1. TAKE test as a practice - to see how much points you would get.

Solutions to all problems and questions are somewhere on our webpage! so you CAN correct yourself-but do it **ONLY AFTER you complete it all by yourself.**

This is the **goal** of the PRACTICE TEST!

2. The **real midterm will have less problems**; I will make sure you will be able to complete it within 1 hour and 15 minutes.

3. SUBMIT YOUR TEST via Blackboard any day before or on March 25

4. I WILL POST THE SOLUTIONS on MONDAY for you to STUDY for MIDTERM

MIDTERM is **THURSDAY, March 28**

1. **YES/NO questions**

Circle the correct answer (each question is worth 1pt) Write SHORT justification.

1. For any function \(f \) from \(A \neq \emptyset \) onto \(A \), \(f \) has property \(f(a) \neq a \) for certain \(a \in A \).

 Justify:

 \(y \) \(n \)

2. For any binary relation \(R \subseteq A \times A \), \(R^{-1} \) exists.

 Justify:

 \(y \) \(n \)

3. All infinite sets have the same cardinality.

 Justify:

 \(y \) \(n \)

4. Set \(A \) is uncountable iff \(R \subseteq A \) (\(R \) is the set of **real** numbers).

 Justify:

 \(y \) \(n \)

5. Let \(A \neq \emptyset \) such that there are exactly 25 partitions of \(A \). It is possible to define 20 equivalence relations on \(A \).

 Justify:

 \(y \) \(n \)
6. There is a relation that is equivalence and order at the same time.
 Justify:
 \(\text{y n} \)

7. Let \(A = \{ n \in N : n^2 + 1 \leq 15 \} \). It is possible to define 8 alphabets \(\Sigma \subseteq A \).
 Justify:
 \(\text{y n} \)

8. There is exactly as many languages over alphabet \(\Sigma = \{ a \} \) as real numbers.
 Justify:
 \(\text{y n} \)

9. Let \(\Sigma = \{ a, b \} \). There are more than 20 words of length 4 over \(\Sigma \).
 Justify:
 \(\text{y n} \)

10. \(L^* = \{ w_1...w_n : w_i \in L, i = 1, 2, n, n \geq 1 \} \).
 Justify:
 \(\text{y n} \)

11. \(L^+ = LL^* \).
 Justify:
 \(\text{y n} \)

12. \(L^+ = L^* - \{ e \} \).
 Justify:
 \(\text{y n} \)

13. If \(L = \{ w \in \{ 0, 1 \}^* : w \text{ has an unequal number of } 0's \text{ and } 1's \} \), then \(L^* = \{ 0, 1 \}^* \).
 Justify:
 \(\text{y n} \)

14. For any languages \(L_1, L_2 \),
 \[L_1^* = L_2^* \ \text{iff} \ \ L_1 = L_2 \]
 Justify:
 \(\text{y n} \)

15. For any languages \(L_1, L_2 \), \((L_1 \cup L_2) \cap L_1 = L_1 \).
 Justify:
 \(\text{y n} \)

16. For any languages \(L_1, L_2 \), \((L_1 \cup L_2)^* = L_1^* \).
 Justify:
 \(\text{y n} \)

17. \((\emptyset \cap a) \cup b^* \) \cap \emptyset^* describes a language with only one element.
 Justify:
 \(\text{y n} \)

18. \((\emptyset \cap a) \cup b^* \) \cap a^* is a finite regular language.
 Justify:
 \(\text{y n} \)

19. \((\{ a \} \cup \{ e \}) \cap \{ ab \}^* \) is a finite regular language.
 Justify:
 \(\text{y n} \)
20. Any regular language has a finite description.
 Justify: y n

21. Any finite language is regular.
 Justify:

22. Every deterministic automaton is also non-deterministic.
 Justify: y n

23. The set of all configurations of a given finite state automaton is always non-empty.
 Justify: y n

24. Let M be a finite state automaton, $L(M) = \{ \omega \in \Sigma^* : (q, \omega) \xrightarrow{s} (s, e) \}$.
 Justify: y n

