CSE303 Q1 SOLUTIONS Spring 2023 25 points + 5 extra pts

NAME SOLUTIONS

PART 1: YES/NO QUESTIONS (15pts)

Circle your answer and write a short justification (1pt). No justification- no points

1. $\{2, \{\emptyset\}, \emptyset\} \cap 2^{\emptyset} = \emptyset$

Justify: $2^{\emptyset} = \{\emptyset\}$ and $\{2, \{\emptyset\}, \emptyset\} \cap \{\emptyset\} \neq \emptyset$ as $\emptyset \in \{2, \{\emptyset\}, \emptyset\}$ n 2. For any non-empty sets A, B, any function that maps A into B is a binary relation $R \subseteq A \times B$ Justify: Functions are, by definition, special binary relations у 3. A set $A = \{ (n,m) \in N \times N : n^2 < 5, m^2 < 6 \}$ is countable **Justify:** $A = \{(n, m) \in N \times N : n = 0, 1, 2 \text{ and } m = 0, 1, 2\}$ is a FINITE set, hence countable у 4. A set $A = \{(\{n\}, m) \in 2^N \times N : n^2 + 1 < 5, m > 6\}$ is countable **Justify**: $A = \{(\{n\}, m) \in 2^N \times N : n = 0, 1, m > 6\} = B \times C$ for $B = \{\{0\}, \{1\}\}$ and $C = \{m \in N : m > 6\}$. Both sets are countable as B is finite and C infinitely countable and so is their Cartesian product у 5. Set A is countable if and only if |A| = |N|, where N is the set of Natural numbers. **Justify**: This is definition of infinitely countable set. Definition of a countable set is: a set A is countable iff is finite or infinitely countable. n 6. If the set A is uncountable, then |A| = |R| (R is the set of real numbers) Justify: Definition of a un countable set is: A is countable iff A is not countable. For example $A = 2^{R}$ is uncountable, but $|R| < 2^{R}$ by Cantor Theorem. n 7. The set $\{\emptyset, \{\emptyset\}\}\$ is an alphabet Justify: A has two elements so it is a finite set. у

8. Let $\Sigma = \emptyset$. There is only one language $L = \emptyset$ over Σ

Justify: $\Sigma^* = \emptyset^* = \{e\}$. We have that and $\emptyset \subseteq \{e\}$ and $\{e\} \subseteq \{e\}$. Hence there are two languages $L_1 = \emptyset$ and $L_1 = \{e\}$ over Σ

9. For any languages L_1 , L_2 , L over $\Sigma \neq \emptyset$

 $(L_1 \cup L_2) \cap L = (L_1 \cap L) \cup (L_2 \cap L)$

Justify: Languages are sets, so the LAWS of distributivity hold

10. Let $\Sigma = \{a, b\}$. There are more than 20 words of length 4 over Σ .

Justify: By Counting Functions Theorem there are exactly $2^4 = 16$ words of length 4 over Σ and 16 < 20.

11. For any languages L_1 , L_2 , L over $\Sigma \neq \emptyset$

 $\Sigma^* - (L_1 \cup L_2) = (\Sigma^* - L_1) \cap (\Sigma^* - L_2)$

Justify: Languages are sets so de Morgan Laws hold for them.

12. $L^* = \{w_1...w_n : w_i \in L, i = 1, 2, ..n, n \ge 0\}$

Justify: Definition of Kleene Star operation on languages

13. $L^+ = LL^*$.

Justify: the problem is only with cases $e \in L$ or $e \notin L$. When $e \in L$, then $e \in L^+$, and always $e \in L^*$, and $e \in LL^*$. When $e \notin L$, then $e \notin L^+$, and always $e \in L^*$, but then $e \notin LL^*$ as xe = x for $x \neq e$, hence $L^+ = LL^*$ **y**

14. A regular language is a regular expression.

Justify: A language $L \subseteq \Sigma^*$ is regular if and only if *L* is represented by a regular expression, i.e. when there is $\alpha \in \mathcal{R}$ such that $L = \mathcal{L}(\alpha)$

15. $(\emptyset^* \cap a) \cup b^*) \cap \emptyset^*$ describes a language with only one element.

Justify: we have that $\emptyset^* = \{e\}$, $(\emptyset^* \cap a) = \{e\} \cap \{a\} = \emptyset$, and so $(\emptyset^* \cap a) \cup b^*) \cap \emptyset^* = (\emptyset \cup \{b\}^*) \cap \{e\} = \{b\}^* \cap \{e\} = \{e\}$

n

у

n

y

у

n

y

PART 2: PROBLEMS (15pts)

QUESTION 1 (8pts)

Given an alphabet $\Sigma = \{a, b, c\}$ and a regular expression $\alpha = ((c^*a) \cup b)$

1. (1pt) Write α in the shorthand notation

$$c^*a \cup b$$

2. (3pts) Given the representation function $\mathcal{L}: \mathcal{R} \longrightarrow 2^{\Sigma^*}$.

Use the definition of the function \mathcal{L} to evaluate, step by step $L = \mathcal{L}(\alpha)$.

$$L = \mathcal{L}(\alpha) = \mathcal{L}(c^*a \cup b) = \mathcal{L}(c^*a) \cup \mathcal{L}(b) = \mathcal{L}(c^*)\mathcal{L}(a) \cup \{b\} = \{c\}^*\{a\} \cup \{b\}$$

3. (2pts) List elements of the infinite set $L = \alpha$ (short notation)

$$\{e, c, cc, ccc,\}\{a\} \cup \{b\} = \{a, ca, cca, ccca,\} \cup \{b\} = \{b, a, ca, cca, ccca,\}$$

4. (2pts) Write a property P(w) describing $L = \alpha$, i.e. write the language L as $L = \{w \in \Sigma^* : P(w)\}$

 $L = \{w \in \Sigma^* : w = a \text{ or } w = b \text{ or } w \text{ is any nonempty finite sequence of c's followed by a } \}$

PROBLEM 2 (7pts)

Let $\Sigma = \{0, 1\}$. Let $L \subseteq \Sigma^*$ be defined as follows.

 $L = \{w \in \{0, 1\}^*: w \text{ has three occurrences of } 1 \text{ the first and the second of which are not consecutive } \}$

1. (4pts) Write a regular expression α , such that $L = \alpha$ (short notation)

$$L = 0^* 10^* 010^* 10^*$$

2. (3pts) Explain carefully our answer.

L obviously has has three occurrences of 1.

The **first** and the **second** occurrences of 1 **are not** consecutive because in the expression 10^*01 the **0** separates them.