CSE303 Q3 SOLUTIONS

 $\mathbf{YES/NO}$ questions Circle the correct answer. Write SHORT justification.

1. For any language $L \subseteq \Sigma^*, \Sigma \neq \emptyset$ there is a deterministic autom M , such that $L = L(M)$. Justify: only when L is regular	nata n
 Any regular language has a finite representation. Justify: definition; regular expression is a finite string 	У
 Any finite language is regular. Justify: any finite language is a finite union of one element regulanguages 	ular ${f y}$
4. Given L_1, L_2 languages over Σ , then $((L_1 \cap (\Sigma^* - L_2)) \cup L_2)L$ regular. Justify: only when both are regular languages	n is
5. For any deterministic automata M , $L(M) = \bigcup \{R(1,j,n) : q \}$, where $R(1,j,n)$ is the set of all strings in Σ^* that may d M from state initial state to state q_j without passing through intermediate state numbered $n+1$ or greater, where n is the num of states of M .	rive any
Justify: basic fact and definition	\mathbf{y}
6. Σ in any Generalized Finite Automaton includes some regular	ex-
pressions. Justify : GFA recognizes regular expressions over Σ	n
7. For any finite automata M , there is a regular expression r , such that $L(M) = r$ (short hand notation). Justify: main theorem	that y
8. Pumping Lemma says that we can always prove that a language not regular. Justify: PL gives a certain characterization of infinite regular	ge is
guages	n
9. Pumping Lemma serves as a tool for proving that a language is regular.	
Justify: when the language is infinite and we can get contradict	ion \mathbf{y}
10. $L = \{w \in \{a, b\}^* : w = w^R\}$ is regular. Justify : not regular, proof by PL	\mathbf{n}
11. $L = \{a^n a^n : n \ge 0\}$ is not regular.	
Justify : $L = (aa)^*$ and hence regular	n

12. $L = \{a^n c^n : n \ge 0\}$ is regular.

Justify: not regular, proof by PL

 \mathbf{n}

 \mathbf{n}

 \mathbf{y}

- 13. Let L be a regular language, and $L_1 \subseteq L$, then L_1 is regular. **Justify**: $L_1 = \{a^n b^n : n \geq 0\}$ is a non-regular subset of regular $L = a^* b^*$
- 14. Let L be a regular language. The language $L^R = \{w^R: \ w \in L\}$ is regular.

Justify: L^R is accepted by finite automata M^R constructed from M such that L(M) = L

PROBLEMS

QUESTION 1 Using the construction in the proof of theorem

A language is regular iff it is accepted by a finite automata

construct a a finite automata M accepting

$$L_1 = \mathcal{L} = ((ab)^* \cup (bc)^*)ba$$

You can just draw a diagrams.

1. Diagrams for M1, M2, M3 such that L(M1) = ab, L(M2) = bc, L(M3) = ba

Solution

M1 components:

$$K = \{q_1, q_2\}, \Sigma = \{a, b, c\}, s = q_1, F = \{q_2\},$$
$$\Delta_{M1} = \{(q_1, ab, q_2)\}$$

M2 components:

$$K = \{q_3, q_4\}, \Sigma = \{a, b, c\}, s = q_3, F = \{q_4\},$$
$$\Delta_{M2} = \{(q_2, bc, q_4)\}$$

M3 components:

$$K = \{q_5, q_6\}, \Sigma = \{a, b, c\}, s = q_5, F = \{q_6\},$$
$$\Delta_{M3} = \{(q_5, ba, q_6)\}$$

2. Diagrams for M4, M5 such that $L(M4) = L(M1)^*, L(M5) = L(M2)^*$

Solution

M4 components:

$$K = \{q_1, q_2, q_7\}, \Sigma = \{a, b, c\}, s = q_7, F = \{q_2, q_7\},$$
$$\Delta_{M4} = \{(q_7, e, q_1), (q_1, ab, q_2), (q_2, e, q_1)\}$$

M5 components:

$$K = \{q_3, q_4, q_8\}, \Sigma = \{a, b, c\}, s = q_8, F = \{q_4, q_8\},$$
$$\Delta_{M4} = \{(q_8, e, q_3), (q_3, bc, q_4), (q_4, e, q_3)\}$$

3. Diagram for M6 such that $L(M5) = L(M4) \cup L(M5)$

Solution

M5 components:

$$K = \{q_1, q_2, q_3, q_4, q_7, q_8, q_9\}, \Sigma = \{a, b, c\}, s = q_9, F = \{q_2, q_4, q_7, q_8\},$$

$$\Delta_{M5} = \{(q_9, e, q_7), (q_9, e, q_8), (q_7, e, q_1), (q_1, ab, q_2), (q_2, e, q_1), (q_8, e, q_3), (q_3, bc, q_4), (q_4, e, q_3)\}$$

