1 YES/NO questions (10pts)

Circle the correct answer (each question is worth 1pts) Write SHORT justification. No justification - no points

1. All infinite sets have different cardinality.
 Justify: The sets \(N \) (natural numbers) and \(Z \) (integers) have the same cardinality: \(|N| = |Z| = \aleph_0 \). This is not the only example. n

2. Regular expression defines a regular language.
 Justify: By definition: "A language \(L \) is regular iff there is a regular expression \(\alpha \) such that \(L = L(\alpha) \). y

3. \(L^+ = \{w_1...w_n : w_i \in L, i = 1,2..., n \geq 2\} \).
 Justify: the correct condition is \(n \geq 1 \). n

4. \(L^+ = L^* - \{e\} \).
 Justify: It holds only when \(e \notin L \). When \(e \in L \) we get that \(e \in L^+ \) and \(e \notin L^* - \{e\} \). n

5. Let \(\alpha = (\emptyset^* \cap b^*) \cup \emptyset^* \). The language defined by \(\alpha \) is empty.
 Justify: \(L = L(\alpha) = (\{e\} \cap \{b\}^*) \cup \{e\} = \{e\} \cup \{e\} = \{e\} \neq \emptyset \) n

6. A configuration of any finite automaton \(M = (K, \Sigma, \Delta, s, F) \) is any element of \(K \times \Sigma^* \times K \).
 Justify: it is element of \(K \times \Sigma^* \) n

7. Let \(M \) be a finite state automaton, \(L(M) = \{\omega \in \Sigma^* : (s,\omega) \xrightarrow{s,M} (q,e)\} \).
 Justify: only when \(q \in F \) n

8. For any \(M, L(M) \neq \emptyset \) if and only if the set \(F \) of its final states is non-empty.
 Justify: Let \(M \) be such that \(\Sigma = \emptyset, F \neq \emptyset, s \notin F \), we get \(L(M) = \emptyset \). n

9. The set \(F \) of final states of any non-deterministic finite automaton is always non-empty.
 Justify: The definition says that \(F \) is a finite set, i.e. can be empty, hence for some \(M \), \(L(M) = \emptyset \). n

10. DFA and NDFA recognize the same class of languages.
 Justify: Equivalency theorem proved in class y

2 Two definitions of a non-deterministic automaton

BOOK DEFINITION: \(M = (K, \Sigma, \Delta, s, F) \) is non-deterministic when
\[\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K \]

OBSERVE that \(\Delta \) is always finite because \(K, \Sigma \) are finite sets.

LECTURE DEFINITION: \(M = (K, \Sigma, \Delta, s, F) \) is non-deterministic when \(\Delta \) is finite and
\[\Delta \subseteq K \times \Sigma^* \times K \]

OBSERVE that we have to say in this case that \(\Delta \) is finite because \(\Sigma^* \) is infinite.

SOLVING PROBLEMS you can use any of these definitions.
3 Very Short Questions (15pts)

For all Questions below do the following.

1. Draw the State Diagram.
2. Determine whether it defines a finite state automaton. 3. Determine whether it is/it is not an automaton, it is/it is not a deterministic / non-deterministic automaton
4. Describe the language by writing a regular expression that defines it.

Q1 (5pts) \[M = (K, \Sigma, s, \Delta, F) \] for \[K = \{q_0\} = F, \ s = q_0, \Sigma = \emptyset, \Delta = \emptyset. \]

Solution \[M \] is deterministic and \[L(M) = \{e\} \neq \emptyset \]

Q2 (5pts) \[M = (K, \Sigma, s, \Delta, F) \] for \[\Sigma = \{a, b\}, K = \{q_0, q_1\}, s = q_0, F = \{q_0\}, \Delta = \{(q_0, a, q_1), (q_1, b, q_0)\}. \]

Solution \[M \] is non deterministic; \[\Delta \] is not a function on \[K \times \Sigma. \]

\[L(M) = (ab)^* \]

Q3 (5pts) \[M = (K, \Sigma, s, \Delta, F) \] for \[\Sigma = \{a, b\}, K = \{q_0, q_1, q_2\}, F = \{q_1\}, \Delta = \{(q_0, a, q_1), (q_0, b, q_1), (q_1, a, q_1), (q_1, e, q_2), (q_2, ab, q_2)\}. \]

Solution It is NOT an automaton. It has no initial state.

