1 YES/NO questions

1. For any binary relation $R \subseteq A \times A$, R^* exists.
 \textbf{Justify:} definition \hspace{1cm} y

2. For any binary relation $R \subseteq A \times A$, R^{-1} exists.
 \textbf{Justify:} The set $R^{-1} = \{(b, a) : (a, b) \in R\}$ always exists. \hspace{1cm} y

3. For any function f from $A \neq \emptyset$ onto A, f has property $f(a) \neq a$ for certain $a \in A$.
 \textbf{Justify:} $f(x) = x$ is always "onto". \hspace{1cm} n

4. All infinite sets have the same cardinality.
 \textbf{Justify:} $|N| < |2^N|$ by Cantor Theorem and $N, 2^N$ are infinite \hspace{1cm} n

5. Set A is uncountable iff $R \subseteq A$ (R is the set of real numbers).
 \textbf{Justify:} $R, 2^R$ are both uncountable and R is not a subset of 2^R ($R \not\subseteq 2^R$) but $R \in 2^R$. \hspace{1cm} n

6. Let $A \neq \emptyset$ such that there are exactly 25 partitions of A. It is possible to define 20 equivalence relations on A.
 \textbf{Justify:} one can define up to 25 (as many as partitions) of equivalence classes \hspace{1cm} y

7. There is a relation that is equivalence and order at the same time.
 \textbf{Justify:} equality relation \hspace{1cm} y

8. Let $A = \{n \in N : n^2 + 1 \leq 15\}$. It is possible to define 8 alphabets $\Sigma \subseteq A$.
 \textbf{Justify:} A has 4 elements, so we have $2^4 > 8$ subsets \hspace{1cm} y

9. There is exactly as many languages over alphabet $\Sigma = \{a\}$ as real numbers.
 \textbf{Justify:} $|\Sigma^*| = \aleph_0, |2^{\Sigma^*}| = |R| = C.$ \hspace{1cm} y

10. Let $\Sigma = \{a, b\}$. There are more than 20 words of length 4 over Σ.
 \textbf{Justify:} There are exactly $2^4 = 16$ words of length 4 over Σ and 16 < 20. \hspace{1cm} n

11. $L^* = \{w_1...w_n : w_i \in L, i = 1, 2,..n, n \geq 1\}$. \hspace{1cm} n
 \textbf{Justify:} $n \geq 0$.
 \hspace{1cm} $L^+ = LL^*$.
 \textbf{Justify:} the problem is only with cases $e \in L$ or $e \not\in L$. When $e \in L$, then $e \in L^+$, and always $e \in L^*$, hence $e \in LL^*$.
 When $e \not\in L$, then $e \not\in L^+$, and always $e \in L^*$, hence $e \in LL^*$ and $L^+ \not= LL^*$ \hspace{1cm} n

12. $L^+ = L^* - \{e\}$. \hspace{1cm} n
 \textbf{Justify:} only when $e \not\in L$. When $e \in L$ we get that $e \in L^+$ and $e \not\in L^* - \{e\}$.

13. If $L = \{w \in \{0, 1\}^*: w \text{ has an unequal number of } 0\text{'s and } 1\text{'s }\}$, then $L^* = \{0, 1\}^*$.

Justify: $1 \in L$, $0 \in L$ so $\{0, 1\} \subseteq L \subseteq \Sigma^*$, hence $\{0, 1\}^* \subseteq L^* \subseteq (\Sigma^*)^* = \Sigma^* = \{0, 1\}^*$ and $L^* = \{0, 1\}^*$.

14. For any languages L_1, L_2, $(L_1 \cup L_2) \cap L_1 = L_1$.

Justify: languages are sets and $(A \cup B) \cap A = A$.

15. For any languages L_1, L_2,

$$L_1^* = L_2^* \text{ if } L_1 = L_2$$

Justify: Consider $L_1 = \{a, e\}, L_2 = \{a\}$. Obviously, $L_1 \neq L_2$ and $L_1^* = L_2^*$.

16. For any languages L_1, L_2, $(L_1 \cup L_2)^* = L_1^*$.

Justify: languages are sets so it is true only when $L_1 \subseteq L_2$.

17. $((\emptyset^*) \cap a) \cup b^*$ describes a language with only one element.

Justify: $\emptyset \cup b^* = b^*$, $b^* \cap \{e\} = \{e\}$

18. $((\emptyset^* \cap a) \cup b^*) \cap a^*$ is a finite regular language.

Justify: $b^* \cap a^* = \{e\} = \emptyset^*$

19. $\{\{a\} \cup \{e\}\} \cap \{ab\}^*$ is a finite regular language.

Justify: $\{\{a\} \cup \{e\}\} \cap \{ab\}^* = \{a, e\} \cap \{ab\}^* = \{e\} = \emptyset^*$

20. Any regular language has a finite description.

Justify: by definition $L = \mathcal{L}(r)$ and r is a finite string.

