PART 1: YES/NO QUESTIONS Circle the correct answer. Write SHORT justification.

- The set K of states of any deterministic finite automaton is always non-empty Justify: s ∈ K
- 2. Alphabet Σ of any deterministic finite automaton is always nonempty

Justify: An alphabet Σ is any FINITE set, hence it can be empty.

3. A configuration of a deterministic finite automaton $M = (K, \Sigma, \delta, s, F)$ is any element of $K \times \Sigma^*$.

Justify: this is definition

4. Given an automaton $M = (K, \Sigma, \delta, s, F)$, a binary relation $\vdash_M \subseteq (K \times \Sigma^*) \times (K \times \Sigma^*)$ is a one step computation iff the following condition holds

 $(q, aw) \vdash_M (q', w)$ iff $\delta(q', a) = q$.

Justify: Proper condition is: $(q, aw) \vdash_M (q', w)$ iff $\delta(q, a) = q'$.

- 5. Given $M = (K, \Sigma, \delta, s, F)$ we define $L(M) = \{w \in \Sigma^* : \exists q \in K((s, w) \vdash^*_M(q, e))\}.$ **Justify**: Must be: $\exists q \in F((s, w) \vdash^*_M(q, e)).$
- 6. If $M = (K, \Sigma, \delta, s, F)$ is a deterministic, then M is also non-deterministic. **Justify**: The function δ is a (special) relation on $K \times \Sigma \times K$, i.e. $\delta = \Delta \subseteq K \times \Sigma \times K \subseteq K \times \Sigma \cup \{e\} \times K \subseteq K \times \Sigma^* \times K$.
- 7. A configuration of a non- deterministic finite automaton $M = (K, \Sigma, \Delta, s, F)$ is any element of $K \times \Sigma^*$. **Justify**: by definition

У

У

TWO DEFINITIONS OF NON DETERMINISTIC AUTOMATA

n

У

 \mathbf{n}

 \mathbf{n}

у

BOOK DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when

$$\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K$$

OBSERVE that Δ is always finite because K, Σ are finite sets.

LECTURE DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when Δ is finite and

$$\Delta \subseteq K \times \Sigma^* \times K.$$

OBSERVE that we have to say in this case that Δ is finite because Σ^* is infinite.

SOLVING PROBLEMS you can use any of these definitions.

A VERY SHORT QUESTION Given the automaton *M* with the following components:

 $\Sigma = \{a, b, c\}, K = \{q_0, q_1, q_2\}, s = q_0, F = \{q_2\}.$ We define Δ as follows. $\Delta = \{(q_0, abc, q_1), (q_1, e, q_2)), (q_0, a, q_2)\}$

- 1. State and explain whether M represents a deterministic or a non-deterministic automaton.
- **Solution** M is non-deterministic. Δ is not a function on $K \times \Sigma$, also $\Delta \subseteq K \times \Sigma^* \times K$ (Lecture definition).
- **2.** Write down a regular expression representing L(M).

Solution

$$L(M) = abc \cup a$$

PART 2: PROBLEMS

QUESTION 1 Construct a deterministic finite automaton M such that

 $L(M) = \{ w \in \{a, b\}^* : \text{ neither bb nor aa is a substring of } w \}.$

Draw a state diagram and specify all components K, Σ, δ, s, F of M. Justify your construction.

Solution

Components of $M = (K, \Sigma, \delta, s, F)$ are:

 $\Sigma = \{a, b\}, K = \{q_0, q_1, q_2, q_3\}, s = q_0, q_3 \text{ is a trap state}, F = \{q_0, q_1, q_2\}.$ We define δ on non-trap states as follows. $\delta(q_0, a) = q_1, \ \delta(q_0, b) = q_2,$ $\delta(q_1, b) = q_2,$ $\delta(q_2, a) = q_1.$

M accepts strings a, aba, ababa... or b, bab, baba.. etc and never aa, bb, etc...

QUESTION 2 For the automata M defined below describe the property defining L(M).

Components of M are:

 $\Sigma = \{a, b\}, K = \{q_0, q_1, q_2, q_3\}, s = q_0, F = \{q_1\}.$ We define δ as follows.

$$\begin{split} &\delta(q_0, a) = q_1, \ \delta(q_0, b) = q_2, \\ &\delta(q_1, a) = q_0, \ \delta(q_1, b) = q_3, \\ &\delta(q_2, a) = q_3, \ \delta(q_2, b) = q_0, \\ &\delta(q_3, a) = q_2, \ \delta(q_3, b) = q_1. \end{split}$$

Solution

Language of M is:

 $L(M) = \{ w \in \Sigma^* : w \text{ has an odd number of } a's \text{ and an even number of } b's \}.$

QUESTION 3 Use book or lecture definition (specify which are you using) to construct a non-deterministic finite automaton M, such that

$$L(M) = (ab)^*(ba)^*.$$

Draw a state diagram and specify all components K, Σ, Δ, s, F of M. Justify your construction by listing some strings accepted by the state diagram.