4 PROBLEMS (50pts + 15extra)

PROBLEM 1 (20pts)

Given an automaton \[M = (K, \Sigma, \delta, s, F) \] such that \[\Sigma = \{a, b\}, \ K = \{q_0, q_1, q_2, q_3\}, \ s = q_0, \ F = \{q_0\} \] and \[q_3 \] is a trap state.

We define \[\delta \] on non-trap states as follows.

\[\delta(q_0, a) = q_1, \ \delta(q_0, b) = q_0, \ \delta(q_1, a) = q_2, \ \delta(q_1, b) = q_1, \ \delta(q_2, a) = q_0 \]

1. (10pts) DRAW a complete state diagram of \[M. \]

Solution

Draw the diagram for

\[\delta(q_0, a) = q_1, \ \delta(q_0, b) = q_0, \ \delta(q_1, a) = q_2, \ \delta(q_1, b) = q_1, \ \delta(q_2, a) = q_0 \]

with \[\delta \] on the trap state \[q_3 \] defined below.

2. (2pts) DEFINE formally \[\delta \] for the trap state

Solution We define \[\delta \] on the trap state \[q_3 \] as follows.

\[\delta(q_2, b) = q_3, \ \delta(q_3, a) = q_3, \ \delta(q_3, b) = q_3 \]

3. (2pts) LIST 4 elements of \[L(M) \] and 4 elements not in \[L(M) \]

Solution list your own elements - here are mine.

\[e, \ bbb, \ abbaa, \ abbaaabbaa \in L(M), \ \text{and} \ a, \ aa, \ aba, \ bab \notin L(M) \]

4. (3pts) WRITE a regular expression defining the language \[L(M) \] of \[M. \]
Solution: Directly from the diagram we can "read" that the language of M is
\[L(M) = b^* \cup (b^*ab^*aab^*)^* \]

5. (3pts) JUSTIFY your answer.

Solution: The initial state q_0 is also a final state so we get $b^* \in L(M)$ as a loop on q_0 and the fact that in this case also $eL(M)$

Obviously $b^*ab^*aab^* \in L(M)$ and then all repetitions of it are in $L(M)$ as a loop on q_0.

PROBLEM 2 (10pts)

Let $M = (K, \Sigma, s, \Delta, F)$ for $K = \{q_0\}$, $s = q_0$, $\Sigma = \{a, b\}$, $F = \{q_0\}$ and
\[\Delta = \{(q_0, aba, q_0), (q_0, ab, q_0)\} \]

1. (3pts) Draw the State Diagram of M.

Solution: just do it!

2. (2pts) List 4 elements of $L(M)$.

Solution: For example e, ab, $abab$, $ababaaba$, ...

3. (2pts) WRITE a regular expression defining the language accepted by M.

Solution: The language is $L = (ab \cup aba)^*$.

4. (3pts) JUSTIFY why your expression is correct.

Solution: The initial state is a finite state hence $e \in L$. Of course for the same reason $aba \in L$ or $ab \in L$ and so are all possible combinations of both, and $L = (ab \cup aba)^*$.

PROBLEM 3 (20pts)

Let M be defined as follows
\[M = (K, \Sigma, s, \Delta, F) \]
for $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$,
\[\Sigma = \{a, b, c\}, \quad F = \{q_0, q_2, q_3\} \]
and
\[\Delta = \{(q_0, abc, q_0), (q_0, a, q_1), (q_0, c, q_3), (q_0, bc, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\} \]

1. (2pts) Draw the state diagram of M.

Solution: just do it!

2. (3pts) Find the regular expression describing the $L(M)$.

Solution: You can "read" directly from the diagram of M that
\[L(M) = (abc)^* \cup (abc)^*ab^* \cup (abc)^*a(abc)^*ba^* \cup (abc)^*a(abc)^*ba^* \cup (abc)^*a^* \]

If you need to provide explanation - here is mine:

$\alpha_1 = (abc)^*$ - loop on q_0,
$\alpha_2 = (abc)^*a(abc)^*ba^*$ - path from q_0 to q_2,
$\alpha_3 = (abc)^*a(abc)^*ba^*ba^*$ - path from q_0 to q_3 via q_2.