21. Any finite language is regular.

Justify: $L = \{w_1\} \cup \ldots \cup \{w_1\}$ and $\{w_1\}$ has a finite description w_i

22. Every deterministic automata is also non-deterministic.

Justify: $K \times \Sigma \subseteq K \times \Sigma \cup \{e\} \subseteq \Sigma^*$ and any function is a relation

The set of all configurations of any non-deterministic state automata is always non-empty.

Justify: $K \neq \emptyset$, because $s \in K$. If $\Sigma = \emptyset$ the set of all configuration of non-deterministic automata (book definition) is a subset of $K \times \emptyset \cup \{e\} \neq \emptyset$ as it always contains (s, e). For the lecture definition, the set of all configuration is a subset of $K \times \Sigma^*$ and always $e \in \Sigma^*$ hence always $(s, e) \in K \times \Sigma^*$

23. Let M be a finite state automaton, $L(M) = \{w \in \Sigma^*: (q, w) \xrightarrow{s,M} (s, e)\}$.

Justify: $L(M) = \{w \in \Sigma^*: \exists q \in F((s, w) \xrightarrow{s,M} (q, e))\}$

24. For any automata M, $L(M) \neq \emptyset$.

Justify: if $F = \emptyset$, $L(M) = \emptyset$

25. $L(M_1) = L(M_2)$ iff M_1, M_2 are deterministic.

Justify: Let M_1 be an automata over $\{a, b\}$ with with $\Delta = \{(q_0, ab, q_0)\}$, $F = \{q_0\}$, $s = q_0$ and let M_2 be an automata over $\{a, b\}$ with with $\Delta = \{(q_0, ab, q_0), (q_0, e, q_1)\}$, $F = \{q_1\}$, $s = q_0$.

$L(M_1) = L(M_2) = (ab)^*$ and both are non-deterministic
26. DFA and NDFA compute the same class of languages.
 Justify: basic theorem

27. Let M_1 be a deterministic, M_2 be a nondeterministic FA, $L_1 = L(M_1)$ and $L_2 = L(M_2)$ then there is a deterministic automaton M such that $L(M) = (L^* \cup (L_1 - L_2)^*)L_1$
 Justify: the class of finite automata is closed under $\ast, \cup, -, \cap$

TWO DEFINITIONS OF NON DETERMINISTIC AUTOMATA

BOOK DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when

$$\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K$$

Observe that Δ is always finite because K, Σ are finite sets.

LECTURE DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when Δ is finite and

$$\Delta \subseteq K \times \Sigma^* \times K$$

Observe that we have to say in this case that Δ is finite because Σ^* is infinite.

SOLVING PROBLEMS you can use any of these definitions.

2 Problems
In Problems 1-5 solutions you have to DRAW DIAGRAMS; do not need to LIST the Components

Problem 1 Let L be a language defines as follows

$$L = \{w \in \{a, b\}^*: \text{every } a \text{ is either immediately proceeded or followed by } b\}.$$

1. Describe a regular expression r such that $L(r) = L$ (Meaning of r is L).

Solution $L = (b \cup ab \cup ba \cup bab)^*$

2. Construct a finite state automata M, such that $L(M) = L$.

Solution

Components of M are:

$$K = \{s\}, \{a, b\}, \ s, \ F = \{s\},$$

$$\Delta = \{(s, b, s), (s, ab, s), (s, ba, s), (s, bab, s)\}$$

Some elements of $L(M)$ are: $b, bb, baab, abab, abbbba, bbbabbbbabb$

Problem 2

1. Let $M = (K, \Sigma, \delta, s, F)$ be a deterministic finite automaton. Under exactly what conditions $e \in L(M)$?

Solution

$$e \in L(M) \text{ iff } s \in F.$$
2. Let \(M = (K, \Sigma, \Delta, s, F) \) be a non-deterministic finite automaton. Under exactly what conditions \(\epsilon \in L(M) \)?

Solution Now we have two possibilities: \(s \in F \) (computation of length 0) or there is a computation of length > 0 from \((s, \epsilon) \) to \((q, \epsilon) \) for \(q \in F \) when \(s \notin F \).

Problem 3 Let

\[
M = (K, \Sigma, s, \Delta, F)
\]

for \(K = \{q_0, q_1, q_2, q_3\} \), \(s = q_0 \)
\(\Sigma = \{a, b\} \), \(F = \{q_1, q_2, q_3\} \) and
\[\Delta = \{(q_0, a, q_1), (q_0, b, q_3), (q_1, a, q_2), (q_1, b, q_1), (q_3, a, q_3), (q_3, b, q_2)\}\]

1. List some elements of \(L(M) \).

Solution \(a, b, aa, bb, aba, abba \)

2. Write a regular expression for the language accepted by \(M \). Simplify the solution.

Solution
\[
L(M) = ab^* \cup ab^*a \cup ba^* \cup ba^*b = ab^*(e \cup a) \cup ba^*(e \cup b).
\]

3. Define a deterministic \(M' \) such that \(M \approx M' \), i.e. \(L(M) = L(M') \).

Solution We complete \(M \) do a deterministic \(M' \) by adding a TRAP state \(q_4 \) and put
\[\Delta' = \delta = \Delta \cup \{(q_2, a, q_4), (q_2, b, q_4), (q_4, a, q_4), (q_4, b, q_4)\}\]

Justify why \(M \approx M' \).

