CSE303 Q1 SOLUTIONS

Quiz has TWO PARTS

Part 1: yes/no questions (15pts)

Must write justifications- no justification, no points!

Part 2 (10pts) Solve only one problem of your choice

PART 1: Yes/No Questions

1.	$\{\emptyset\} \subseteq \{a, b, c\}$	
	Justify : $\emptyset \notin \{a, b, c\}$	n
2.	$2^{\{1,2\}} \cap \{\{1,2\}\} \neq \emptyset$	
	Justify : $\{1,2\} \subseteq \{1,2\}$ i.e. $\{1,2\} \in 2^{\{1,2\}}$ and $\{1,2\} \in \{\{1,2\}\}$	У
3.	Some $R \subseteq A \times B$ are functions that map A into B	
	Justify : Functions are special type of relations.	У
4.	Let $A \neq \emptyset$ such that there are exactly 25 partitions of A. It is possible to define 20 equivalence relations on A	
	Justify : one can define up to 25 (as many as partitions) of equiva- lence classes	у
5.	There is a relation that is equivalence and <i>order</i> at the same time	
	Justify : equality relation	у
6.	Let $A = \{n \in N : n^2 + 1 \le 15\}$. It is possible to define 8 <i>alphabets</i> $\Sigma \subseteq A$	
	Justify : A has 4 elements, so we have $2^4 > 8$ subsets	у
7.	Let $A = \{\{n\} \in 2^N : n^2 + 1 \le 15\}$. A is infinite.	
	Justify : $\{n \in N : n^2 + 1 \le 15\} = \{0, 1, 2, 3\}$, hence $A = \{\{0\}, \{1\}, \{2\}, $ is a finite set	${3}} {\mathbf{n}}$
8.	Let $\Sigma = \{a\}$. There are countably many languages over Σ .	
	Justify : There is any many languages as subsets of Σ^* , i.e. uncountably many and exactly as many as real numbers.	n
9.	Let $\Sigma = \{n \in N : n \leq 1\}$ There are uncountably many finite languages over Σ	
	Justify : $\Sigma = \{0, 1\}$ and so Σ^* is countably infinite. The set of all finite subsets of any countably infinite set is countably infinite	n
10.	$L^* = \{w_1w_n : w_i \in L, i = 1, 2,n, n \ge 1\}$	
	Justify : $n \ge 0$.	\mathbf{n}
11.	For any langauge L over an alphabet Σ , $L^+ = L \cup L^*$	
	Justify : $e \in L^*$ and $e \notin L^+$	n

- 12. For any language L over an alphabet Σ , $L^+ = L \cup L^*$. **Justify**: Take L such that $e \notin L$. We get that $e \in L \cup L^*$ as $e \in L^*$ and $e \notin L^+$.
- 13. For any languages L_1 , L_2 , L over $\Sigma \neq \emptyset$

$$(L_1 \cup L_2) \circ L = L_1 \circ L \cup L21 \circ L$$

Justify: proved in class

У

 \mathbf{n}

 \mathbf{n}

- 14. Regular language is a regular expression. **Justify**: Regular Language is represented by the function \mathcal{L}
- 15. Regular expression $\alpha = (a \cup b)^* a$ defines a language $L = \{w \in \{a, b\}^* : w \text{ ends with } a \}$ **Justify**: $\{a, b\}^* \{a\} = \Sigma^* \{a\} = \{w \in \{a, b\}^* : w \text{ ends with } a \}.$ **Y**

PART 2: PROBLEMS

Chose ONE problem and solve it

Circle the problem you want us to correct

QUESTION 1

- **1.** Let $A = \{(\{n, n+1\}, n) \in 2^N \times N : 1 \le n \le 3\}$. List all elements of A.
- **2.** Let now $A = \{(\{n\}, n) \in 2^N \times N : 1 \le n \le n + 1\}$. Prove that A is infinitely countable.

Solution

1. Let $A = \{(\{n, n+1\}, n) \in 2^N \times N : 1 \le n \le 3\}$. List all elements of A.

$$A = \{(\{n, n+1\}, n) \in 2^N \times N : n = 1, 2, 3\} = \{(\{1, 2\}, 1), (\{2, 3\}, 2), (\{3, 4\}, 3)\}$$

2. Let now $A = \{(\{n\}, n) \in 2^N \times N : 1 \le n \le n + 1\}$. Prove that A is infinitely countable.

Solution

$$A = \{(\{n\}, n) \in 2^N \times N : 1 \le n \le n+1\} = \{(\{n\}, n) \in 2^N \times N : 1 \le n\}$$

because $n \leq n+1$ for all $n \in N$.

The set $B = \{\{n\} : n \in N\}$ has the same cardinality as N by the function $f(n) = \{n\}$. $A = B \times N$ is a Cartesian product of two infinitely countable sets, and hence is also infinitely countable.

QUESTION 2 Let $\Sigma = \{a, b\}$. Let $L_1 \subseteq \Sigma^*$ be defined as follows:

 $L_1 = \{ w \in \Sigma^* : \text{ number of } b \text{ in } w \text{ is divisible three} \}$

Write a regular expression α , such that $\mathcal{L}(\alpha) = L_1$. You can use shorthand notation. Explain shortly your answer.

Solution:

$$\alpha = a^* (a^* b a^* b a^* b a^*)^* = a^* (b a^* b a^* b a^*)^*.$$

Explanation: the part $a^*ba^*ba^*ba^*$ says that there must be 3 occurrences of b in L_1 . The part $(a^*ba^*ba^*ba^*)^*$ says that we the number of b's is 3n for $n \ge 1$.

Observe that 0 is divisible by 3, so we need to add the case of 0 number of b's (n = 0), i.e. words e, a, aa, aaa, \ldots We do so by concatenating $(a^*ba^*ba^*b^*)^*$ with a^* .