3
\[\alpha_4 = (abc)^*a^* - \text{path from } q_0 \text{ directly to } q_3 \]

Observe that \(e \in L \) as \(q_0 \in F \) and also \((q_0, e, q_3) \in \Delta \) and \(q_3 \in F \).

3. (10 pts) DRAW the diagram an automaton \(M' \) such that \(M' \equiv M \) and \(M' \) is defined by the BOOK definition.

Solution just draw components listed below

4. (5 pts) List all components of \(M' \).

Solution

We apply the "stretching" technique to \(M \) and the new \(M' \) COMPONENTS are as follows.

\[M' = (K \cup \{p_1, p_2, p_3\}, \Sigma, s = q_0, \, \Delta', \, F' = F) \]

for \(K = \{q_0, q_1, q_2, q_3\}, \, s = q_0 \)
\(\Sigma = \{a, b\}, \, F' = \{q_0, q_2, q_3\} \) and
\(\Delta' = \{(q_0, a, q_1), (q_0, e, q_3), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\}\)
\(\{(q_0, a, p_1), (p_1, b, p_2), (p_2, c, q_0), (q_1, b, p_3), (p_3, b, q_1)\}\)

EXTRA CREDIT (15pts)

For \(M \) defined as follows
\[M = (K, \Sigma, s, \Delta, F) \]

for \(K = \{q_0, q_1, q_2, q_3\}, \, s = q_0, \, \Sigma = \{a, b\}, \, F = \{q_2, q_3\} \) and
\(\Delta = \{(q_0, a, q_1), (q_0, e, q_1), (q_0, b, q_2), (q_1, b, q_3), (q_1, e, q_3), (q_2, b, q_2), (q_3, e, q_3), (q_3, a, q_3)\} \)

1. (2 pts) Draw the State Diagram of \(M \).

Solution

2. (10 pts) Write 4 steps of the general method of transformation a NDFA \(M \), into an equivalent \(M' \), which is a DFA.

Reminder: \(E(q) = \{p \in K : (q, e) \xrightarrow{\ast M} (p, e)\} \) and
\[\delta(Q, \sigma) = \bigcup \{E(p) : \exists q \in Q, \, (q, \sigma, p) \in \Delta\}. \]

Step 1 (2 pts) Evaluate \(E(q) \) for all \(q \in K \).

Solution
\[E(q_0) = \{q_0, q_1, q_3\}, \, E(q_1) = \{q_1, q_3\}, \, E(q_2) = \{q_2, q_3\}, \, E(q_3) = \{q_4\} \]

Step 2 (2 pts) Evaluate \(\delta(E(q_0), a) \) and \(\delta(E(q_0), b) \).

Solution
\[\delta(E(q_0), a) = \delta(\{q_0, q_1, q_3\}, a) = E(q_1) \cup E(q_3) = \{q_1, q_3\} \in F, \]
\[\delta(E(q_0), b) = \delta(\{q_0, q_1, q_3\}, b) = E(q_2) \cup E(q_3) \cup \emptyset = \{q_2, q_3\} \in F, \]

Step 3 (3 pts) Evaluate \(\delta\) on all states that result from step 2.
Solution

\[\delta(\{q_1, q_3\}, a) = \emptyset \cup E(q_3) = \{q_3\} \in F, \]

\[\delta(\{q_1, q_3\}, b) = E(q_3) \cup \emptyset = \{q_3\} \in F, \]

\[\delta(\{q_2, q_3\}, a) = \emptyset \cup E(q_3) = \{q_3\} \in F, \]

\[\delta(\{q_2, q_3\}, b) = E\{q_2\} \cup \emptyset = \{q_2, q_3\} \in F \]

Step 4 (3pts) Evaluate \(\delta \) on all states that result from step 3.

Solution

\[\delta(\{q_3\}, a) = E(q_3) = \{q_3\} \in F, \quad \delta(\{q_3\}, b) = \emptyset, \]

\[\delta(\emptyset, a) = \emptyset, \quad \delta(\emptyset, b) = \emptyset \]

End of the construction.

3. (3pts) Draw the DIAGRAM of \(M' \) after the steps you have **finished** evaluating.

Solution just draw it.