PART 1: Yes/No Questions Circle the correct answer. Write ONE-SENTENCE justification.

1. There are uncountably many languages over $\Sigma = \{a\}$.
 Justify: $|\{a\}^*| = \aleph_0$ and $|2^{\{a\}^*}| = \mathfrak{c}$ and any set of cardinality \mathfrak{c} is uncountable.

2. Let $\Sigma = \phi$, there is $L \neq \phi$ over Σ.
 Justify: $0^* = \{e\}$ and $L = \{e\} \subseteq \Sigma^*$

3. $L^* = \{w \in \Sigma^* : \exists q \in F(s, w) \vdash^*_M (q, e)\}$.
 Justify: this is definition of $L(M)$, not L^*

4. $(a^*b \cup \phi^*)$ is a regular expression.
 Justify: definition

5. Let L be a language defined by $(a^*b \cup \phi)$, i.e (shorthand) $L = a^*b \cup \phi$.
 Then $L \subseteq \{a, b\}^*$.
 Justify: definition

6. $\Sigma = \{a\}$, there are \mathfrak{c} (continuum) languages over Σ.
 Justify: $|2^{\{a\}^*}| = \mathfrak{c}$

7. For any languages $L_1, L_2, L_3 \subseteq \Sigma^* L_1, \cup (L_2 \cap L_3) = (L_1 \cup L_2) \cap (L_1 \cup L_3)$.
 Justify: languages are sets

8. $L^* = L^+ - \{e\}$.
 Justify: only when $e \notin L$

9. $L = ((\phi^* \cup b) \cap (b^* \cup \phi))$ (shorthand) has only one element.
 Justify: $\{e, b\} \cap \{b\}^* = \{e, b\}$

10. If M is a FA, then $L(M) \neq \phi$.
 Justify: take M with $\Sigma = \phi$

11. If M is a nondeterministic FA, then $L(M) \neq \phi$.
 Justify: take M with $\Sigma = \phi$ or $F = \phi$
12. \(L(M_1) = L(M_2) \) iff \(M_1 \) and \(M_2 \) are finite automata.
 \textbf{Justify}: take as \(M_1 \) any automata such that \(L(M_1) \neq \emptyset \) and \(M_2 \) such that \(L(M_2) = \emptyset \).

13. If \(L \) is regular, then there is a finite \(M \), such that \(L = L(M) \).
 \textbf{Justify}: Main Theorem

14. Any finite language is CF.
 \textbf{Justify}: any finite language is regular and \(RL \subseteq CFL \)

15. \(L_1 \) is regular, \(L_2 \) is CF, \(L_1, L_2 \subseteq \Sigma^* \), then \(L_1 \cap L_2 \subseteq \Sigma^* \) is CF.
 \textbf{Justify}: theorem

16. Intersection of any two regular languages is CF language.
 \textbf{Justify}: Regular languages are closed under intersection and \(RL \subseteq CFL \)

17. Union of a regular and a CF language is a CF language.
 \textbf{Justify}: \(RL \subseteq CFL \) and FCL are closed under union

18. \(L = \{a^n b^n c^n : n \geq 0\} \) is CF.
 \textbf{Justify}: is not CF, as proved by Pumping Lemma for CF languages

19. If \(L \) is regular, there is a PDA \(M \) such that \(L = L(M) \).
 \textbf{Justify}: FA is a PDA operating on an empty stock

20. If \(L \) is regular, there is a CF grammar \(G \), such that \(L = L(G) \).
 \textbf{Justify}: \(RL \subseteq CFL \)

21. \(A \rightarrow Ax, A \in V, x \in \Sigma^* \) is a rule of a regular grammar.
 \textbf{Justify}: this is a rule of a left-linear grammar and we defined regular grammar as a right-linear

22. \(L = \{a^n b^n : n \geq 0\} \) is CF.
 \textbf{Justify}: \(L = L(G) \) for \(G \) with \(R = \{S \rightarrow aSb|e\} \)

23. Let \(\Sigma = \{a\} \), then for any \(w \in \Sigma^* \), \(w^Rw \in \Sigma^* \).
 \textbf{Justify}: \(a^R = a \) and \(w^R = w \) for \(w \in \{a\}^* \)

24. Let \(G = (\{S, (,)\}, \{(,), \}, R, S) \) for \(R = \{S \rightarrow SS \mid (S)\} \). \(L(G) \) is regular.
 \textbf{Justify}: \(L(G) = \emptyset \) and hence regular
25. \((p, \epsilon, \beta), (q, \gamma) \in \Delta\) means: read nothing, move from \(p\) to \(q\)

\textbf{Justify}: and replace \(\gamma\) by \(\beta\) on the top of the stack

26. \(L = \{a^n b^m c^n : n, m \in N\}\) is CF.

