CSE303 Q4 SOLUTIONS Spring 2019

PART 1 (10pts) YES/NO QUESTIONS - (2pts) each

1.	$L \subseteq \Sigma^*$ is context-free if and only if $L = L(G)$ Justify : It is a definition of context-free language PROVIDED <i>G</i> is a context -free grammar	n
2.	$L(G) = \{ w \in V : S \Rightarrow^*_G w \}$ Justify: $w \in \Sigma^*$	n
3.	Any regular language is accepted by a pushdown automaton Justify : Any regular language is accepted by a finite automata and any finite automata is a pushdown automata operating on an empty stock.	у
4.	Context-free languages are closed under intersection Justify : Take $L_1 = a^n b^n c^n$, $L_2 = a^m b^n c^n$, both CF and we get that $L_1 \cap L_2 = a^n b^n c^n$ is not CF	n
5.	The union of a context-free language and regular language is a context-free language Justify: regular language is also a context free language and context free languages are closed under union	у
6.	Every subset of a regular language is a language. Justify : a subset of a set is a set.	у
7.	Any context -free language is accepted by some PD automata Justify: Main Theorem for Context Free Languages	у

QUESTION 1 (8pts)

1. Construct a context-free grammar *G* such that

$$L(G) = \{w \in \{a, b\}^* : w = w^R\}.$$

Solution $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S\}, \quad \Sigma = \{a, b\},$$
$$R = \{S \rightarrow aSa \mid bSb \mid a \mid b \mid e\}.$$

2. Give an example of a derivation of a word *ababa* in G

Derivation example

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow ababa$$

3. Write a proof that the word $ababa \in L(G)$ fulfills the required property $w = w^R$

Proof

We know that $(xy)^R = y^R x^R$ and $(xyz)^R = z^R (xy)^R = z^R y^R x y^R$

We evaluate

$$(ababa)^{R} = ((ab)a(ba))^{R} = (ba)^{R}a^{R}(ab)^{R} = ababa$$

QUESTION 2 (7pts)

1. Construct a **pushdown** automaton *M* such that

$$L(M) = \{w \in \{a, b\}^* : w = w^R\}$$

JUST DRAW A DIAGRAM. Here ARE the Components

Solution $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where

$$K = \{s, f\}, \ \Sigma = \{a, b\}, \ \Gamma = \{a, b\}, \ F = \{f\}, s = s,$$
$$\Delta = \{((s, a, e), (s, a)), \ ((s, b, e), (s, b)), \ ((s, e, e), (f, e)),$$
$$((s, a, e), (f, e)), \ ((s, b, e), (f, e)), \ ((f, a, a), (f, e)), \ ((f, b, b), (f, e))\}$$

2. Trace a transitions of *M* that lead to the acceptance of the string *ababa*.

Solution

EXTRA

Proof - GENERAL CASE for Question 1

1. Construct a context-free grammar G such that

$$L(G) = \{ w \in \{a, b\}^* : w = w^R \}.$$

Solution

 $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S\}, \quad \Sigma = \{a, b\},$$
$$R = \{S \rightarrow aSa \mid bSb \mid a \mid b \mid e\}.$$

Here is a general case- for you to study (we did it in class!)

Grammar correctness justification

Observation We proved in class that for any $x, y \in \Sigma^*$, $(xy)^R = y^R x^R$. From this we have that

$$(xyz)^{R} = ((xy)z)^{R} = z^{R}(xy)^{R} = z^{R}y^{R}x^{R}$$

observe that the rules $S \to aSa | bSb | e$ generate the language $L_1 = \{ww^R : w \in \Sigma^*\}$. With additional rules $S \to a | b$ we get hence the language $L = L_1 \cup \{waw^R : w \in \Sigma^*\} \cup \{wbw^R : w \in \Sigma^*\}$. Now we are ready to prove that

$$L = L(G) = \{w \in \{a, b\}^* : w = w^R\}.$$

Proof Let $w \in L$, i.e. $w = xx^R$ or $w = xax^R$ or $w = xbx^R$. We show that in each case $w = w^R$ as follows.

c1:
$$w^R = (xx^R)^R = (x^R)^R x^R = xx^R = w$$
 (used property: $(x^R)^R = x$).

c2:
$$w^R = (xax^R)^R = (x^R)^R a^R x^R = xax^R = w$$
 (used Observation 1 and properties: $(x^R)^R = x$ and $a^R = a$).

c3:
$$w^{R} = (xbx^{R})^{R} = (x^{R})^{R}b^{R}x^{R} = xbx^{R} = w$$
 (used Observation and properties: $(x^{R})^{R} = x$ and $b^{R} = b$).