4. Diagram for M = M5M3, i.e M is such that L(M) = L(M5)L(M3).

M components:

$$K = \{q_1, q_2, q_3, q_4, q_7, q_8, q_9\}, \Sigma = \{a, b, c\}, s = q_9, F = \{q_6\},$$

$$\Delta_{M5} = \Delta_{M4} \cup \{(q_7, e, q_5), (q_8, e, q_5), (q_2, e, q_5), (q_4, e, q_5), (q_5, ba, q_6)\}$$

$$= \{(q_9, e, q_7), (q_9, e, q_8), (q_7, e, q_1), (q_1, ab, q_2), (q_2, e, q_1), (q_8, e, q_3), (q_3, bc, q_4), (q_4, e, q_3), (q_7, e, q_5), (q_8, e, q_5), (q_2, e, q_5), (q_4, e, q_5), (q_5, ba, q_6)\}$$

QUESTION 2 For the automaton M

$$M = (\{q_1, q_2\}, \{a, b\}, s = q_1,$$

$$\Delta = \{(q_1, a, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_1)\}, F = \{q_2\})$$

Q2(a) (2pts) Evaluate 4 steps, in which you must include at least one R(i, j, 0), in the construction of regular expression that defines L(M) that uses the formulas:

$$L(M) = \bigcup \{R(1,j,n): \ q_j \in F\}$$

$$R(i,j,k) = R(i,j,k-1) \cup R(i,k,k-1)R(k,k,k-1)^*R(k,j,k-1)$$

where n is the number of states of M, k = 1, ...n and

$$R(i, j, 0)$$
 is either $\{a \in \Sigma \cup \{e\} : (q_i, a, q_j) \in \Delta\}$ if $i \neq j$, or is

$$\{e\} \cup \{a \in \Sigma \cup \{e\} : (q_i, a, q_i) \in \Delta\} \text{ if } i = j.$$

Solution

Step 1
$$L(M) = R(1,2,2)$$

Step 2
$$R(1,2,2) = R(1,2,1) \cup R(1,2,1)R(2,2,1)*R(2,2,1)$$

Step 3
$$R(1,2,1) = R(1,2,0) \cup R(1,1,0)R(1,1,0)*R(1,2,0)$$

Step 4
$$R(1,2,0) = \{b\}, R(1,1,0) = \{e\} \cup \{a\}$$

$$R(1,2,1) = \{e\} \cup \{a\} \cup (\{e\} \cup \{a\})(\{e\} \cup \{a\})^* \{b\}$$

Question 3 Evaluate r, such that

$$\mathcal{L}(r) = L(M)$$

using the Generalized Automata Construction, as described in example $2.3.2~\mathrm{page}~80.$

$$M = (\{q_1, q_2\}, \{a, b\}, s = q_1,$$

$$\Delta = \{(q_1, a, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_1)\}, F = \{q_2\})$$

Step 1: Construct a generalized GM that extends M, i.e. such that L(M) = L(GM)

Solution

$$GM = (\{q_1, q_2, q_3, q_4\}, \{a, b\}, s = q_3, F = \{q_4\}$$

$$\Delta = \{(q_1, a, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_1)\}, (q_3, e, q_1), (q_2, e, q_4))$$

Step 2: Construct $GM1 \simeq GM \simeq M$ by elimination of q_1 .

Solution

$$GM1 = (\{q_2, q_3, q_4\}, \{a, b\}, s = q_3, F = \{q_4\}$$

$$\Delta = \{(q_3, a^*b, q_2), (q_2, a, q_2), (q_2, ba^*b, q_2)\}, (q_2, e, q_4))$$

Step 3: Construct $GM2 \simeq GM1 \simeq GM \simeq M$ by elimination of q_2 .

Solution

$$GM2 = (\{q_3, q_4\}, \{a, b\}, s = q_3, F = \{q_4\}$$

$$\Delta = \{(q_3, a^*b(ba^*b \cup a)^*, q_4)\}$$

Answer: the language is

$$L(M) = a^*b(ba^*b \cup a)^*$$

QUESTION 4 Show that the class of regular languages is not closed with respect to subset relation.

Solution Consider

$$L_1 = \{a^n b^n : n \in N\}, L_2 = a^* b^*$$

 $L_1 \subseteq L_2$ and L_1 is a non-regular subset of a regular L_2 .

QUESTION 5

1. If L_1, L_2 are regular languages, is $L_1 \cap L_2$ also regular? Explain.

Solution YES, class of regular languages is closed under \cap .

2. If $L_1 \cap L_2$ is a regular language, are L_1 and L_2 also regular? Explain.

Solution NO. Take

$$L_1 = \{a^n b^n : n \in N\}, L_2 = \{a^n : n \in Prime\}$$

 $L_1 \cap L_2 = \emptyset$ is a regular language and L_1, L_2 are not regular

QUESTION 6 Show that the language

$$L = \{xyx^R : x, y \in \Sigma^*\}$$

is regular for any Σ .

Solution Take $x = e \in \Sigma^*$. The language

$$L_1 = \{eye^R : e, y \in \Sigma^*\} \subseteq L$$

and $L_1 = \Sigma^*$. We get $\Sigma^* \subseteq L \subseteq \Sigma^*$ and hence $L = \Sigma^*$ is regular.

QUESTION 7 Show that if L is regular, so is the language

$$L_1 = \{xy: x \in L, y \notin L\}.$$

Solution Observe that $L_1 = L(\Sigma^* - L)$ and L regular, hence $\Sigma^* - L$) is regular (closure under complement), so is L_1 by closure under concatenation.