Solution \(q_4 \) is a trap state, it does not influence \(L(M) \).

Problem 4 Let \(M \) be defined as follows

\[
M = (K, \Sigma, s, \Delta, F)
\]

for \(K = \{q_0, q_1, q_2, q_3\} \), \(s = q_0 \)
\(\Sigma = \{a, b, c\} \), \(F = \{q_0, q_2, q_3\} \) and
\[\Delta = \{(q_0, abc, q_0), (q_0, a, q_1), (q_0, c, q_3), (q_1, bc, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\}\]

Find the regular expression describing the \(L(M) \). Explain your steps. Does \(\epsilon \in L(M) \)?

Solution
\[
L = \alpha_1 \cup \alpha_2 \cup \alpha_3 \cup \alpha_4
\]

where
\[
\alpha_1 = (abc)^* - \text{loop on } q_0,
\alpha_2 = (abc)^*a(bc)^*ba^* - \text{path from } q_0 \text{ to } q_2,
\alpha_3 = (abc)^*a(bc)^*ba^*ba^* - \text{path from } q_0 \text{ to } q_3 \text{ via } q_2,
\alpha_3 = (abc)^*a^* - \text{path from } q_0 \text{ directly to } q_3
\]

This is not the only solution.
Observe that \(\epsilon \in L \) as \(q_0 \in F \) and also \((q_0, \epsilon, q_3) \in \Delta \) and \(q_3 \in F \).
This is not the only solution.
We apply the "stretching" technique to \(M \) and the new \(M' \) is defined by the BOOK definition.

Solution

Solution We apply the "stretching" technique to \(M \) and the new \(M' \) is as follows.

\[
M' = (K \cup \{p_1, p_2, p_3\}, \Sigma, s = q_0, \Delta', F' = F)
\]

for \(K = \{q_0, q_1, q_2\}, \ s = q_0 \)
\(\Sigma = \{a, b\}, \ F = \{q_0, q_2, q_3\} \) and
\(\Delta' = \{(q_0, a, q_1), (q_0, c, q_3), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\} \)
\(\bigcup\{(q_0, a, p_1), (p_1, b, p_2), (p_2, c, q_0), (q_1, b, p_3), (p_3, b, q_1)\} \).

Problem 5 For \(M \) defined as follows

\[
M = (K, \Sigma, s, \Delta, F)
\]

for \(K = \{q_0, q_1, q_2, q_3\}, \ s = q_0 \)
\(\Sigma = \{a, b\}, \ F = \{q_2\} \) and
\(\Delta = \{(q_0, a, q_3), (q_0, c, q_3), (q_1, b, q_1), (q_0, e, q_1), (q_1, a, q_2), (q_2, b, q_3), (q_2, e, q_3)\} \)

Write 2 steps of the general method of transformation the NDFA \(M \) defined above into an equivalent DFA \(M' \).

Step 1: Evaluate \(\delta(E(q_0), a) \) and \(\delta(E(q_0), b) \).

Step 2: Evaluate \(\delta \) on all states that result from step 1.

Reminder: \(E(q) = \{p \in K : (q, e) \underset{M}{\rightarrow} (p, e)\} \) and
\[
\delta(Q, \sigma) = \bigcup\{E(p) : \exists q \in Q, (q, \sigma, p) \in \Delta\}.
\]

Solution Step 1: First we need to evaluate \(E(q) \), for all \(q \in K \).

\[
E(q_0) = \{ q_0, q_1, q_3 \} = S, \ E(q_1) = \{ q_1 \}, \ E(q_2) = \{ q_2, q_3 \} \in F, \ E(q_3) = \{ q_3 \}
\]

\[
\delta(E(q_0), a) = \delta(\{q_0, q_1, q_3\}, a) = E(q_3) \cup E(q_2) \cup \emptyset = \{q_2, q_3\} \in F
\]
\[
\delta(E(q_0), b) = \delta(\{q_0, q_1, q_3\}, b) = E(q_1) \cup \emptyset \cup \emptyset = \{q_1\}
\]

Solution Step 2:

\[
\delta(\{q_2, q_3\}, a) = \emptyset \cup \emptyset = \emptyset
\]
\[
\delta(\{q_2, q_3\}, b) = E(q_3) \cup \emptyset = \{q_3\}
\]
\[
\delta(\{q_1\}, a) = E(q_2) = \{q_2, q_3\} \in F
\]
\[
\delta(\{q_1\}, b) = \emptyset
\]