25. For any automaton M, $L(M) \neq \emptyset$.
 Justify: y n

26. $L(M_1) = L(M_2)$ iff M_1, M_2 are deterministic.
 Justify: y n

27. DFA and NDFA compute the same class of languages.
 Justify: y n

28. Let M_1 be a deterministic, M_2 be a nondeterministic FA, $L_1 = L(M_1)$ and $L_2 = L(M_2)$ then there is a deterministic automaton M such that $L(M) = (L^* \cup (L_1 - L_2)^*)L_1$
 Justify: y n

TWO DEFINITIONS OF NON DETERMINISTIC AUTOMATA

BOOK DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when $\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K$.

OBSERVE that Δ is always finite because K, Σ are finite sets.

LECTURE DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when Δ is finite and $\Delta \subseteq K \times \Sigma^* \times K$.

OBSERVE that we have to say in this case that Δ is finite because Σ^* is infinite.

SOLVING PROBLEMS you can use any of these definitions.
2 Problems

PROBLEM 1 (10 pts)

Let \(L \) be a language defined as follows

\[
L = \{ w \in \{ a, b \}^* : \text{every } a \text{ is either immediately preceded or followed by } b \}.
\]

1. Describe a regular expression \(r \) such that \(L(r) = L \). Explain shortly your solution.

2. Construct a finite state automata \(M \), such that \(L(M) = L \).

State Diagram of \(M \) is:

Some elements of \(L(M) \) as defined by the state diagram are:

Components of \(M \) are:
PROBLEM 2 (6 pts)

1. Let M be a deterministic finite automaton. Under exactly what conditions $e \in L(M)$?

2. Let M be a non-deterministic finite automaton. Under exactly what conditions $e \in L(M)$?

PROBLEM 3 (16 pts) Let

$M = (K, \Sigma, s, \Delta, F)$

for $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$, $\Sigma = \{a, b\}$, $F = \{q_1, q_2, q_3\}$, and

$\Delta = \{(q_0, a, q_1), (q_0, b, q_3), (q_1, a, q_2), (q_1, b, q_1), (q_3, a, q_3), (q_3, b, q_2)\}$

1. Draw the State Diagram of M.

2. List few elements of $L(M)$.

3. Write a regular expression for the language accepted by M. Explain and simplify the solution.
4. Define a deterministic M' such that $M \approx M'$, i.e. $L(M) = L(M')$.

State Diagram of M' is:

Justify why $M \approx M'$.

PROBLEM 4 (15 pts)

Let M be defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

for $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$

$\Sigma = \{a, b, c\}$, $F = \{q_0, q_2, q_3\}$ and

$\Delta = \{(q_0, abc, q_0), (q_0, a, q_1), (q_0, c, q_3), (q_1, bc, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\}$.

1. Draw the State Diagram of M.

2. Find the regular expression describing the $L(M)$. Simplify it as much as you can. Explain your steps. Does $e \in L(M)$?
3. Write down (you can draw the diagram) an automata M' such that $M' \equiv M$ and M' is defined by the BOOK definition.

PROBLEM 5 (15 pts.) For M defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

for $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$

$\Sigma = \{a, b\}$, $F = \{q_2\}$ and

$$\Delta = \{(q_0, a, q_3), (q_0, e, q_3), (q_0, b, q_1), (q_0, e, q_1), (q_1, a, q_2), (q_2, b, q_3), (q_2, e, q_3)\}$$

1. Draw the State Diagram of M.

2. Write 2 steps of the general method of transformation a NDFA M, into an equivalent M', which is a DFA, where M is given by a following state diagram.

Step 1: Evaluate $\delta(E(q_0), a)$ and $\delta(E(q_0), b)$.

Step 2: Evaluate δ on all states that result from step 1.

Reminder: $E(q) = \{p \in K : (q, e) \xrightarrow{M} (p, e)\}$ and

$$\delta(Q, \sigma) = \bigcup\{E(p) : \exists q \in Q, (q, \sigma, p) \in \Delta\}.$$