1. All infinite sets have different cardinality.
 Justify: The sets \(N \) (natural numbers) and \(Z \) (integers) have the same cardinality: \(|N| = |Z| = \aleph_0\). This is not the only example.

2. Regular language is a regular expression.
 Justify: By definition: "A language \(L \) is regular iff there is a regular expression \(\alpha \) such that \(L = L(\alpha) \).

3. \(L^+ = \{w_1...w_n : w_i \in L, i = 1, 2, ..., n, n \geq 2\} \).
 Justify: the correct condition is \(n \geq 1 \).

4. \(L^+ = L^* - \{e\} \).
 Justify: It holds only when \(e \not\in L \). When \(e \in L \) we get that \(e \in L^+ \) and \(e \not\in L^* - \{e\} \).

5. Let \(\alpha = (\emptyset^* \cap b^*) \cup \emptyset^* \). The language defined by \(\alpha \) is empty.
 Justify: \(L = L(\alpha) = (\{e\} \cap \{b\}^*) \cup \{e\} \cup \{e\} = \{e\} \neq \emptyset \)

6. A configuration of any finite automaton \(M = (K, \Sigma, \Delta, s, F) \) is any element of \(K \times \Sigma^* \times K \).
 Justify: it is element of \(K \times \Sigma^* \)

7. Let \(M \) be a finite state automaton, \(L(M) = \{\omega \in \Sigma^* : (s, \omega) \xrightarrow{^*M} (q, e)\} \).
 Justify: only when \(q \in F \)

8. For any \(M, L(M) \neq \emptyset \) if and only if the set \(F \) of its final states is non-empty.
 Justify: Let \(M \) be such that \(\Sigma = \emptyset, F \neq \emptyset, s \not\in F \), we get \(L(M) = \emptyset \).

9. The set \(F \) of final states of any non-deterministic finite automaton is always non-empty
 Justify: The definition says that \(F \) is a finite set, i.e. can be empty, hence for some \(M, L(M) = \emptyset \)

10. DFA and NDFA recognize the same class of languages.
 Justify: theorem proved in class

2. Two definitions of a non-deterministic automaton

 BOOK DEFINITION: \(M = (K, \Sigma, \Delta, s, F) \) is non-deterministic when
 \[\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K \]

 OBSERVE that \(\Delta \) is always finite because \(K, \Sigma \) are finite sets.

 LECTURE DEFINITION: \(M = (K, \Sigma, \Delta, s, F) \) is non-deterministic when \(\Delta \) is finite and
 \[\Delta \subseteq K \times \Sigma^* \times K \]

 OBSERVE that we have to say in this case that \(\Delta \) is finite because \(\Sigma^* \) is infinite.

 SOLVING PROBLEMS you can use any of these definitions.
3 Very short questions (15pts)

For the QUESTIONS below do the following.

1. Draw the DIAGRAM

2. Determine whether it defines a finite state automaton.

3. Determine whether it is a deterministic / non-deterministic automaton.

4. Describe the language by writing a regular expression \(\delta(q_1, a) = q_2 \), that defines it.

Q1 Solution: \(M = (K, \Sigma, s, \Delta, F) \) for \(K = \{ q_0 \} = F \), \(s = q_0 \), \(\Sigma = \emptyset \), \(\Delta = \emptyset \).

\(M \) is deterministic and \(L(M) = \{ \epsilon \} \neq \emptyset \)

Q2 Solution: \(M = (K, \Sigma, s, \Delta, F) \) for \(\Sigma = \{ a, b \} \), \(K = \{ q_0, q_1 \} \), \(s = q_0 \), \(F = \{ q_0 \} \), \(\Delta = \{ (q_0, a, q_1), (q_0, b, q_0) \} \).

\(M \) is non deterministic; \(\Delta \) is not a function on \(K \times \Sigma \).

\(L(M) = (ab)^* \)

Q3 Solution: \(M = (K, \Sigma, s, \Delta, F) \) for \(\Sigma = \{ a, b \} \), \(K = \{ q_0, q_1, q_2, q_3 \} \), \(s = q_0 \), \(F = \{ q_0 \} \) and \(q_3 \) is a trap state.

\(\Delta = \{ (q_0, a, q_1), (q_0, b, q_1), (q_1, a, q_1), (q_1, e, q_2), (q_2, ab, q_2) \} \).

It is NOT an automaton. It has no initial state.

4 Problems

PROBLEM 1 (20pts)

Given an automata

\(M = (K, \Sigma, \delta, s, F) \)

such that \(\Sigma = \{ a, b \} \), \(K = \{ q_0, q_1, q_2, q_3 \} \), \(s = q_0 \), \(F = \{ q_0 \} \) and \(q_3 \) is a trap state.

We define \(\delta \) on non-trap states as follows.

\(\delta(q_0, a) = q_1 \), \(\delta(q_0, b) = q_0 \), \(\delta(q_1, a) = q_2 \), \(\delta(q_1, b) = q_1 \), \(\delta(q_2, a) = q_0 \)

Solution

We define \(\delta \) on the trap state \(q_3 \) as follows.

