

CSE 303 FINAL SOLUTIONS GROUP 1

PART 1: Yes/No Questions Circle the correct answer. Write ONE-SENTENCE justification.

1. $(ab \cup a^*b)^*$ defines a regular language

Justify: this is a regular expression and hence define a regular language

y

2. There are two languages over $\Sigma = \emptyset$

Justify: $\Sigma^* = \emptyset^* = \{e\}$ and $\emptyset \subseteq \{e\}$, $\{e\} \subseteq \{e\}$, so we have two languages $L_1 = \emptyset$ and $L_2 = \{e\}$ over $\Sigma = \emptyset$

y

3. $L^* = \{w \in \Sigma^* : \exists_{q \in F} (s, w) \vdash_M^* (q, e)\}$.

Justify: this is definition of $L(M)$, not L^*

n

4. $((\phi^* \cap a) \cup (\phi \cup b^*)) \cap \phi^*$ represents a language $L = \{e\}$

Justify: $((\{e\} \cap \{a\}) \cup \{b\}^*) \cap \{e\} = \{b\}^* \cap \{e\} = \{e\}$

y

5. If M is a FA, then $L(M) \neq \phi$.

Justify: take M with $\Sigma = \phi$

n

6. A language is regular iff $L = L(M)$ and M is a finite automaton

Justify: Main Theorem

y

7. If L is regular, there is a PDA M such that $L = L(M)$.

Justify: FA is a PDA operating on an empty stack

y

8. Every subset of a regular language is a language.

Justify: subset of a set is a set

y

9. Let L be a regular language. The language $L^R = \{w^R : w \in L\}$ is regular.

Justify: L^R is accepted by finite automata M^R constructed from M such that $L(M) = L$ and such automata EXISTS as L is regular

y

10. $L = \{a^n a^n : n \geq 0\}$ is not regular.

Justify: $L = (aa)^*$ and hence regular

n

11. $((p, e, \beta), (q, \gamma)) \in \Delta$ means: read nothing, move from p to q

Justify: and replace β by γ on the top of the stack

n

12. Any finite language is CF

Justify: any finite language is regular and $RL \subset CFL$

y

13. Intersection of any two regular languages is CF language.

Justify: Regular languages are closed under intersection and $RL \subset CFL$

y

14. Union of a regular and a CF language is a CF language.

Justify: $RL \subseteq CFL$ and FCL are closed under union

y

15. If L is regular, there is a CF grammar G , such that $L = L(G)$.

Justify: we proved that $RL \subseteq CFL$

y

16. If L is regular, then there is a CF grammar G , such that $L = L(G)$

Justify: We proved: $RL \subset CFL$

y

17. $L = \{a^n b^n c^n : n \geq 0\}$ is CF.

Justify: is not CF, as proved by Pumping Lemma for CF languages

n

18. $L = \{a^n b^n : n \geq 0\}$ is CF.

Justify: $L = L(G)$ for G with $R = \{S \rightarrow aSb|e\}$

y

19. Let $\Sigma = \{a\}$, then for any $w \in \Sigma^*$, $w^R = w$

Justify: $a^R = a$ and $w^R = w$ for $w \in \{a\}^*$

y

20. Let $G = (\{S, (,)\}, \{(,)\}, R, S)$ for $R = \{S \rightarrow SS \mid (S)\}$. $L(G)$ is regular.

Justify: $L(G) = \emptyset$ and hence regular

y

21. Any regular language is accepted by some PD automata.

Justify: Any regular language is accepted by a finite automata, and a finite automaton is a PD automaton (that never operates on the stock).

y

22. $L = \{a^n b^m c^n : n, m \in N\}$ is CF.

Justify: $S \rightarrow aSc|B, B \rightarrow bB|e$

y

23. If L is regular, then there is a CF grammar G , such that $L = L(G)$.

Justify: $RL \subseteq CF$

y

24. Class of context-free languages is closed under intersection.

Justify: $L_1 = \{a^n b^n c^m, n, m \geq 0\}$ is CF, $L_2 = \{a^m b^n c^n, n, m \geq 0\}$ is CF, but $L_1 \cap L_2 = \{a^n b^n c^n, n \geq 0\}$ is not CF

n

25. A CF language is a regular language.

Justify: $L = \{a^n b^n : n \geq 0\}$ is CF and not regular

n

PART 2: PROBLEMS

QUESTION 1

Let $M = (K, \Sigma, s, \Delta, F)$ for $K = \{q_0, q_1, q_2\}$, $s = q_0$, $\Sigma = \{a, b, c\}$, $F = \{q_1, q_2\}$ and $\Delta = \{(q_0, abc, q_0), (q_0, ab, q_1), (q_0, b, q_2)\}$

Draw the diagram an automaton M' such that $M' \equiv M$ and M' is defined by the BOOK definition.