\textbf{Justify}: when \(n = m\) we get \(L = \{a^n b^n c^n : n \in N\}\) that is not CF

27. Every subset of a Context Free language is a language.

\textbf{Justify}: subset of a set is a set

28. A parse tree is always finite.

\textbf{Justify}: derivations are finite

29. Any regular language is accepted by some PD automata.

\textbf{Justify}: \(RL \equiv FA, FA \subseteq PDA\)

30. Every subset of a regular language is a regular language.

\textbf{Justify}: \(L = \{a^n b^n : n \geq 0\} \subseteq a^* b^*\) and \(L\) is not regular

31. A CF language is a regular language.

\textbf{Justify}: \(L = \{a^n b^n : n \geq 0\}\) is CF and not regular

32. A regular language is a CF language.

\textbf{Justify}: Regular grammar is a special case of a context-free grammar

33. A parse tree is always finite.

\textbf{Justify}: Any derivation of \(w\) in a CF grammar is finite.

34. A CF grammar \(G\) is called ambiguous if there is \(w \in L(G)\) with at least two distinct parse trees.

\textbf{Justify}: definition

35. A CF language \(L\) is inherently ambiguous iff all context-free grammars \(G\), such that \(L(G) = L\) are ambiguous.

\textbf{Justify}: definition

36. Turing Machines can read and write.

\textbf{Justify}: by definition

37. A configuration of a Turing machine \(M = (K, \Sigma, \delta, s, H)\) is any element of a set \(K \times \Sigma^* \times (\Sigma^*(\Sigma - \{\#\}) \cup \{e\})\), where \# denotes a blanc symbol.

\textbf{Justify}: a configuration is an element of a set \(K \times \Sigma^* \times (\Sigma^*(\Sigma - \{\#\}) \cup \{e\})\)

38. A computation of a Turing machine can start at any position of \(w \in \Sigma\).

\textbf{Justify}: by definition
39. Turing Machines are as powerful as today’s computers.
 \textbf{Justify:} thesis
 \textit{y}

40. It is proved that everything computable (algorithm) is computable by a Turing Machine and vice versa.
 \textbf{Justify:} this is Church - Turing Hypothesis, not a theorem
 \textit{n}

41. Church’s Thesis says that Turing Machines are the most powerful.
 \textbf{Justify:} We adopt a Turing Machine that halts on all inputs as a formal notion of ”an algorithm”.
 \textit{n}

\textbf{PART 2: PROBLEMS}

\textbf{QUESTION 1} Given a Regular grammar \(G = (V, \Sigma, R, S) \), where
\[V = \{a, b, S, A\}, \quad \Sigma = \{a, b\}, \]
\[R = \{ S \rightarrow aS | e, \quad A \rightarrow abA | a | b \}. \]

1. Construct a finite automaton \(M \), such that \(L(G) = L(M) \).
 \textbf{Solution} We construct a non-deterministic finite automata
 \[M = (K, \Sigma, \Delta, s, F) \]
 as follows:
 \[K = (V - \Sigma) \cup \{f\}, \quad \Sigma = \Sigma, \quad s = S, \quad F = \{f\}, \]
 \[\Delta = \{(S, a, S), (S, e, A), (S, e, f), (A, ab, A), (A, a, f), (A, b, f)\} \]

2. Trace a transitions of \(M \) that lead to the acceptance of the string \(aaaababa \), and compare with a derivation of the same string in \(G \).
 \textbf{Solution}
 The accepting computation is:
 \[(S, aaaababa) \vdash_M (S, aaababa) \vdash_M (S, ababa) \vdash_M (A, ababa) \]
 \[\vdash_M (A, aba) \vdash_M (A, a) \vdash_M (f, e) \]
 \[G \text{ derivation is:} \]
 \[S \Rightarrow aS \Rightarrow aaS \Rightarrow aaaS \Rightarrow aaaS \Rightarrow aaaA \Rightarrow aaabA \Rightarrow aaababA \Rightarrow aaaababa \]
QUESTION 2 Construct a context-free grammar G such that

$$L(G) = \{ w \in \{a, b\}^* : w = w^R \}.$$

Justify your answer.

