Test consists of 2 parts: YES/NO Questions (15pts), Problems (50pts).

The extra 5pts are included in the TOTAL 65 pts sum for the whole test.

PART 1 (15pts) YES/NO QUESTIONS - (1pts) each

Circle the correct answer. Write SHORT justification. Answers without justification will not receive credit.

1. \(L(M_1) = L(M_2) \) iff \(M_1 \) and \(M_2 \) are finite automata.
 \textbf{Justify:} take as \(M_1 \) any automata such that \(L(M_1) \neq \emptyset \) and \(M_2 \) such that \(L(M_2) = \emptyset \)

2. A language is regular if and only if \(L = L(M) \) and \(M \) is a finite automaton
 \textbf{Justify:} Main Theorem

3. Every subset of a regular language is a language.
 \textbf{Justify:} subset of a set is a set and languages are sets

4. Any finite language is CF.
 \textbf{Justify:} any finite language is regular and \(RL \subseteq CFL \)

5. Intersection of any two regular languages is CF language.
 \textbf{Justify:} Regular languages are closed under intersection and \(RL \subseteq CFL \)

6. \(L \) is regular if and only if there is a CF grammar \(G \), such that \(L = L(G) \).
 \textbf{Justify:} \(G \) with \(R = \{ S \rightarrow aSb | e \} \) is CF but the \(L(G) = \{ a^n b^n : n \geq 0 \} \) is NOT Regular

7. Let \(\Sigma = \{ a \} \), then for any \(w \in \Sigma^*, w^R = w \)
 \textbf{Justify:} \(a^R = a \) and \(w^R = w \) for \(w \in \{ a \}^* \)

8. Let \(G = (\{ S,(,) \},\{(,), R,S \}) \) for \(R = \{ S \rightarrow SS | (S) \} \). \(L(G) \) is regular.
 \textbf{Justify:} \(L(G) = \emptyset \) and hence regular

9. If \(L \) is regular, then there is a CF grammar \(G \), such that \(L = L(G) \).
 \textbf{Justify:} \(RL \subseteq CF \)

10. A CF language is a regular language.
 \textbf{Justify:} \(L = \{ a^n b^n : n \geq 0 \} \) is CF and not regular

11. The set of terminals in a context free grammar \(G \) is a subset of alphabet of \(G \)
 \textbf{Justify:} \(\Sigma \subseteq V \)

12. \(L(G) = \{ w \in V : S \Rightarrow_G w \} \)
 \textbf{Justify:} \(w \in \Sigma^* \)
13. \(L = \{a^n a^n : n \geq 0\} \) is not regular.
 Justify: \(L = (aa)^* \) and hence is regular.

14. \(L = \{a^n b^n c^n : n \geq 0\} \) is Context-Free.
 Justify: \(L \) is not CF, as proved by Pumping Lemma for CF languages.

15. \(L \subseteq \Sigma^* \) is context-free if and only if \(L = L(G) \).
 Justify: \(G \) must be a context-free grammar.

16. \(L(G) = \{ w \in \Sigma : S \Rightarrow^* G w \} \).
 Justify: \(w \in \Sigma^* \).

PART 2: PROBLEMS (50 pts)

Problem 1 (5 pts)

Let \(M = (K, \Sigma, s, \Delta, F) \) for \(K = \{q_0, q_1, q_2\}, s = q_0, \Sigma = \{a, b, c\}, F = \{q_1, q_2\} \) and
\(\Delta = \{(q_0, abc, q_0), (q_0, ab, q_1), (q_0, b, q_2)\} \).

1. (1pt) **Draw** the diagram of \(M \)

 Solution - just draw the diagram

2. (4pts) **Draw** the diagram of an automaton \(M' \) such that \(M' \equiv M \) and \(M' \) is defined by the BOOK definition.

 Solution

 Here are components for the correct Diagram of \(M' \)

 Please draw the correct diagram yourself

 We apply the "stretching" technique to \(M \) and the new \(M' \) is as follows.

 \[
 M' = (K \cup \{p_1, p_2, p_3\}, \Sigma, s = q_0, \Delta', F' = F)
 \]

 \[
 \Delta' = \{(q_0, a, p_1), (p_1, b, p_2), (p_2, c, q_0), (q_0, a, p_3), (p_3, b, q_1), (q_0, b, q_2)\}
 \]

Problem 2 (15 pts)

Evaluate regular expression \(r \), such that \(L(M) = r \) using the Generalized Automata

\(GM = (K_G, \Sigma_G, \Delta_G, s_G, F_G) \) for \(M \) given by
\(M = (\{q_1, q_2\}, \{a, b\}, s = q_1, \Delta = \{(q_1, a, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_1)\}, F = \{q_2\}) \)

1. (3pt) **Draw** a diagram of \(GM \) and list all components. **Remember** using to use the proper names for states for \(GM \)

 Remark By definition \(\Sigma_G = \Sigma \cup \mathcal{R}_0 \), where \(\mathcal{R}_0 \) is FINITE subset of regular expressions over \(\Sigma \) constructed by states elimination of the initial \(M \). When writing components of the needed sequence of Generalized Automata equivalent to \(M \), write just \(\Sigma_G = \Sigma \), without specifying the set of \(\mathcal{R}_0 \). The specific elements of \(\mathcal{R}_0 \) appear in in \(\Delta_G \) at each stage.
Solution

MG Diagram (1pt) - just draw it

MG Components (2pt)

The components of GM are as follows

\[GM = (\{q_1, q_2, q_3, q_4\}, \{a, b\}, s = q_3, F = \{q_4\}) \]
\[\Delta = \{(q_1, a, q_1), (q_1, a, q_2), (q_2, b, q_2), (q_2, a, q_1), (q_3, c, q_1), (q_2, c, q_4)\} \]

2. (5pt) Draw a diagram of \(GM^1 \simeq GM \simeq M \) obtained by elimination of \(q_1 \). List all components.