Solution

We apply the **”stretching”** technique to M and the new M' is as follows.

$$M' = (K \cup \{p_1, p_2, p_3\}, \Sigma, s = q_0, \Delta', F' = F)$$

$$\Delta' = \{(q_0, b, q_2), (q_0, a, p_1), (p_1, b, p_2), (p_2, c, q_0), (q_0, b, q_2), (q_0, a, p_3), (p_3, b, q_1)\}$$

QUESTION 2

Use book or lecture definition (specify which are you using) to construct a non-deterministic finite automaton M , such that

$$L(M) = (ab)^*(ba)^*.$$

Draw a state diagram and specify all components K, Σ, Δ, s, F of M . Justify your construction by listing some strings accepted by the state diagram.

Solution 1 We use the lecture definition.

Components of M are: $\Sigma = \{a, b\}$, $K = \{q_0, q_1\}$, $s = q_0$, $F = \{q_0, q_1\}$.

We define Δ as follows.

$$\Delta = \{(q_0, ab, q_0), (q_0, e, q_1), (q_1, ba, q_1)\}.$$

Strings accepted : $ab, abab, abba, ababba, ababbaba, \dots$

Solution 2 We use the book definition.

Components of M are: $\Sigma = \{a, b\}$, $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$, $F = \{q_2\}$.

We define Δ as follows.

$$\Delta = \{(q_0, a, q_1), (q_1, b, q_0), (q_0, e, q_2), (q_2, b, q_3), (q_3, a, q_2)\}.$$

Strings accepted : $ab, abab, abba, ababba, ababbaba, \dots$

QUESTION 3

Given a grammar G with the following rules

$$R = \{S \rightarrow SS \mid (S) \mid e\}$$

1. Trace a derivation in G generating a word $()()$.

Solution in Lecture 11

2. Construct a PD automaton M , such that $L(M) = L(G)$.

HINT: Use construction described in the proof of the **Lemma** : ”Each context free language is accepted by some PD automaton”

DRAW A DIAGRAM and LIST components.

Solution in Lecture 11

3. Trace formally a computation of M that leads to the acceptance of the string $()()$, i.e. complete the following statement.

The accepting computation is:

$$\begin{aligned}
 (s, (), e) &\vdash_M (f, (), SS) \vdash_M (f, (), (S)S) \vdash_M (f, (), S)S \\
 &\vdash_M (f, (), S) \vdash_M (f, (), (S)) \vdash_M (f, (), S) \\
 &\vdash_M (f, (),) \vdash_M (f, e, e)
 \end{aligned}$$

We proved that

$$() \in L(M)$$

QUESTION 4 Construct a PDA M , such that

$$L(M) = \{b^n a^{3n} : n \geq 0\}.$$

Solution

$M = (K, \Sigma, \Gamma, \Delta, s, F)$ for

$$K = \{s, f\}, \Sigma = \{a, b\}, \Gamma = \{a\}, s, F = \{f\},$$

$$\Delta = \{((s, b, e), (s, aaa)), ((s, e, e), (f, e)), ((f, a, a), (f, e))\}$$

Explain the construction. Write motivation.

Solution M operates as follows: Δ pushes aaa on the top of the stack while M is reading b , switches to f (final state) non-deterministically; and pops a while reading a (all in final state). M puts on the stack three a 's for each b , and then remove all a 's from the stack comparing them with a 's in the word while in the final state.

Trace a transitions of M that leads to the acceptance of the string $baaaaa$.

Solution The accepting computation is:

$$\begin{aligned}
 (s, bbaaaaaa, e) &\vdash_M (s, baaaaaa, aaa) \vdash_M (s, aaaaaaa, aaaaaaa) \vdash_M (f, aaaaaaa, aaaaaaa) \\
 &\vdash_M (f, aaaaa, aaaaa) \vdash_M (f, aaaa, aaaa) \vdash_M (f, aaa, aaa) \dots \vdash_M (f, e, e)
 \end{aligned}$$

QUESTION 5

Prove that the Class of context-free languages is NOT closed under intersection

Proof

Assume that the context-free languages are **closed** under **intersection**

Observe that both languages

$$L_1 = \{a^n b^n c^m : m, n \geq 0\} \quad \text{and} \quad L_2 = \{a^m b^n c^n : m, n \geq 0\}$$

are **context-free**

So the language

$$L_1 \cap L_2$$

must be **context-free**, but

$$L_1 \cap L_2 = \{a^n b^n c^n : n \geq 0\}$$

and we have proved that $L = \{a^n b^n c^n : n \geq 0\}$ is **not** context-free. **Contradiction**