CSE303 Q1 SOLUTIONS Spring 2023
 25 points + 5 extra pts

NAME SOLUTIONS

PART 1: YES/NO QUESTIONS (15pts)

Circle your answer and write a short justification (1pt) . No justification- no points

1. $\{2,\{\emptyset\}, \emptyset\} \cap 2^{\emptyset}=\emptyset$

Justify: $\quad 2^{\emptyset}=\{\emptyset\}$ and $\{2,\{\emptyset\}, \emptyset\} \cap\{\emptyset\} \neq \emptyset$ as $\emptyset \in\{2,\{\emptyset\}, \emptyset\}$
2. For any non-empty sets A, B, any function that maps A into B is a binary relation $R \subseteq A \times B$

Justify: Functions are, by definition, special binary relations
3. A set $A=\left\{(n, m) \in N \times N: n^{2}<5, m^{2}<6\right\}$ is countable

Justify: $A=\{(n, m) \in N \times N: n=0,1,2$ and $m=0,1,2\}$ is a FINITE set, hence countable
4. A set $A=\left\{(\{n\}, m) \in 2^{N} \times N: n^{2}+1<5, m>6\right\}$ is countable

Justify: $A=\left\{(\{n\}, m) \in 2^{N} \times N: \quad n=0,1, m>6\right\}=B \times C$
for $B=\{\{0\},\{1\}\}$ and $C=\{m \in N: m>6\}$. Both sets are countable as B is finite and C infinitely countable and so is their Cartesian product
5. Set A is countable if and only if $|A|=|N|$, where N is the set of Natural numbers.

Justify: This is definition of infinitely countable set.
Definition of a countable set is: a set A is countable iff is finite or infinitely countable.
6. If the set A is uncountable, then $|A|=|R|$ (R is the set of real numbers)

Justify: Definition of a un countable set is: A is countable iff A is not countable. For example $A=2^{R}$ is uncountable, but $|R|<2^{R}$ by Cantor Theorem.
7. The set $\{\emptyset,\{\emptyset\}\}$ is an alphabet

Justify: A has two elements so it is a finite set.
n
8. Let $\Sigma=\emptyset$. There is only one language $L=\emptyset$ over Σ

Justify: $\quad \Sigma^{*}=\emptyset^{*}=\{e\}$. We have that and $\emptyset \subseteq\{e\}$ and $\{e\} \subseteq\{e\}$.
Hence there are two languages $L_{1}=\emptyset$ and $L_{1}=\{e\}$ over Σ
9. For any languages L_{1}, L_{2}, L over $\Sigma \neq \emptyset$
$\left(L_{1} \cup L_{2}\right) \cap L=\left(L_{1} \cap L\right) \cup\left(L_{2} \cap L\right)$

Justify: Languages are sets, so the LAWS of distributivity hold
10. Let $\Sigma=\{a, b\}$. There are more than 20 words of length 4 over Σ.

Justify: By Counting Functions Theorem there are exactly $2^{4}=16$ words of length 4 over Σ and $16<20$.
11. For any languages L_{1}, L_{2}, L over $\Sigma \neq \emptyset$
$\Sigma^{*}-\left(L_{1} \cup L_{2}\right)=\left(\Sigma^{*}-L_{1}\right) \cap\left(\Sigma^{*}-L_{2}\right)$

Justify: Languages are sets so de Morgan Laws hold for them.
12. $L^{*}=\left\{w_{1} \ldots w_{n}: w_{i} \in L, i=1,2, . . n, n \geq 0\right\}$

Justify:Definition of Kleene Star operation on languages
13. $L^{+}=L L^{*}$.

Justify: the problem is only with cases $e \in L$ or $e \notin L$.
When $e \in L$, then $e \in L^{+}$, and always $e \in L^{*}$, and $e \in L L^{*}$.
When $e \notin L$, then $e \notin L^{+}$, and always $e \in L^{*}$, but then $e \notin L L^{*}$ as $x e=x$ for $x \neq e$, hence $L^{+}=L L^{*}$
14. A regular language is a regular expression.

Justify:A language $L \subseteq \Sigma^{*}$ is regular if and only if L is represented by a regular expression, i.e. when there is $\alpha \in \mathcal{R}$ such that $L=\mathcal{L}(\alpha)$
15. $\left.\left(\emptyset^{*} \cap a\right) \cup b^{*}\right) \cap \emptyset^{*}$ describes a language with only one element.

Justify: we have that $\emptyset^{*}=\{e\},\left(\emptyset^{*} \cap a\right)=\{e\} \cap\{a\}=\emptyset$, and so $\left.\left(\emptyset^{*} \cap a\right) \cup b^{*}\right) \cap \emptyset^{*}=\left(\emptyset \cup\{b\}^{*}\right) \cap\{e\}=\{b\}^{*} \cap\{e\}=\{e\}$

PART 2: PROBLEMS (15pts)

QUESTION 1 (8pts)

Given an alphabet $\Sigma=\{a, b, c\}$ and a regular expression $\alpha=\left(\left(c^{*} a\right) \cup b\right)$

1. $(1 \mathrm{pt})$ Write α in the shorthand notation

$$
c^{*} a \cup b
$$

2. (3pts) Given the representation function $\mathcal{L}: \mathcal{R} \longrightarrow 2^{\Sigma^{*}}$.

Use the definition of the function \mathcal{L} to evaluate, step by step $L=\mathcal{L}(\alpha)$.

$$
L=\mathcal{L}(\alpha)=\mathcal{L}\left(c^{*} a \cup b\right)=\mathcal{L}\left(c^{*} a\right) \cup \mathcal{L}(b)=\mathcal{L}\left(c^{*}\right) \mathcal{L}(a) \cup\{b\}=\{c\}^{*}\{a\} \cup\{b\}
$$

3. (2pts) List elements of the infinite set $L=\alpha$ (short notation)

$$
\{e, c, c c, c c c, \ldots .\}\{a\} \cup\{b\}=\{a, c a, c c a, c c c a, \ldots .\} \cup\{b\}=\{b, a, c a, c c a, c c c a, \ldots .\}
$$

4. (2pts) Write a property $P(w)$ describing $L=\alpha$, i.e. write the language L as $L=\left\{w \in \Sigma^{*}: P(w)\right\}$

$$
L=\left\{w \in \Sigma^{*}: \quad w=a \text { or } w=b \text { or } w \text { is any nonempty finite sequence of } c^{\prime} s \text { followed by a }\right\}
$$

PROBLEM 2 (7pts)

Let $\Sigma=\{0,1\}$. Let $L \subseteq \Sigma^{\star}$ be defined as follows.
$L=\left\{w \in\{0,1\}^{*}: w\right.$ has three occurrences of 1 the first and the second of which are not consecutive $\}$

1. (4pts) Write a regular expression α, such that $L=\alpha$ (short notation)

$$
L=0^{*} 10^{*} 010^{*} 10^{*}
$$

2. (3pts) Explain carefully our answer.
L obviously has has three occurrences of 1 .
The first and the second occurrences of 1 are not consecutive because in the expression $10^{*} \mathbf{0 1}$ the $\mathbf{0}$ separates them.
