Contradiction.

2. If vy contains occurrences of some, but not all of a, b, c, then uv2xy2z
has unequal number of a’s, b’s and c’s and uv2xy2z 6∈ L. Contradiction.
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