CSE303 Q2 SOLUTIONS

PART 1 YES/NO QUESTIONS

Circle the correct answer. Write SHORT justification.

1. The set F of final states of any non-deterministic finite automaton is always non-empty

Justify: The definition says that F is a finite set, i.e. can be empty, hence for some M, $L(M) = \emptyset$

2. Given an automaton $M=(K,\Sigma,\delta,s,F)$, a binary relation $\vdash_M\subseteq (K\times\Sigma^*)\times (K\times\Sigma^*)$ is a **transition relation** iff the following condition holds

 $(q, aw) \vdash_M (q', w)$ iff $\delta(q', a) = q$

Justify: Proper condition is: $(q, aw) \vdash_M (q', w)$ iff $\delta(q, a) = q'$

3. If $M = (K, \Sigma, \Delta, s, F)$ is a non-deterministic as defined in the book, then M is also non-deterministic, as defined in the lecture.

Justify: $\Sigma \cup \{e\} \subseteq \Sigma^*$

 \mathbf{y}

 \mathbf{n}

PART 2 Very Short Questions

Q1: M1 has components: $K = \{q_0, q_1, q_2\}, s = q_0, \Sigma = \{a, b\}, F = \{q_1\}$

$$\delta = \{(q_0, a, q_1), (q_1, a, q_1), (q_0, b, q_2)\}\$$

Solution

- 1. M1 is non-deterministic; δ is not a function with the domain $K \times \Sigma$. It can be completed to a function by adding some trap states. But the trap states information was not stated in the problem so M1 is NDFA
- **2.** $L(M1) = aa^*$

Q2: M2 has $K = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, F = \{q_1, q_2\},$

$$\Delta = \{(q_0, a, q_1), (q_0, b, q_2), (q_1, a, q_1), (q_1, b, q_2), (q_2, ab, q_2)\}$$

Solution

M2 is **not** DFA and is **not** NDFA because M2 **is NOT an automaton** It does not have the INITIAL state.

L(M2) does not exist - as languages are defined for automatas

PART 3 PROBLEMS

QUESTION 1

Components of an automaton M are:

$$K = \{q_0, q_1, q_2, q_3\}, s = q_0, \Sigma = \{a, b\}, F = \{q_1, q_3\} \text{ and } \delta = \{(q_0, a, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3)\}$$

Complete the components to a full definition of a deterministic M by adding trap state(s)

Write a regular expression defining L(M)

Solution

YOU ONLY DRAW the diagram - and compare with the listed components below

You do NOT write components

We add a new state q_4 and extend δ to function δ_1 such that

$$\delta_1: (K \cup \{q_4\}) \times \Sigma \longrightarrow K \cup \{q_4\} \text{ as follows}$$

$$\delta_1 = \delta \cup \{(q_0, b, q_4), (q_1, a, q_1 4), (q_3, a, q_4), (q_3, b, q_4)\}$$

$$L(M) = a \cup aba^*b$$

QUESTION 2

Let
$$M = (K, \Sigma, s, \Delta, F)$$
 for $K = \{q_0, q_1, q_2\}, s = q_0, \Sigma = \{a, b, c\}, F = \{q_1, q_2\}$ and $\Delta = \{(q_0, abc, q_0), (q_0, ab, q_1), (q_0, b, q_2)\}$

Draw the diagram of an automaton M' such that $M' \equiv M$ and M' is defined by the BOOK definition.

Solution

ONLY DRAW the diagram - and compare with the listed BELOW components

DO NOT write components

We apply the "stretching" technique to M and the new M' is is as follows.

$$M' = (K \cup \{p_1, p_2, p_3\}, \quad \Sigma, \quad s = q_0, \quad \Delta', \quad F' = F)$$

$$\Delta' = \{ (q_0, b, q_2), (q_0, a, p_1), (p_1, b, p_2), (p_2, c, q_0), (q_0, b, q_2), (q_0, a, p_3), (p_3, b, q_1) \}$$