PART 1 YES/NO QUESTIONS - (2pts) each

Circle the correct answer. Write SHORT justification.

1. The set F of final states of any non-deterministic finite automaton is always non-empty
 Justify: The definition says that F is a finite set, i.e. can be empty, hence for some M, $L(M) = \emptyset$ n

2. Given an automaton $M = (K, \Sigma, \delta, s, F)$, a binary relation $\vdash_M \subseteq (K \times \Sigma^*) \times (K \times \Sigma^*)$ is a transition relation iff the following condition holds $(q, aw) \vdash_M (q', w)$ iff $\delta(q', a) = q$
 Justify: Proper condition is: $(q, aw) \vdash_M (q', w)$ iff $\delta(q, a) = q'$ n

3. If $M = (K, \Sigma, \Delta, s, F)$ is a non-deterministic as defined in the book, then M is also non-deterministic, as defined in the lecture.
 Justify: $\Sigma \cup \{e\} \subseteq \Sigma^*$ y

PART 2 Very Short Questions - (3pts) each

Q1: M_1 has components: $K = \{q_0, q_1, q_2\}$, $s = q_0$, $\Sigma = \{a, b\}$, $F = \{q_1\}$
 $\delta = \{(q_0, a, q_1), (q_1, a, q_1), (q_0, b, q_2)\}$

Solution

1. M_1 is non-deterministic; δ is not a function with the domain $K \times \Sigma$. It can be completed to a function by adding some trap states. But the trap states information was not stated in the problem - so M_1 is NDFA
2. $L(M_1) = aa^*$

Q2: M_2 has $K = \{q_0, q_1, q_2\}$, $\Sigma = \{a, b\}$, $F = \{q_1, q_2\}$,
 $\Delta = \{(q_0, a, q_1), (q_0, b, q_2), (q_1, a, q_1), (q_1, b, q_2), (q_2, ab, q_2)\}$

Solution

M_2 is not DFA and is not NDFA because M_2 is NOT an automaton. It does not have the INITIAL state.

$L(M_2)$ does not exist - as languages are defined for automatas

PART 3 PROBLEMS

QUESTION 1 (6pts)

Components of an automaton M are:

$K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$, $\Sigma = \{a, b\}$, $F = \{q_1, q_3\}$ and $\delta = \{(q_0, a, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3)\}$

Complete the components to a full definition of a deterministic M by adding trap state(s)

Write a regular expression defining $L(M)$

Solution

YOU ONLY DRAW the diagram - and compare with the listed components below

You do NOT write components
We add a new state q_4 and extend δ to function δ_1 such that

$$\delta_1 : (K \cup \{q_4\}) \times \Sigma \rightarrow K \cup \{q_4\}$$

as follows

$$\delta_1 = \delta \cup \{(q_0, b, q_4), (q_1, a, q_1 4), (q_3, a, q_4), (q_3, b, q_4)\}$$

$$L(M) = a \cup aba^*b$$

QUESTION 2 (7pts)

Let $M = (K, \Sigma, s, \Delta, F)$ for $K = \{q_0, q_1, q_2\}$, $s = q_0$, $\Sigma = \{a, b, c\}$, $F = \{q_1, q_2\}$ and

$\Delta = \{(q_0, abc, q_0), (q_0, ab, q_1), (q_0, b, q_2)\}$

Draw the diagram of an automaton M' such that $M' \equiv M$ and M' is defined by the BOOK definition.

Solution

YOU ONLY DRAW the diagram - and compare with the listed BELOW components

You do NOT write components

We apply the "stretching" technique to M and the new M' is as follows.

$$M' = (K \cup \{p_1, p_2, p_3\}, \Sigma, s = q_0, \Delta', F' = F)$$

$$\Delta' = \{(q_0, b, q_2), (q_0, a, p_1), (p_1, b, p_2), (p_2, c, q_0), (q_0, b, q_2), (q_0, a, p_3), (p_3, b, q_1)\}$$