Solution $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S\}, \quad \Sigma = \{a, b\},$$

$$R = \{ S \to aSa \mid bSb \mid a \mid b \mid e \}.$$

Derivation example: $S \Rightarrow aSa \Rightarrow abSba \Rightarrow ababa$

$ababa^R = ((ab)a(ba))^R = (ba)^RaR(ab)^R = ababa.$

Observation 1 We proved in class that for any $x, y \in \Sigma^*$, $(xy)^R = y^Rx^R$.

From this we have that $(xyz)^R = ((xy)z)^R = z^R(xy)^R = z^Ry^Rx^R$

Grammar correctness justification: observe that the rules $S \to aSa \mid bSb \mid e$ generate the language $L_1 = \{ ww^R : w \in \Sigma^* \}$. With additional rules $S \to a \mid b$ we get hence the language $L = L_1 \cup \{ waw^R : w \in \Sigma^* \} \cup \{ wbw^R : w \in \Sigma^* \}$. Now we are ready to prove that

$L = L(G) = \{ w \in \{a, b\}^* : w = w^R \}.$

Proof Let $w \in L$, i.e. $w = xx^R$ or $w = xax^R$ or $w = xbx^R$. We show that in each case $w = w^R$ as follows.

c1: $w^R = (xx^R)^R = (x^R)^R x^R = x^R = w$ (used property: $(x^R)^R = x$).

c2: $w^R = (xax^R)^R = (x^R)^R a^Rx^R = xax^R = w$ (used Observation 1 and properties: $(x^R)^R = x$ and $a^R = a$).

c3: $w^R = (xbx^R)^R = (x^R)^R b^Rx^R = xbx^R = w$ (used Observation 1 and properties: $(x^R)^R = x$ and $b^R = b$).

QUESTION 3 Construct a pushdown automaton M such that

$L(M) = \{ w \in \{a, b\}^* : w = w^R \}$

Solution 1 We define M as follows: $M = (K, \Sigma, \Gamma, \Delta, s, F)$
M components are

\[K = \{ s, f \}, \Sigma = \{ a, b \}, \Gamma = \{ a, b \}, F = \{ f \} \]

\[\Delta = \{ ((s, a, e), (s, a)), ((s, b, e), (s, b)), ((s, e, e), (f, e)), ((s, a, e), (f, a)), ((s, b, e), (f, b)), ((f, a, a), (f, e)), ((f, b, b), (f, e)) \} \]

Trace a transitions of \(M \) that lead to the acceptance of the string \(ababa \).

Solution

\[
\begin{align*}
S & \quad ababa \quad e \\
S & \quad baba \quad a \\
S & \quad aba \quad ba \\
f & \quad ba \quad ba \\
f & \quad a \quad a \\
f & \quad e \quad e
\end{align*}
\]

QUESTION 4 Construct a PDA \(M \), such that

\[L(M) = \{ b^n a^{2n} : n \geq 0 \} \]

Solution \(M = (K, \Sigma, \Gamma, \Delta, s, F) \) for

\[K = \{ s, f \}, \Sigma = \{ a, b \}, \Gamma = \{ a \}, s, F = \{ f \}, \]

\[\Delta = \{ ((s, b, e), (s, aa)), ((s, e, e), (f, e)), ((f, a, a), (f, e)) \} \]

Explain the construction. Write motivation.

Solution \(M \) operates as follows: \(\Delta \) pushes \(aa \) on the top of the stack while \(M \) is reading \(b \), switches to \(f \) (final state) non-deterministically; and pops \(a \) while reading \(a \) (all in final state). \(M \) puts on the stock two \(a \)'s for each \(b \), and then remove all \(a \)'s from the stack comparing them with \(a \)'s in the word while in the final state.

Trace a transitions of \(M \) that leads to the acceptance of the string \(bbaaaa \).

Solution The accepting computation is:

\[
\begin{align*}
(s, bbaaaa, e) \vdash_M (s, baaa, aa) & \vdash_M (s, aaaa, aaaa) \vdash_M (f, aaaa, aaaa) \\
\vdash_M (f, aaa, aaa) & \vdash_M (f, aa, aa) \vdash_M (f, a, a) \vdash_M (f, e, e)
\end{align*}
\]
Solution 2 \(M = (K, \Sigma, \Gamma, \Delta, s, F) \) for

\[
K = \{s, f\}, \Sigma = \{a, b\}, \Gamma = \{b\}, s, F = \{f\},
\]

\[
\Delta = \{((s, b, e), (s, b)), ((s, e, e), (f, e)), ((f, aa, b), (f, e))\}
\]