\(\delta(q_2, b) = q_3 \), \(\delta(q_3, a) = q_3 \), \(\delta(q_3, b) = q_3 \)

\(e, bbb, abbaa, abbaabbaa \in L(M) \), and \(a, aa, aba, baba \notin L(M) \)

Language of \(M \) is:

\(L(M) = b^* \cup (b^*ab^*aa)^* \)

Observe that \(e \in L(M) \) as the initial state is also a final state and \(b^* \in L(M) \)

\(b^*ab^*aa \in L(M) \) and then all repetitions of of this are in \(L(M) \) as a loop on \(q_0 \)
PROBLEM 2 (20pts)

Let

\[M = (K, \Sigma, s, \Delta, F) \]

for \(K = \{q_0\}, s = q_0, \Sigma = \{a, b\}, F = \{q_0\} \) and

\[\Delta = \{(q_0, aba, q_0), (q_0, ab, q_0)\} \]

Solution

1. List some elements of \(L(M) \).

\[e, ab, abab, ababa, ababaaba, ... \]

2. Write a regular expression for the language accepted by \(M \).

\[L = (ab \cup aba)^* \]

PROBLEM 3 (25pts)

Let \(M \) be defined as follows

\[M = (K, \Sigma, s, \Delta, F) \]

for \(K = \{q_0, q_1, q_2, q_3\}, s = q_0 \)
\(\Sigma = \{a, b, c\}, F = \{q_0, q_2, q_3\} \) and

\[\Delta = \{(q_0, abc, q_0), (q_0, a, q_1), (q_0, c, q_3), (q_1, bc, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\} \]

1. Draw the state diagram of \(M \).

2. Find the regular expression describing the \(L(M) \). Explain your steps.

\[L = \alpha_1 \cup \alpha_2 \cup \alpha_3 \cup \alpha_4 \]

where

\[\alpha_1 = (abc)^* \] - loop on \(q_0 \),

\[\alpha_2 = (abc)^*a(bc)^*ba^* \] - path from \(q_0 \) to \(q_2 \),

\[\alpha_3 = (abc)^*a(bc)^*ba^* \] - path from \(q_0 \) to \(q_3 \) via \(q_2 \),

\[\alpha_3 = (abc)^*a^* \] - path from \(q_0 \) directly to \(q_3 \)

This is not the only solution.

Observe that \(e \in L \) as \(q_0 \in F \) and also \((q_0, e, q_3) \in \Delta \) and \(q_3 \in F \).

This is not the only solution.

3. DRAW then DIAGRAM of an automata \(M' \) such that \(M' \equiv M \) and \(M' \) is defined by the BOOK definition.
We apply the "stretching" technique to M and the new M' COMPONENTS are as follows.

$$M' = (K \cup \{p_1, p_2, p_3\}, \Sigma, s = q_0, \Delta', F' = F)$$

for $K = \{q_0, q_1, q_2\}$, $s = q_0$

$\Sigma = \{a, b\}$, $F = \{q_2, q_3\}$ and

$\Delta' = \{(q_0, a, q_1), (q_0, e, q_3), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\}$

$\cup \{(q_0, a, p_1), (p_1, b, p_2), (p_2, c, q_0), (q_1, b, p_3), (p_3, b, q_1)\}$.

EXTRA CREDIT (10pts)

For M defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

for $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$

$\Sigma = \{a, b\}$, $F = \{q_2, q_3\}$ and

$\Delta = \{(q_0, a, q_1), (q_0, e, q_3), (q_0, b, q_2), (q_1, b, q_3), (q_1, e, q_3), (q_2, b, q_2), (q_2, e, q_3), (q_3, a, q_3)\}$

1. Write 4 steps of the general method of transformation the NDFA M, into an equivalent deterministic M'.

2. Draw the State Diagram of M' thus far constructed.

 Reminder: $E(q) = \{p \in K : (q, e) \xrightarrow{*M} (p, e)\}$ and
 $$\delta(Q, \sigma) = \bigcup \{E(p) : \exists q \in Q, (q, \sigma, p) \in \Delta\}.$$

Step 1:

$$E(q_0) = \{q_0, q_1, q_3\}, E(q_1) = \{q_1, q_3\}, E(q_2) = \{q_2, q_3\}, E(q_3) = \{q_3\}.$$

Step 2:

$$\delta(E(q_0), a) = \delta(\{q_0, q_1, q_3\}, a) = E(q_1) \cup E(q_3) = \{q_1, q_3\} \in F,$$

$$\delta(E(q_0), b) = \delta(\{q_0, q_1, q_3\}, b) = E(q_2) \cup E(q_3) \cup \emptyset = \{q_2, q_3\} \in F.$$

Step 3:

$$\delta(\{q_1, q_3\}, a) = \emptyset \cup E(q_3) = \{q_3\} \in F,$$

$$\delta(\{q_1, q_3\}, b) = E(q_3) \cup \emptyset = \{q_3\} \in F,$$

$$\delta(\{q_2, q_3\}, a) = \emptyset \cup E(q_3) = \{q_3\} \in F,$$

$$\delta(\{q_2, q_3\}, b) = E(q_2) \cup \emptyset = \{q_2, q_3\} \in F.$$

Step 4:

$$\delta(\{q_3\}, a) = E(q_3) = \{q_3\} \in F, \quad \delta(\{q_3\}, b) = \emptyset,$$

$$\delta(\emptyset, a) = \emptyset, \quad \delta(\emptyset, b) = \emptyset$$

End of the construction.

You must Draw the DIAGRAM.