CSE303 SAMPLE Q1 SOLUTIONS

- **PART 1: Yes/No Questions** Circle the correct answer (each question is worth 1pt.) Write SHORT justification.
 - 1. For any binary relation $R \subseteq A \times A$, we can extend it to $R_1 \subseteq A \times A$, such that R_1 is order on A.

Justify: Take $R = \{(a, a), (b, b), (a, b), (b, a)\}$. R is an equivalence relation. It is a symmetric relation and can't extend it to $R_1, R \subseteq R_1$ and R_1 antisymmetric.

2. A path (chain) in $R \subseteq A \times A$ is a sequence $a_1...a_n$, for $n \ge 1$ such that $(a_i, a_{i+1}) \in R$ for i = 1, 2..., n-1. Let $R = \{(a, a), (a, b)\}$. There is a path from a to a in R.

Justify: Path $a_1 = a, a_2 = a$ (of the length 2). Observe that there is also a path of a length 1 from a to a and path *aaaaaaaaa* of any length from a to a.

- 3. Set A is countable iff N ⊆ A (N is the set of natural numbers).
 Justify: A = {∅} is countable (finite), but N is not a subset of {∅}, i.e. N ⊈ {∅}.
 In fact A can be ANY finite set, or any infinite set that does not include N, for example A = {{n} : n ∈ N}.
 In this case |A| = |N|, but N is not a subset of A, i.e. N ⊈ A.
- 4. Let A ≠ Ø such that there are exactly 5 of possible partitions of A. It is possible to define 10 equivalence relations on A.
 Justify: Equivalence relation defines one partition and any partition defines exactly one equivalence relation. So there can be only 5 equivalence relations.
- equivalence relations. **n** 5. 2^N is infinitely countable. **Justify:** $|2^N| = |R| = C$ and R are uncountable. **n** 6. Let $A = \{\{n\} \in 2^N : n^2 + 1 \le 15\}$. A is infinite. **Justify:** $\{n \in N : n^2 + 1 \le 15\} = \{0, 1, 2, 3\}$.

hence
$$A = \{\{0\}, \{1\}, \{2\}, \{3\}\}$$
 is a finite set.

- 7. Let Σ = {a}. There are countably many languages over Σ.
 Justify: There is any many languages as subsets of Σ*, i.e. uncountably many and exactly as many as real numbers.
 8. For any L, L⁺ = L^{*} {e}.
 - **Justify**: Only when $e \notin L$. **n**

n

у

 \mathbf{n}

 \mathbf{n}

- 9. $L^* = \{w_1...w_n : w_i \in L, i = 1, 2, ...n, n \ge 1\}.$ Justify: $n \ge 0$.
- 10. For any language L over an alphabet Σ , $L^+ = L \cup L^*$. **Justify**: Take L such that $e \notin L$. We get that $e \in L \cup L^*$ as $e \in L^*$ and $e \notin L^+$.

 \mathbf{n}

 \mathbf{n}

PART 2: PROBLEMS

QUESTION 1

1. Let $f: A \longrightarrow B$.

Show that the following relation R is an equivalence relation on A.

$$R = \{(a, b) \in A \times A : f(a) = f(b)\}.$$

Solution: R is reflexive.

 $(a, a) \in R$ for all $a \in A$ because f(a) = f(a) always. R is **symmetric**, i.e $(a, b) \in R$ means f(a) = f(b), but hence f(b) = f(a)and consequently $(b, a) \in R$. R is **transitive**, because f(a) = f(b) and f(b) = f(c) implies that f(a) = f(c).

2. Let $f: N \longrightarrow N$, such that

$$f(n) = \begin{cases} 1 & \text{if } n \le 6\\ 2 & \text{if } n > 6 \end{cases}$$

Find equivalence classes of R from **1.** for this particular f.

Solution: we evaluate

$$[0] = \{n \in N : f(0) = f(n)\} = \{n \in N : f(n) = 1\} = \{0, 1, 2, 3, 4, 5, 6\}$$
$$[7] = \{n \in N : f(7) = f(n)\} = \{n \in N : f(n) = 2\} = \{n \in N : n > 6\}$$

There are two equivalence classes:

$$A_1 = \{n \in N : n \le 6\}, A_2 = \{n \in N : n > 6\}.$$

QUESTION 2 Prove by Mathematical Induction:

1. Every order (partial order) on a non-empty finite set has at least one maximal element.

- **Solution:** Let (A, \preceq) be a finite, not empty poset (partially ordered set by \preceq). |A| = n. Induction over $n \in N - \{0\}$.
- **Maximal element definition** An element $a_o \in A$ is a maximal element in a poset (A, \preceq) iff the following is true.

