CSE303 Q4 SOLUTIONS

PART 1: YES/NO questions

Circle the correct answer to all questions. Write SHORT justification.

1.	Given a context-free grammar G , $L(G) = \{w \in V : S \Rightarrow^*_G w\}$ Justify: $w \in \Sigma^*$	n
2.	A language is context-free if and only if it is accepted by a context-free grammar. Justify: Generated, not accepted	n
3.	Any regular language is a context-free language Justify: 1. Any Finite Automata is a PDF automata 2.Regular languages are generated by regular grammars, that are also CF.	у
4.	$L = \{w \in \{a, b\}^* : w = w^R\}$ is context-free Justify : G with the rules: $S \to aSa bSb a b e$	у
5.	The stack alphabet of a pushdown automaton is always non- empty Justify : finite set can be empty	n
6.	$\Delta \subseteq (K \times \Sigma^* \times \Gamma^*) \times (K \times \Gamma^*$ is a transition relation of a pushdown automaton Justify: Δ must be finite	n
7.	$\begin{split} L(M) &= \{ w \in \Sigma^* : (s,w,e) \models^*{}_M (f,e,e) \} \\ \mathbf{Justify} : \ f \in F \end{split}$	n
8.	Any regular language is accepted by a pushdown automaton Justify : Any finite automata is a pushdown automata operating on an empty stock.	у
9.	Context-free languages are not closed under union Justify : we construct a CF grammar that is union of CF grammars	n
10.	Context-free languages are closed under intersection Justify : Take $L_1 = \{a^n b^n c^m : n, m \ge \}$, $L_2 = \{a^m b^n c^n : n, m \ge \}$ both are CF and we get that $L_1 \cap L_2 = \{a^n b^n c^n : n \ge 0\}$ is not CF	n

PROBLEMS

QUESTION 1

Given a **Regular grammar** $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S, A\}, \ \Sigma = \{a, b\},\$$

$$R = \{ S \to aS \mid A \mid e, A \to abA \mid a \mid b \}.$$

1. Draw a **diagram** of a finite automaton M, such that L(G) = L(M).

Solution We construct a non-deterministic finite automata

$$M = (K, \Sigma, \Delta, s, F)$$

as follows:

$$K = (V - \Sigma) \cup \{f\}, \ \Sigma = \Sigma, s = S, \ F = \{f\},$$
$$\Delta = \{(S, a, S), (S, e, A), (S, e, f), (A, ab, A), (A, a, f), (A, b, f)\}$$

2. Trace a transitions of M that lead to the acceptance of the string *aaaababa*, and compare with a derivation of the same string in G.

Solution

The accepting computation is:

 $(S, aaaababa) \vdash_{M} (S, aaababa) \vdash_{M} (S, aababa) \vdash_{M} (S, ababa) \vdash_{M} (A, ababa)$ $\vdash_{M} (A, aba) \vdash_{M} (A, a) \vdash_{M} (f, e)$

G derivation is:

$$S \Rightarrow aS \Rightarrow aaS \Rightarrow aaaS \Rightarrow aaaA \Rightarrow aaaabA \Rightarrow aaaababA \Rightarrow aaaababa$$

QUESTION 2

- Use closure under union for CF languages to show that $L = \{a^n b^n : n \neq m\}$ is CF language
- **Solution 1** We know that $L_1 = \{a^m b^n : m > n\}$ and $L_2 = \{a^m b^n : m < n\}$ are context-free languages (we constructed proper grammars for both of them). $L = L_1 \cup L_2$, hence L is context free as the class of context free languages is closed under union.
- **Solution 2** Observe that $L_1 = \{a^m b^n : m > n\} = \{a\}^+ \{a^n b^n : n \in N\}$ We proved that $\{a^n b^n : n \in N\}$, is context free, $\{a\}^+$ is regular and hence CF and the class of context free languages is closed under concatenation, hence L_1 is also context free.

Similarly, $L_2 = \{a^m b^n : m < n\} = \{a^n b^n : n \in N\}\{b\}^+$, so L_2 is context free. $L = L_1 \cup L_2$, hence L is context free as the class of context free languages is closed under union.

Also in Lecture 11

QUESTION 3

Construct a PD automaton M such that

$$L(M) = \{a^n b^{2n} : n \ge 0\}$$

Draw the **diagram** of M

Trace a computation of M accept ion the word aabbbb

Show that $aab \notin L(M)$

Solution in Lecture 11