Solution

MG1 Diagram (2pt) - draw it

MG1 Components (3pt) are:

\[GM^1 = (\{q_2, q_3, q_4\}, \{a, b\}, s = q_3, F = \{q_4\}) \]
\[\Delta = \{(q_3, a^*b, q_2), (q_2, a, q_2), (q_2, ba^*b, q_2), (q_2, e, q_4)\} \]

3. (5pt) Draw a diagram of \(GM^2 \simeq GM^1 \simeq GM \simeq M \) obtained by elimination of \(q_2 \). List all components.

Solution

MG2 Diagram (2pt) - draw it

MG2 Components (3pt)

The components of GM2 are:

\[GM^2 = (\{q_3, q_4\}, \{a, b\}, s = q_3, F = \{q_4\}) \]
\[\Delta = \{(q_3, a^*b, qa^*b, q_4)\} \]

4. (2pt) Write the regular expression \(r \), such that \(L(M) = r \)

Solution

\[L(M) = a^*b(ba^*b \cup a)^* \]

Problem 3 (10 pts)

Use the constructions defined in the proof of the theorem:

A language is regular if and only if it is accepted by a finite automata
to construct a finite automata \(M \) such that

\[L(M) = (ab \cup c)^* \]

Draw PATTERN diagrams.

Use the constructions described in the proof of the Closure Theorem.

S1. (5pt) Draw diagrams of automata \(M_a, M_b, M_c \) and \(M_aM_b \cup M_c \).

Solution Follow Lecture 7 diagrams for CLOSURE Theorem Proof - and Examples.

S2. (5pt) Draw diagram of \(M = (M_aM_b \cup M_c)^* \).
Problem 4 (5 pts)

1. (2pts) Write derivation of words \textit{ababa} in \(G = (V, \Sigma, R, S) \), where
\(V = \{a, b, S\}, \quad \Sigma = \{a, b\}, \quad R = \{S \rightarrow aSa \mid bSb \mid a \mid b \mid e\}. \)

Solution format: \(S \Rightarrow S \Rightarrow ababa \)

Solution
Derivation of \textit{ababa} \(S \Rightarrow aSa \Rightarrow abSba \Rightarrow ababa \)

Derivation of \textit{aababaa} \(S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aabSbaa \Rightarrow aababaa \)

2. (2pts) Write a proof that the word \textit{ababa} \(\in L(G) \) fulfills a property \(w = w^R \)

Solution item || We know that \((xy)^R = y^Rx^R \) and so \((xyz)^R = z^R(xy)^R = z^Ry^R(xy)^R \)

We evaluate \((ababa)^R = ((ab)a(ba))^R = (ba)^R a^R(ab)^R = ababa \)

3. (1pts) Describe the \(L(G) \)

Solution
\(L(G) = \{w \in \{a, b\}^* : w = w^R\} \)

Problem 5 (15 pts)

Given a Regular grammar \(G = (V, \Sigma, R, S) \), where
\(V = \{a, b, S, A\}, \quad \Sigma = \{a, b\}, \)
\(R = \{S \rightarrow aS \mid A \mid e, \quad A \rightarrow abA \mid a \mid b\}. \)

1. (5pts)

Use the construction in the proof of L-G Theorem:

\textit{Language L is regular if and only if there exists a regular grammar G such that L = L(G) to construct a finite automaton M, such that L(G) = L(M).}

Draw a diagram of M

Solution

We construct a non-deterministic finite automata
\(M = (K, \Sigma, \Delta, s, F) \)

as follows:
\(K = (V - \Sigma) \cup \{f\}, \quad \Sigma = \Sigma, s = S, \quad F = \{f\}, \)
\(\Delta = \{(S, a, S), (S, e, A), (S, e, f), (A, ab, A), (A, a, f), (A, b, f)\} \)
The Diagram is:

![Diagram]

2. (5pts) Trace a transition of M that leads to the acceptance of the string $aaaababa$

Solution format: $(s,aaaababa) \vdash_M$

Solution

The accepting computation is:

$$
(S,aaaababa) \vdash_M (S,aaababa) \vdash_M (S,ababa) \vdash_M (S,ababa) \vdash_M (A,ababa) \\
\vdash_M (A,aba) \vdash_M (A,a) \vdash_M (f,e)
$$

3. (5pts) Trace a derivation of the same string $aaaababa$ in the gramma G.

Solution format: $S \Rightarrow$ $S \Rightarrow aaaababa$

Solution

The G derivation is:

$$
S \Rightarrow aS \Rightarrow aaS \Rightarrow aaaS \Rightarrow aaaA \Rightarrow aaaabA \Rightarrow aaaababA \Rightarrow aaaababa
$$