Solution 1 We use the lecture definition.

Components of *M* are: $\Sigma = \{a, b\}, K = \{q_0, q_1\}, s = q_0, F = \{q_0, q_1\}.$ We define Δ as follows. $\Delta = \{(q_0, ab, q_0), (q_0, e, q_1), (q_1, ba, q_1)\}.$

 ${\bf Strings} \ {\bf accepted} \ : \ ab, abab, abab, ababba, ababbaba,$

Solution 2 We use the book definition.

Components of *M* are: $\Sigma = \{a, b\}$, $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$, $F = \{q_2\}$. We define Δ as follows. $\Delta = \{(q_0, a, q_1), (q_1, b, q_0), (q_0, e, q_2), (q_2, b, q_3), (q_3, a, q_2)\}.$

Strings accepted : *ab*, *abab*, *abba*, *ababba*, *ababbaba*,

QUESTION 4 Let M be defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

 $\begin{array}{ll} \text{for} & K = \{q_0, q_1, q_2, q_3, \}, \; s = q_0 \\ \Sigma = \{a, b, c\}, \; F = \{q_3\} \; \text{and} \\ \Delta = \{(q_0, abc, q_0), (q_0, ab, q_1), (q_1, bb, q_3), (q_0, b, q_2), (q_2, aa, q_3)\}. \end{array}$

- 1. Find the regular expression describing the L(M). Simplify it as much as you can. Explain your steps.
- Solution $L(M) = (abc)^*abbb \cup abbb \cup (abc)^*baa \cup ba = (abc)^*abbb \cup (abc)^*baa(abc)^*(abbb \cup baa).$

We used the property:

$$LL_1 \cup LL2 = L(L_1 \cup L_2).$$

2. Write down (you can draw the diagram) an automata M' such that $M' \equiv M$ and M' is defined by the BOOK definition.

Solution

Solution We apply the "stretching" technique to M and the new M' is is as follows.

$$M' = (K \cup \{p_1, p_2, ..., p_5\} \Sigma, \ s = q_0, \ \Delta', \ F' = F)$$

for $K = \{q_0, q_1, q_2\}, s = q_0$ $\Sigma = \{a, b\}, F = \{q_3\}$ and $\Delta' = \{(q_0, b, q_2), (q_0, a, p_1), (p_1, b, p_2), (p_2, c, q_0), (q_0, a, p_3), (p_3, b, q_1), (q_1, b, p_4), (p_4, b, q_3), (q_0, b, q_2), (q_2, a, p_5), (p_5, a, q_3)\}.$

QUESTION 5 Let M be defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

for
$$K = \{q_0, q_1, q_2\}, \ s = q_0$$

 $\Sigma = \{a, b\}, \ F = \{q_0, q_2\}$ and
 $\Delta = \{(q_0, a, q_1), (q_1, b, q_2), (q_1, b, q_0), (q_2, a, q_0)\}.$

Write 4 steps of the general method of transformation a NDFA M, into an equivalent M', which is a DFA. Reminder: $E(q) = \{p \in K : (q, e) \vdash^*_M (p, e)\}$ and

$$\delta(Q,\sigma) = \bigcup \{ E(p) : \exists_{q \in Q}(q,\sigma,p) \in \Delta , p \in K \}$$

Step 1: Evaluate $\delta(E(q_0), a)$ and $\delta(E(q_0), b)$.

Step i+1: Evaluate δ on all states that result from step i.

Solution

Step 1:

$$E(q_0) = \{q_0\}, \ E(q_1) = \{q_1\}, \ E(q_2) = \{q_2\}$$
$$\delta(\{q_0\}, a) = E(q_1) = \{q_1\} \quad \delta(\{q_0\}, b) = \emptyset$$

Step 2:

$$\delta(\emptyset, a) = \emptyset, \ \delta(\emptyset, a) = \emptyset, \\ \delta(\{q_1\}, a) = \emptyset, \ \delta(\{q_1\}, b) = E(q_0) \cup E(q_2) = \{q_0, q_2\} \in F'$$

Step 3:

$$\delta(\{q_0, q_2\}, a) = E(q_1) \cup E(q_0) = \{q_0, q_1\}, \ \delta(\{q_0, q_2\}, b) = \emptyset$$

Step 4:

$$\delta(\{q_0, q_1\}, a) = \emptyset \cup E(q_1) = \{q_1\}, \ \delta(\{q_0, q_1\}, b) = \emptyset \cup E(q_0) \cup E(q_2) = \{q_0, q_2\} \in F'$$