 $\neg \exists a \in A(a_0 \neq a \cap a_0 \preceq a).$

- **Base case:** $n = 1, A = \{a\}$. *a* is maximal (and minimal, and smallest, and largest) in the poset $(\{a\}, \leq)$.
- **Inductive step:** Assume that a_0 is a maximal element in (A, \preceq) , and |A| = n. Let B be a set $B = A \cup \{b_0\}$ for $b_0 \notin A$. Of course |B| = n + 1. To show that (B, \preceq) has a maximal element we need to consider 3 cases.
- (i) $b_0 \leq a_0$; in this case a_0 is maximal in (B, \leq) .
- (ii) $a_0 \leq b_0$; in this case b_0 is a new maximal in (B, \leq) .
- (iii) a_0, b_0 are not compatible; in this case a_0 remains maximal in (B, \preceq) .
- 2. Show that 1 is not true for an infinite set. You can draw a diagram.
- **Solution:** Consider a poset (Z, \leq) , where Z is the set on integers and \leq is a natural order on Z. Obviously no maximal element!
- **QUESTION 3 (4pts)** Let Σ be any alphabet, L_1, L_2 two languages over Σ such that $e \in L_1$ and $e \in L_2$. Show that

$$(L_1 \Sigma^* L_2)^* = \Sigma^*$$

Solution: By definition, $L_1 \subseteq \Sigma^*, L_2 \subseteq \Sigma^*$ and $\Sigma^* \subseteq \Sigma^*$. Hence

$$(L_1 \Sigma^* L_2) \subseteq \Sigma^*.$$

Now we use the following property:

Property For any languages $L_1.L_2$,

if $L_1 \subseteq L_2$, then $L_1^* \subseteq L_2^*$ and obtain that

 $(L_1 \Sigma^* L_2)^* \subset {\Sigma^*}^* = {\Sigma^*}.$

We have to show that also

$$\Sigma^* \subseteq (L_1 \Sigma^* L_2)^*.$$

Let $w \in \Sigma^*$ we have that also $w \in (L_1 \Sigma^* L_2)^*$ because w = ewe and $e \in L_1$ and $e \in L_2$.

- **QUESTION 4** Let \mathcal{L} be a function that associates with any regular expression α the regular language $\mathcal{L}(\alpha)$.
- **1.** Evaluate $\mathcal{L}(((a \cup b)^*a))$.
- $\begin{array}{l} \textbf{Solution:} \ \mathcal{L}(((a \cup b)^{\star}a)) = \mathcal{L}((a \cup b)^{\star})\mathcal{L}(a) = (\mathcal{L}(a \cup b))^{\star}\{a\} = (\mathcal{L}(a) \cup \mathcal{L}(b))^{\star}\{a\} = (\{a\} \cup \{b\})^{\star}\{a\} = \{a, b\}^{\star}\{a\}. \end{array}$
- **2.** Describe a property that defines the language $\mathcal{L}(((a \cup b)^*a))$.
- **Solution** $\{a, b\}^* \{a\} = \{w \in \{a, b\}^* : w \text{ ends with } a\}.$
- **QUESTION 5** Let $\Sigma = \{a, b\}$. Let $L_1 \subseteq \Sigma^*$ be defined as follows:

 $L_1 = \{ w \in \Sigma^* : \text{ number of } b \text{ in } w \text{ is divisible three} \}$

Write a regular expression α , such that $\mathcal{L}(\alpha) = L_1$. You can use shorthand notation. Explain shortly your answer.

Solution:

$$\alpha = a^* (a^* b a^* b a^* b a^*)^* = a^* (b a^* b a^* b a^*)^*.$$

Explanation: the part $a^*ba^*ba^*ba^*$ says that there must be 3 occurrences of b in L_1 . The part $(a^*ba^*ba^*ba^*)^*$ says that we the number of b's is 3n for $n \ge 1$.

Observe that 0 is divisible by 3, so we need to add the case of 0 number of b's (n = 0), i.e. words e, a, aa, aaa, ... We do so by concatenating $(a^*ba^*ba^*ba^*)^*$ with a^* .