CSE303 Q1 SOLUTIONS

PART 1: YES/NO QUESTIONS Circle the correct answer. Write SHORT justification.

- 1. $2^{\{1,2\}} \cap \{1,2\} \neq \emptyset$ **Justify**: $2^{\{1,2\}} = \{\emptyset, \{1\}, \{2\}, \{1,2\}\} \cap \{1,2\} = \emptyset$.
- 2. Some $R \subseteq A \times B$ are functions that map A into B. Justify: Functions are special type of relations.
- 3. If A is uncountable, then |A| = |R| (R is the set of real numbers). Justify: 2^R is uncountable, but $|R| < |2^R|$ by Cantor Theorem.
- 4. For any function f from A onto A, $f(a) \neq a$. Justify: Identity function: f(x) = x for all $x \in A$ maps A onto A.
- 5. $\{\{a,b\}\} \in 2^{\{a,b,\{a,b\}\}}$ Justify: $\{\{a,b\}\} \subseteq \{a,b,\{a,b\}\}.$
- 6. Let $\Sigma = \{n \in N : n \leq 1\}$. There are infinitely many finite languages over Σ .

Justify: $\Sigma = \{0, 1\}$ and Σ^* is countably infinite. The set of all finite subsets of any countably infinite set is countably infinite.

- 7. $L^+ = \{w_1...w_n : w_i \in L, i = 1, 2, ..n, n \ge 1\}.$ Justify:definition
- Regular language is a regular expression.
 Justify: Regular Language is represented by the function L

 $\mathcal{L}: RegExpressions \longrightarrow RegularLanguages$

 \mathbf{n}

 \mathbf{n}

 \mathbf{n}

 \mathbf{n}

у

у

у

у

- 9. Every regular language is represented by a regular expression. Justify: definition
- 10. For any langauge L over an alphabet Σ , $L^+ = L \cup L^*$. Justify: $e \in L^*$ and $e \notin L^+$

 \mathbf{n}

У

PART 2: PROBLEMS Solutions

QUESTION 1

1. Let $A = \{(\{n, n+1\}, n) \in 2^N \times N : 1 \le n \le 3\}$. List all elements of A.

Solution

$$A = \{(\{n, n+1\}, n) \in 2^N \times N : n = 1, 2, 3\} = \{(\{1, 2\}, 1), (\{2, 3\}, 2), (\{3, 4\}, 3)\}$$

2. Let now $A = \{(\{n\}, n) \in 2^N \times N : 1 \le n \le n+1\}$. Prove that A is infinitely countable.

Solution

$$A = \{(\{n\}, n) \in 2^N \times N : 1 \le n \le n+1\} = \{(\{n\}, n) \in 2^N \times N : 1 \le n\}$$

because $n \leq n+1$ for all $n \in N$.

The set $B = \{\{n\} : n \in N\}$ has the same cardinality as N by the function $f(n) = \{n\}$. $A = B \times N$ is a Cartesian product of two infinitely countable sets, and hence is also infinitely countable.

QUESTION 2 Let L_1, L_2 be the following languages over $\Sigma = \{a, b\}$:

$$L_1 = \{ w \in \Sigma^* : \exists u \in \Sigma\Sigma(w = uu^R u) \},$$
$$L_2 = \{ w \in \Sigma^* : ww = www \}.$$

1. Give examples 3 words w such that $w \in L_1$. Prove that L_1 is finite.

Solution We evaluate

 $\Sigma\Sigma = \{aa, bb, ab, ba\}$

 $\Sigma\Sigma$ is a finite set, hence the set $B = \{xyx : x, y \in \Sigma\Sigma\}$ is a finite set. $L_1 \subseteq B$, what proves that L_1 must be finite. In fact,

$$L_1 = \{aaaaaa, abbaab, baabba, bbbbbb\}.$$

- **2.** Give examples of 2 words w such that $w \notin L_1$.
- **Solution** $a \notin L_1, bba \notin L_1$. There are countably infinitely many words that are not in L_1 .
- **3.** Show that $L_2 \neq \emptyset$.
- **Solution** $e \in L_2$, as ee = eee. In fact, e is the only word with this property, hence

$$L_2 = \{e\}.$$

- **4.** Show that the set $(\Sigma^{\star} L_2)$ is infinite.
- **Solution** Σ^* is countably infinite, L_2 is finite, so (basic theorem) $(\Sigma^* L_2)$ is countably infinite. Any $w \in \Sigma^*$, such that $w \neq e$ is in $(\Sigma^* L_2)$.

QUESTION 3 Given expressions (written in a short hand notation)

$$\alpha_1 = \emptyset^* \cup a^* \cup b^* \cup a \cup b \cup (a \cup b)^*, \quad \alpha_2 = (a \cup b)^* b(a \cup b)^*$$

1. Re-write α_1 as a simpler expression representing the same language. List properties you used in your solution. Describe the language.

Solution We use the following properties:

- (i) $\{a\} \subseteq \{a\}^{\star}, \{b\} \subseteq \{b\}^{\star},\$
- (ii) $\{a\} \cup \{b\} = \{a, b\}, \ \{a\} \subseteq \{a, b\}, \ \{b\} \subseteq \{a, b\}.$ From the above and property 1. from the Question 2, $\{a\}^* \subseteq \{a, b\}^*, \ \{b\}^* \subseteq$

 $\{a, b\}^*$, and of course, $\emptyset \subset A$ for any set A and, if $A \subseteq B$, then $A \cup B = B$. Translating the properties above into regular expressions we get that

$$\alpha_1 = (a \cup b)^\star.$$

The language described by α_1 is

$$\mathcal{L}(\alpha_1) = \Sigma^\star.$$

- 2. Re-write α_2 as a simpler expression representing the same language. Describe the language.
- **Solution** α_2 can not be simplified. We use only property that $(\{a\} \cup \{b\})^* = \Sigma^*$ to describe the language determined by α_2

$$\mathcal{L}(\alpha_2) = \Sigma^* b \Sigma^*.$$

QUESTION 4 Let $\Sigma = \{a, b\}$. Let $L_1 \subseteq \Sigma^*$ be defined as follows:

 $L_1 = \{ w \in \Sigma^* : \text{ the number of } b \text{'s in } w \text{ is divisible by } 4 \}.$

Write a regular expression α , such that $\mathcal{L}(\alpha) = L_1$. You can use shorthand notation. Explain shortly your answer.

Solution

$$\alpha = a^{\star}(a^{\star}ba^{\star}ba^{\star}ba^{\star}ba^{\star})^{\star} = a^{\star}(ba^{\star}ba^{\star}ba^{\star}ba^{\star})^{\star}$$

Observe that the regular expression $(a^*ba^*ba^*ba^*ba^*)^*$ describes a string $w \in \Sigma^*$ with exactly 4 b's.

The regular expression $(a^*ba^*ba^*ba^*ba^*)^*$ represents multiples of w, and hence words in which a number of b's is divisible by 4.

Observe that 0 is divisible by 4, so we need to add the case of 0 number of b's (n = 0), i.e. words e, a, aa, aaa, \ldots We do so by concatenating $(a^*ba^*ba^*ba^*b^*)^*$ with a^* .